
Research Article
A Proposed Harmony Search Algorithm for
Honeyword Generation

Yasser A. Yasser ,1 Ahmed T. Sadiq ,1 and Wasim AlHamdani 2

1Computer Science Department, University of Technology-Iraq, Baghdad, Iraq
2Information Technology Department, University of the Cumberlands, Williamsburg, KY 40769, USA

Correspondence should be addressed to Yasser A. Yasser; cs.19.28@grad.uotechnology.edu.iq

Received 16 November 2021; Revised 8 March 2022; Accepted 9 March 2022; Published 25 March 2022

Academic Editor: Francesco Bellotti

Copyright © 2022 Yasser A. Yasser et al.)is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

)e honeyword system is a password cracking detection technique that aims to improve the security of hashed passwords by
making password cracking simpler to detect. Many honeywords (false passwords) accompany the sugarword (true password) to
form the sweetwords (false and true passwords) for every user. If the attacker signs in using a honeyword, a silent alarm trigger
shows that the honeyword system might be compromised. Many honeyword generation techniques are presented; each one has a
flaw in the generating process, a lack of support for all honeyword characteristics, and a slew of honeyword problems.)e
harmony search algorithm (HSA), a metaheuristic intelligence algorithm inspired by music, is used in this article to offer a novel
method for generating honeyword.)e suggested honeyword generation technique will enhance the generating process, enhance
honeyword characteristics, and address prior approaches’ shortcomings.)is paper will show several previous honeyword
generation techniques, explain the suggested one, discuss the experimental findings, and compare the new honeyword generation
method with the previous ones.

1. Introduction

Because of its simplicity and memorability, password-based
authentication is the most widely recognized authentication
method. However, numerous attack methods, such as
password cracking, have been used to examine this approach
[1, 2]. Password cracking is an uncommon and generally
unethical method of retrieving passwords from data
maintained or transmitted by a computer system [3].

Honeywords is an easy technique to increase the
quantity of “honeywords” (false passwords) connected with
each user’s account, therefore enhancing the security of
hashed passwords and making password cracking simpler to
detect [4, 5]. An adversary who obtains entry to the hashed
passwords database and reverses the hashing will not de-
termine the real password. If a honeyword is used in the
login process, a “silent alert” will be activated [6, 7]. Hon-
eychecker is an additional server that can distinguish be-
tween the real and honeywords and is linked to the login

server through a secure connection [8, 9]. A metaheuristic is
a higher-level process or heuristic used in computer science
and mathematical optimization to identify, develop, or
choose a heuristic (partial search algorithm) that may offer a
suitably good solution to an optimization problem [10]. An
optimization issue is a problem in mathematics, computer
science, and economics where the goal is to identify the
optimum answer out of all the possible ones [11].)e
metaheuristic algorithms can be swarm, nature-inspired,
physics-based, evaluation-based, or unique solutions [12].
Harmony search algorithm (HSA) is a unique music-in-
spired algorithm that mimics the improvisation process of
musicians aiming to resolve optimization problems by
obtaining the optimal solution [13, 14].

)e suggested honeyword system proposes to use the
harmony search algorithm HSA, a metaheuristic music-
inspired intelligence algorithm, to provide a novel technique
for generating honeyword. Many adjustments have been
made to the HSA to suit the problem nature, honeyword

Hindawi
Advances in Human-Computer Interaction
Volume 2022, Article ID 9607550, 10 pages
https://doi.org/10.1155/2022/9607550

mailto:cs.19.28@grad.uotechnology.edu.iq
https://orcid.org/0000-0002-5085-7948
https://orcid.org/0000-0002-4217-1321
https://orcid.org/0000-0003-3249-6883
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9607550

generation, and treating solutions as honeywords.)e
suggested system tokenizes the real password and then
handles every token type in different techniques. Every token
type has its generator (alphabet, digits, special characters
generator). Alphabet token generator uses the proposed
HSA, while the digits and special characters tokens use
simple random generators.

)e suggested method chooses the harmony search al-
gorithm to produce honeywords benefiting from the algo-
rithm’s characteristics in terms of quick convergence and
population diversity, ease of implementation, and fewer
parameters adjustment.

)e contributions of this paper are many. (1))e
proposed system uses the harmony search algorithm offering
a novel technique for generating honeyword, (2) the sug-
gested generation technique will enhance the honeyword
generating process, support honeyword characteristics, and
address prior approaches’ shortcomings, (3) the password
alphabet token of the proposed generating algorithm pro-
vided great results for generating meaningful words from
meaningful words; the most interesting is that the proposed
algorithm can find meaningful words from rubbish words,
(4) the proposed algorithm suggests its evaluation criterion
for the generated honeyword (alphabet token), called the
approximation factor, and (5) the sugarword cannot be
guessed even if the attacker knows one of the sugarword
tokens. In sweetwords, every token is redundant six times.
So, if the attacker knows one of the sugarword tokens, then
the chance of picking the sugarword at random is 1/6(≈17%).

)is paper will describe a few honeyword generating
techniques, offer a basic explanation for the honeyword
technique, illustrate the harmony search algorithm, explain
the proposed system with proposed HSA, show the exper-
imental findings, compare with the previous honeyword
generation methods, with discussion, and end with the
conclusion.

2. Related Works

Over the recent few years, much research has presented
honeyword generating methods. In addition, there are
several asymptotical researches in this area.

(i) In [15], this research suggests several honeyword
generation techniques, including modifying a por-
tion of the password, utilizing a dictionary, adding a
tail by the system, honeywords supplied by the
system, honeywords supplied by the user, and hy-
brid approaches.)ese approaches are divided into
two groups based on whether or not they impact the
user interface (UI), and each category contains a
variety of honeyword generation techniques:

(1) Legacy-UI
(Chaffing-by-tail-tweaking, Chaffing-by–tweaking-
digits, Simple model, Modeling syntax, “Tough
nuts”, Hybrid generation methods).

(2) Modified-UI
(Take-a-tail, Random pick).

(ii) In [16], this approach is known as “Storage-index,”
and it proposes an alternative approach for the
honeyword generation that selects honeywords
based on existing user passwords in the system to
produce realistic honeywords. Honeywords are still
employed in the suggested approach to detecting
password cracking.)is approach imitates honey-
words by utilizing existing passwords rather than
generating honeywords and saving them in a
password file.

(iii) In [17], PDP stands for Paired Distance Protocol, a
novel honeyword generating method with a new
user interface. To log in, the user will need three
pieces of information: a username, a password, and
a password-tail. In addition to the username and
password, the user chooses a password-tail of t> 1
from a list of (1) alphabetic characters (a-z) and (2)
digits upon enrolling (0–9).

(iv) In [18], as new honeyword generation approaches,
the “evolving-password model,” “user-profile
model,” and “append-secret model” are suggested.

(1) Evolving-password model:)e following two sep-
arate computation steps can be utilized to finish the
process: (a) Counting the number of times password
patterns and tokens are used, and (b) generating
honeywords from post frequencies and maintaining
frequency lists.

(2) User-profile model: Honeywords are made by
merging diverse user-profile data by constructing
distinct sets from provided data that contain tokens
of various types, such as “alphabet-strings,” “digit-
strings,” and “special-character-strings.”

(3) Append-secret model:)e system requests the
user’s username, password, and an additional
item, such as e, to produce a random string s that
includes numbers, characters, and symbols.)e
model yields r after running the function f (p|e|s).
H (password|r) will be saved in the system’s
password file.

(v) In [19], Akif et al. suggest a new honeyword gen-
eration approach that includes all four ways. As a
consequence, the system received four groups of
honeywords that are generated from the following:

(1) Existing user information: Creating data with two
sections of public personal questions.)e first
section will concentrate on characters, while the
second will concentrate on numbers. Honeywords
will be constructed by combining the answers to the
first and second sections.

(2) A dictionary attack:)e fundamental idea behind
generating suitable honeywords after scanning
through the dictionary attack is to utilize the actual
password with a modification of up to three
numbers or characters.

(3) A generic password list: Honeywords selected at
random from a collection of the 500 worse pass-
words make up this honeyword group.

2 Advances in Human-Computer Interaction

(4) Shuffling the characters: Honeyword is created by
combining scrambled characters or digits from the
ID user.

3. Honeywords

)e honeywords method works by creating honeywords
(false passwords) from sugarword (real password), then
entering them all as sweetwords into the username and
password file, and hashing them all [20, 21]. If the adversary
gets plain passwords from hashed passwords, he must guess
the real password amongst some of the sweetwords correctly;
otherwise, a quiet alert to the system administrator may be
fired, signaling that password cracking is feasible [22, 23].
)e administrators’ actions are dictated by the organiza-
tion’s policies and may include banning, deferring, or no-
tifying the account [24].

Flatness, let z be the adversary’s estimated chance of
accurately predicting the sugarword. Since an adversary can
succeed with a chance of 1/k by predicting sugarword
randomly, the user’s password pi is chosen using the gen-
eration Gen(k; pi).)e adversary has at least a (1-(1/k))
chance of picking a honeyword if the honeyword is as flat as
possible (i.e., 1/k flat) [25, 26]. For example, in the complete
flat honeywords, if the sweetwrods k� 25, the adversary has a
(1/25� 4%) chance of selecting a sugarword and a (1–4%�

96%) for selecting a honeyword [27].
User login, the honeypot is examined by the login server

when a user wants to connect to his account (the admin-
istrator makes fake accounts to detect the attack) [28]. If the
account is fake, the administrator will get a warning as a
possible attack; if the account is legitimate, hash the user’s
password and compare it to the file of sweetwords before
submitting checking to the honeychecker [29].

4. Harmony Search Intelligence Algorithm

)e harmony search algorithm (HSA) is a metaheuristic
optimization algorithm based on a natural event where a
musician looks for the best notes to create perfect harmony,
comparable to searching for the best solutions to a problem
[30, 31].)e HSA is simple and easy to implement, has a
population diversity, converges rapidly to the best solution,
and finds a good enough one in an acceptable amount of
time. It can find a balance between exploration and ex-
ploitation [32, 33]. Random search, harmony memory
considering rate (HMCR), and pitch adjusting rate (PAR) are
the three operators that make up the HSA performance
process [34].

)e improvising of musicians for a pitch commonly
needs to follow one of these rules: (1) playing any pitch from
memory, (2) playing a neighboring pitch from memory, and
(3) producing a completely random pitch from the sound
range.)is process is mimicked in each variable selection of
the HSA: (1) selecting any value from the HS memory, (2)
selecting a nearby value from the HS memory, and (3)
selecting a completely random value from the potential value
range [14, 35]. Algorithm 1 shows the general steps of the

algorithm, which may be changed based on the problem
encoded.

5. The Proposed Harmony Search Algorithm

)e proposed honeyword system suggests using the unique
metaheuristic music-inspired harmony search algorithm
(HSA) as a novel method for the honeyword generating
process.)e HSA underwent many changes to appropriate
the problem space of honeyword generation and handle its
solutions as honeywords.)is study chooses the HSA be-
cause of its simplicity, easy implementation, diversity, rapid
converges, providing the best to a good solution, and
supplying a balance between exploration and exploitation.

)e proposed honeyword system was adopted for the
legacy-UI, which is more convenient to users because it is
just required for username and password to enter.)e last
one involves alphabets, digits, and special characters. 36
sweetwords are used in the proposed system, which means
k� 36; the adversary has a 1/36(≈3%) chance of successfully
selecting the sugarword and has a (1–3%� 97%) probability
of selecting a honeyword.)e recommendation for the
proposed system is that the attacker will not be able to pick
the sugarword even if knowing one of its tokens because
every token in the sweetwords has been repeated for five
times. In this case, the attacker has a 1/6(≈17%) probability
of selecting the sugarword.

)e proposed honeyword system aims to enhance the
generating process, enhance honeyword characteristics, and
address problems of prior approaches (detailed discussion in
Section 6.2).

)e proposed HSA handles the password tokens in a
different technique. For each tokens type, there is a different
generator (alphabet, digits, special characters generator).
)ese generators are working in parallel. For the alphabet
tokens, the HSA constructs its pitch adjustment technique
and evaluation criteria.

5.1. Proposed HSA Tokens Generators. As mentioned before,
the proposed HSA has three tokens generators that are
working in parallel.)e alphabet generator is the most
important and complicated one depending on the HSA
technique in the solution of the problems, whereas the digits
and special characters generator is simpler depending on the
simpler random generating technique.)e generators are as
follows.

5.1.1.5e Proposed HSA Alphabet Tokens Generator. It is the
most important part of the honeyword since it is the at-
tacker’s favorite choice for guessing the true password. It is
the most complicated generator that depends on the HSA
technique in the solution of the problems; the tokens of the
password will be treated as pitches.)e sugarword’s al-
phabet token will be used as the input for the generators. It is
regarded as the seed that is used to produce the honeywords
alphabet tokens. Make six copies for the top five tokens
generated by the alphabet generator; then divide the 30
tokens into five groups (columns). Each group has six similar

Advances in Human-Computer Interaction 3

tokens. Six copies of the alphabet seed should be added. As a
result, the HSA will include 36 alphabet tokens.

5.1.2. 5e Proposed HSA Digits Tokens Generator.)is
generator is based on random generation, and the seed will
be the sugarword’s digit token.)e generator will generate
five tokens of the same length as the seed. Make six copies of
each of the five generated digit tokens; then divide the 30
tokens into five groups (rows), each with six similar tokens.
)e HSA will have 36 digit tokens after adding six copies of
the digit seed.

5.1.3. 5e Proposed HSA Special Characters Token Generator.
)is generator is based on random generation, and the seed
will be the sugarword’s special characters token.)e gen-
erator will generate six tokens of the same length as the seed.
Make six copies of each of the five special characters tokens;
then divide the 30 tokens into five groups (rows), each with
six similar tokens.)us, the HSA will have 36 special
characters tokens after adding six copies of the seed of the
special character.

5.2. Pitch Adjustment Technique and Evaluation Criteria of
Proposed HSA. For the alphabet token, this section presents
the adjacent pitches (tokens) generating technique which
consists of four operations (insert, delete, translocation, and
swap) and the evaluation criteria used by the proposed HSA.

5.2.1. Pitch Adjustment Technique (Adjacent Token Gener-
ating Technique) of the Proposed HAS.)e change in token
should be concerning bw (distance bandwidth), representing
the maximum pitch adjustment change.)e adjacent token
generating for the alphabet tokens depends on four oper-
ations. For each seed token, four tokens will be generated;
then the best one will take the place of the seed token.)e
four operations are as follows:

(1) Insert: Randomly choose certain character places on
the token; then insert random characters.

(2) Delete: Randomly choose certain characters placed
on the token and delete them.

(3) Translocation: Pick a character’s place on the token
at random; then swap them around.

(4) Swap: Choose several character positions on the
token at random; then swap those characters.

Example 1. For the proposed HSA that used
(bw� 0.3 ∗ (Token length)) during the adjacent pitches
(token) generating, if the sugarword alphabet token is (sea)
then bw� 0.3 ∗ (3)� 0.9, so 1 character will be changed.)e
adjacent pitches (tokens) are (sear, sa, aes, tea) in sequence.

5.2.2. Evaluation Criteria of the Proposed HAS.)e initial
population’s alphabet tokens will be evaluated on the seed
token that is taken from the sugarword, but the evaluation of
the generated alphabet adjacent tokens will be metric on the

pitches token as its seed.)e proposed HSA has its eval-
uation criterion for the generated tokens; it is called the
approximation factor.)e value of the approximation factor
is in the range (0, 1), which is calculated as the sum of the
four criteria values. Each criterion has a different value as
mentioned in Section 5.4.)e four criteria are as follows:

(1) Character similarity:)e character similarity be-
tween the seed token’s characters and the produced
token’s characters.

(2))e length similarity:)e lengths of the characters in
the seed token and the produced token are similar.

(3))e PoS (part of speech) similarity:)e seed token
and the produced token are equivalent in terms of
PoS.

(4) Meaningful word: Is the token a word in the English
language?

5.3.5e Proposed HAS Algorithm Steps.)e system uses the
proposed HSA to generate the honeywords as tokens gen-
erating process; the sugarword is tokenized into three
separate tokens: alphabet, digits, and special characters, then
each one is handled in different generators (alphabet, digits,
special characters generator), and then the resulting hon-
eywords are collected with the sugarword to provide the
sweetwords.)e tokens of the password will be treated as
pitches.)e proposed HSA is showed in Algorithm 2.

Example 2. For the proposed HSA using the parameters
listed in Section 5.4. if the sugarword is (killer6+).)e
generated sweetwords by the proposed HSA will be as
follows.

killer6+
killer2[
killer1-
killer8_
killer7{
killer7+

filler6+
filler2[
filler1-
filler8_
filler7{
filler7+

kinder6+
kinder2[
kinder1-
kinder8_
kinder7{
kinder7+

kicker6+
kicker2[
kicker1-
kicker8_
kicker7{
kicker7+

jailer6+
jailer2[
jailer1-
jailer8_
jailer7{
jailer7+

dealer6+
dealer2[
dealer1-
dealer8_
dealer7{
dealer7+

5.4. Parameters. Many parameters that impact the HSA’s
performance are used in the suggested honeyword gener-
ating system. Table 1 lists the parameters utilized in the HSA.

)e proposed HSA is experimented with a variety of
parameter values before settling on the ones that offer the
greatest performance for the suggested system.)e pa-
rameters tested with many values are as follows:

(i))e population-size n: With the HSA experiment
having variety of population sizes (20, 40, 60, and
80), the generation of size (80) was chosen.

(ii))e max-generation MG:)ere were no improve-
ments in results after 30 rounds, although using
several iterations (10, 20, 30, 40, . . ., 100). So, the
alphabet token was given the maximum generation
number (30).

(iii))e distance bandwidth (maximum pitch adjust-
ment change) bw: Changing in token during

4 Advances in Human-Computer Interaction

adjacent pitches generation has been attempted
in a variety of sizes (1 character, 2 characters,
0.25 ∗ (token length), 0.3 ∗ (token length),
0.5 ∗ (token length)); the changing size
(0.3 ∗ (token length)) was chosen.

(iv) Evaluation criteria Ec: Many values have been
experimented (0.3, 0.2, 0.2, 0.3) & (0.4, 0.1, 0.1, 0.4)
& (0.3, 0.2, 0.1, 0.4) & (0.3, 0.1, 0.1, 0.5) & (0.2, 0.2,
0.1, 0.5) & (0.2, 0.1, 0.2, 0.5) & (0.2, 0.2, 0.1, 0.5) for
the evaluation criteria (character similarity, length
similarity, PoS (part of speech) similarity, and
meaningful word), but the values (0.2, 0.1, 0.1, 0.6)
were chosen because they led to the production of
meaningful words, which disturb the attacker on
guessing the password.

6. Results and Discussions

)e experimental results, a comparison between the HSA
and the prior honeyword generating method, and discussion
will be covered in this study section.

6.1. Experimental Results.)e HSA is experimented on a
variety of password tokens, including the alphabet token,
which is the most significant token because guessing the true
password is the attacker’s primary goal. Table 2 shows the
experimental results, using the parameters listed in Section
5.4.)e generating procedure for the alphabet token will be
based on the HSA approach in the solution of the problem;
80 tokens will be created, but only the best five will be
displayed in the results table. A basic random generator will
be used for the digit and special characters tokens, with
characters changes occurring at random but with the same
seed token length.)e generated tokes will be six tokens. For
the full example, see Example 2.

Table 2 illustrates the suggested HSA’s generated tokens
for various token kinds in order to claim the capability to

handle any password token type. Token 1 (hunter) dem-
onstrates that the proposed HSAmay yield a large number of
useful tokens; 16 generated tokens crossed the 0.6 threshold.
Token 2 (shadow) displays created tokens in various Pop-
size/Max-gen settings; there are usually decent results, but
Pop-size� 80/Max-gen� 30 produces the best results. Token
3 (apple) demonstrates how the proposed SSA creates dis-
tinct tokens for each try, even when the tokens and Pop-size/
Max-gen are the same. Token 4 (fOOtball) demonstrates the
proposed SSA’s ability to handle the password’s capital
letters. Tokens 5–10 are alphabet tokens that represent
several significant words. Tokens 11–13 display the pro-
duced alphabet tokens for trash words. Tokens 14–16 are
digit tokens. Tokens 17–19 depict tokens with distinctive
characteristics.

6.2. Comparison. A comparison between the proposed
honeyword systems included the proposed HSA with the
prior honeyword generating methods shown in this section.

)e proposed HSA honeyword generation technique is
better than earlier honeyword generation methods in terms
of honeyword generating because it enhances the generating
process benefiting from its characteristics in problem-
solving (diversity, rapid convergence, providing the best to a
good solution, and supplying a balance between exploration
and exploitation).

)e proposed HSA enhances the most important hon-
eyword properties (flatness, DoS resistance, and storage),
which are not always present in the best possible way in prior
honeyword generation techniques. Flatness:)e proposed
HSA guarantees perfect flatness unconditionally with a 1/
36(≈3%) chance for the attacker to correctly pick the sug-
arword and has a (1–3%� 97%) chance of selecting a
honeyword.)e recommendation for the proposed HSA is
that the attacker has a 1/6(≈17%) probability of selecting the
sugarword even with knowing one of its tokens. DoS Re-
sistance:)eDoS attack performs by guessing and entering a

Step 1: Set up the optimization issue and algorithm parameters (N, HMCR, PAR, and bw).
Step 2: Create a harmony memory (HM).

N of harmonies are generated (randomly) in the search space and stored in HM at first.
Step 3: Create a new harmony from the HM.
1st stage: A random number in the range (0, 1) is produced (rand).
If rand>HMCR, the new harmony’s decision variable (xnew,j) is created at random. Harmonymemory rate (HMCR) is an acronym

for harmony memory rate, which ranges from (0, 1).
If rand�<HMCR is not specified, one of the harmonics stored in HM is chosen at random, for example, k where 1�< k�<N.)e

matching value of harmony k from HM is then used to choose xnew,j.
2nd stage: Using a pitch adjustment, the improvised note can be moved to a neighboring value within the range of possibilities.

Pitch adjusting rate (PAR) is a parameter in HS that is in the range (0, 1). After 1st stage, a random number that is in the range (0, 1)
with uniform distribution is produced to execute the pitch adjustment method (rand). If rand�< PAR is true, bw should be used to
move the improvised note to an adjacent value. Where bw is a random distance bandwidth (a scalar value), bandwidth equals the
maximum pitch adjustment change. If rand> PAR, the improvised note remains unchanged.
Step 4. Update the HM.
In HM, compare the new harmony to the worst harmony. If the new one has higher fitness than the poorest one in the HM, it will

take its position. Otherwise, it will be removed.
Step 5: Continue using Steps 3 and 4 until the termination condition is met.

ALGORITHM 1:)e general steps of the harmony search algorithm [36].

Advances in Human-Computer Interaction 5

honeyword to deny the services of the system.)e suggested
HSA generates honeywords that the adversary cannot guess.
Storage: While the proposed HSA stores usernames and
sweetwords, several earlier generating techniques save ad-
ditional data and information.

Prior honeyword generating systems face several
problems.)e proposed honeyword system addresses the
seven most pressing concerns of honeyword systems.)e
following are the seven problems:

(i) Conditional flatness problem: It is the satisfaction
of some requirements to attain perfect flatness that
is regarded as a weakness Unlike unconditional
flatness, which indicates not having to meet any
conditions, that is considered a strength. On the
other hand, most earlier honeyword generating
methods give perfect flatness under certain con-
ditions, but the suggested honeyword system
guarantees perfect flatness unconditionally.

Parameter
n pitches size (population-size),HS harmony size (number of pitches that made harmony), HM harmonymemory,HMS harmony

memory size (equal to the max-generation), HMCR harmony memory considering rate, PAR pitch adjusting rate, bw distance
bandwidth (the maximum pitch adjustment change), ap number of generated adjacent pitches, Mg max-generation, Ec evaluation
criteria, d number of the generated digits tokens, dl number of digits that changed in the generated token, s number of the generated
special characters tokens, sl number of special characters that changed in the generated token.
Begin
Tokenization/ ∗ parse the sugarword to the alphabet of, numbers, and special characters token ∗ /
If the token is an alphabet

Generate the initial pitches population with n randomly
Compute the fitness of the population with considering to Ec
for i� 1 to Mg
for j� 1 to n
Generate rand1 in range (0, 1) and HMCR random in range (0, 1)
if rand<HMCR
let a pitch selected form the population randomly
Generate rand2 in range (0, 1) and PAR random in range (0, 1)
if rand<PAR
Generate adjacent pitches with ap respect to bw and choose the best adjacent as the pitch
end if

else generate pitch randomly
end if

end for
Compute the fitness of the new population with considering to Ec
Drop the worst pitches of the population generate ones randomly
Select the best pitches with HS as the harmony then save in HM

end for
Return the best harmony in HM as the alphabet honeyword tokens

end if
If the token is a digit

for i� 1 to d
for j� 1 to dl
Changes the digits of the token by other digits randomly

end for
end for
Return the d tokens as the digits honeyword tokens

end if
If the token is a special character

for i� 1 to s
for j� 1 to sl
Changes the special characters of the token by other special characters randomly

end for
end for
Return the s tokens as the special characters honeyword tokens

end if
Collect honeyword tokens
Provide sweetwords by adding sugarword to honeywords then permutate and hashed the sweetwords

End

ALGORITHM 2:)e proposed harmony search algorithm.

6 Advances in Human-Computer Interaction

(ii) Weak DoS resistance problem:)e attacker can
predict the honeywords, whereas strong DoS re-
sistance implies the adversary cannot guess the
honeywords. Many of the earlier honeyword gen-
erating techniques have a weak DoS resistance, but
the suggested honeyword system has a strong DoS
resistance.

(iii) Storage overhead problem: It is the need for more
storage space. Many earlier honeyword generating

techniques require additional storage costs, but the
suggested honeyword system does not.

(iv) Correlation problem:)e presence of a corre-
lation connecting username and password is a
problem. As a result, the real password may
simply be determined from honeywords.)e
suggested honeyword system solves the prob-
lem by keeping the correlated component the
same in the honeywords.

Table 1:)e HSA parameters values.

No Parameter Values
1 Pitches size (population-size) n 80
2 Max-generation MG 30
3 Harmony size (number of pitches that made harmony) HS 5
4 Harmony memory size (equal to max-generation) HMS 30
5 Harmony memory considering rate HMCR Random in range (0, 1)
6 Pitch adjusting rate PAR Random in range (0, 1)
7 Number of generated adjacent pitches ap 4
8 Distance bandwidth (maximum pitch adjustment change) bw 0.3×(Token length)

9

Evaluation criteria Ec
Character similarity
Length similarity

PoS (part of speech) similarity
Meaningful word

0.2
0.1
0.1
0.6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

10 Number of the generated digits tokens d 5
11 Number of digits that changed in generated token dl Token length
12 Number of the generated special characters tokens s 5
13 Number of special characters that changed in generated token sl Token length

Table 2: Experimental results of the proposed HSA.

Seed token Pop-size/Max-gen Honeyword tokens/approximation factor

1 Hunter 80/30

Punter/0.966 Hunger/0.966 Bunter/0.966 Sunder/0.933 Sinter/0.933
Putter/0.933 Punier/0.933 Luster/0.933 Lunger/0.933 Hitter/0.933
Mincer/0.9 Jitter/0.9 Hungry/0.9 Handler/0.842 Puntes/0.833
Hinted/0.833

2 Shadow

20/30 Hallow/0.866 Shaaban/0.842 Salw/0.833 Slaw/0.833 Skaw/0.833
40/30 Shaver/0.9 Slalom/0.9 Khaddar/0.871 Hallow/0.866 Shaaban/0.842
60/30 Cracow/0.9 Slalom/0.9 Shad/0.9 Shallow/0.871 Shannon/0.842
80/30 Slalom/0.9 Shaver/0.9 Shad/0.9 Shampoo/0.871 Shallow/0.871

3 Apple
80/30 Apace/0.919 Anile/0.919 Angle/0.919 Applier/0.887 Apron/0.88
80/30 Ample/0.96 Apace/0.919 Anile/0.9199 Apogee/0.883 Spoke/0.88
80/30 Anile/0.919 Applier/0.887 Apogee/0.883 Spoke/0.88 Apron/0.88

4 fOOtball 80/30 sOftball/0.924 gOOfball/0.9 fOOthill/0.9 fOretell/0.875 fOOtman/0.862
5 Superman 80/30 Superfine/0.922 Supermen/0.875 Cesarean/0.875 Sumer/0.8624 Sumerian/0.85
6 Pokemon 80/30 Pokeweed/0.887 Poker/0.885 Pokey/0.885 Power/0.857 Cowpoke/0.828
7 Babbygirl 80/30 Babytalk/0.9 Babyhood/0.9 Babysitter/0.88 Backfield/0.877 Basilisk/0.875
8 Pepper 80/30 Popper/0.966 Peeper/0.966 Hepper/0.966 Temper/0.933 Pipped/0.933
9 Chocolate 80/30 Iconolatry/0.89 Chowchowl/0.855 Chordate/0.855 Cholesterol/0.836 Cockateel/0.822
10 Jacket 80/30 Packet/0.966 Market/0.933 Cackle/0.933 Cachet/0.933 Sallet/0.9
11 Kebvtco 80/30 Greatcoat/0.844 Ketch/0.828 Kabob/0.828 Sketchy/0.7999 Jukebox/0.7999
12 Yothd 80/30 Moth/0.9 Hoth/0.9 Goth/0.9 Voter/0.88 Roped/0.88
13 Nusi 80/30 Nuss/0.95 Nisi/0.95 Suss/0.9 Rust/0.9 Puss/0.9
14 9368 N/A 1649 0576 2382 8843 1535
15 314 N/A 237 943 971 112 001
16 52 N/A 29 44 41 87 63
17 ‘∗ !̂ N/A _̂&’ .,@� ;)., !∗∼((]:$
18 /[& N/A (`, }∗ ” ∼|∗ _,> `/̂
19)< N/A #] ;& ∗ - ?| >&

Advances in Human-Computer Interaction 7

(v) Consecutive and frequented numbers problem:
Users prefer rememberable numerical patterns.
)us, many chose to use consecutive or frequented
numbers in their passwords, such as ‘123,’ 1234,
111, or 2222,’ which results in the sugarword being
recognized.)e suggested honeyword system
provides a list of the most frequented and con-
secutive numbers to solve this problem. If the
sugarword contains consecutive or frequented
numbers, the algorithm will select numbers from
the list at random for the honeywords.

(vi) Special date problem: Several people like to put a
date in their passwords related to their birth dates,
anniversary, the greatest year in school, or any
other comparable dates that will reveal the sugar-
word. As a result, the suggested honeyword system
will generate a list of the last 50 years.)e system
will select years at random from the list to put in the
honeywords if the year’s number is shown in
sugarword.

(vii) User information security problem: Many of the
preceding honeyword generating approaches rely
on personal knowledge-based questions, which
need users to supply personal information and
detail for the methods to create honeywords. If the

system is hacked and personal information is ex-
posed, it might be utilized on another system,
posing a risk to the user. As a result, employing this
approach is a security concern when viewed as a
weakness, but not utilizing it is a strength.)ere-
fore, the suggested honeyword system does not
need the user to provide any personal information.

Table 3 shows a comparison between the proposed HSA
and prior honeyword generation methods in the most
critical honeyword system problems.

7. Discussion

)e results of the experiments showed that the proposed
method effectively produces passwords with all of its tokens
(alphabet, digits, and special characters), particularly the
alphabet token, with its difficulties in relating to meaningful
phrases.)e alphabet token generation technique had ex-
cellent results in terms of creating meaningful words from
meaningful words; perhaps most notably, the system was
able to create meaningful words from rubbish words. As a
consequence of the analysis of the results, the proposed HSA
determines that the Pop-size should be more than the Max-
gen; as a result, the proposed system picks Pop-size� 80/
Max-gen� 30 based on experience.)e results reveal that

Table 3: A comparison in most pressing problems of honeyword systems.

No. Methods
Cond.
flatness
problem

Weak DoS
resist.

problem

Storage
overhead
problem

Corre.
problem

Cons. and
frequent numbers

problem

Special date
problem

User info.
security
problem

1 Proposed HSA No No No No No No No

2 Chaffing-by-tail-
tweaking [15] Yes Yes No Yes Yes Yes No

3 Chaffing-by-
tweaking-digits [15] Yes Yes No Yes Yes Yes No

4 Simple model [15] Yes No No Yes No No No

5 Modeling syntax
[15] Yes No No Yes Yes Yes No

6 Chaffing with
“tough nuts” [15] N/A No Yes No N/A N/A No

7 Take-a-tail [15] No No No No No No No
8 Random pick [15] Yes No No Yes No No No

9 Hybrid generation
methods [15] Yes No No Yes Yes Yes No

10 Storage-index [16] Yes Yes Yes Yes No No No
11 PDP [17] Yes No Yes No Yes No No

12 Evolving-password
model [18] Yes No No Yes Yes Yes No

13 User-profile model
[18] Yes Yes Yes Yes Yes No Yes

14 Append-secret
model [18] Yes No No No Yes No No

15 User information
method [19] Yes Yes Yes Yes Yes No Yes

16 Dictionary attack
method [19] Yes Yes No Yes No No No

17 Generic password
list method [19] Yes No No Yes No No No

18 Shuffling characters
method [19] Yes Yes No Yes Yes Yes No

8 Advances in Human-Computer Interaction

Pop-sizes of 20, 40, 60, and 80 produce good results, while
Pop-size� 80 produces a better approximation factor.)e
produced honeywords have a lot of desirable qualities,
according to the results. (1) Independent tokens generation:
it generates each password token type separately. (2) Dif-
ferent solutions generation: Even if the Pop-size/Max-gen is
set to (80/30), every generating operation generates distinct
honeywords. (3) Manipulation of several password patterns:
it can carry out a variety of token order password patterns.
(4) Sweetwords with a high level of security:)ey have
strong security against attacker guessing. (5) Capital letters
handling: it can carry out the capital letters of alphabet
tokens.

)e comparisons between the proposed HSA and prior
generating techniques demonstrate that the current ap-
proach is superior in three dimensions: Honeyword pro-
ducing process, honeyword characteristics, and resolving
previous method problems.)e essential property, flatness,
shows a significant improvement for the suggested system;
the proposed system has a better flatness 1/36(≈3%). Fur-
thermore, even if he knows one of the sugarword tokens, the
adversary has a 1/6(≈17%) probability of picking the
sugarword.

8. Conclusion

)e suggested system uses the harmony search algorithm, a
unique metaheuristic music-inspired algorithm to offer a
novel approach for the honeyword generation process,
which is modified numerous times to match the problem.
Furthermore, it effectively employs an intelligence algorithm
(HSA) for security reasons, namely, password cracking
detection system (honeyword system).)e proposed HSA
enhances the generating process, satisfies honeyword
characteristics, addresses prior approaches’ shortcomings,
generates meaningful words from rubbish words, and
suggests its evaluation criterion called the approximation
factor.

)e alphabet token is the most significant and
complicated part of the sugarword.)erefore, the sug-
gested system is used for the proposed HSA technique to
generate the alphabet token in the solutions of the
problems. On the other hand, the digit and special
characters tokens depend on a simple random generating
technique.

A kind of limitation can infect the proposed method if
the initial population is not well-diversified, which may lead
to more iterations of implementation.

Employing the knowledge gained from this research of
using metaheuristic algorithms, this paper makes sugges-
tions for honeyword generating techniques and seeks to
identify another intelligence methodology that may give
ideal solutions (honeywords). Researchers can use HSA in
their study and attempt to figure out how to use it for solving
multiobjective optimization issues. Further study in this
subject may aim towards identifying and resolving other
problems that honeywords systems face, with few places
where HSA might be improved and hybridized with another
algorithm.

Data Availability

)e research used a new factor to measure the approxi-
mation between the generated word (honeyword) and the
original word (password). So, the results are dedicated to the
research and cannot be supported by other data.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] A. A. Mohammed, A. K. Abdul-Hassan, and B. S. Mahdi,
“Authentication system based on hand writing recognition,”
in Proceedings of the 2019 2nd Scientific Conference of
Computer Sciences (SCCS), pp. 138–142, Baghdad, Iraq, March
2019.

[2] J. Bozeman, “Cyber security essentials,” Control Engineering,
Auerbach Publications, vol. 62, no. 1, pp. 90-91, 2015.

[3] A. Kadhim and H. Imad Mhaibes, “A new initial authenti-
cation scheme for kerberos 5 based on biometric data and
virtual password,” in Proceedings of the ICOASE 2018-Inter-
national Conference on Advanced Science and Engineering,
pp. 280–285, Baghdad, Iraq, October 2018.

[4] Z. A. Genç, S. Kardaş, and M. S. Kiraz, “Examination of a new
defense mechanism: honeywords,” in Lecture Notes in
Computer Science, G. P. Hancke and E. Damiani, Eds.,
vol. 10741, pp. 130–139, Springer International Publishing,
Cham, Switzerland, 2018.

[5] A. B. Kusuma and Y. R. Pramadi, “Implementation of hon-
eywords as a codeigniter library for a solution to password-
cracking detection,” IOP Conference Series: Materials Science
and Engineering, vol. 508, no. 1, Article ID 012134, May 2019.

[6] T. Win and K. S. M. Moe, “Protecting private data using
improved honey encryption and honeywords generation al-
gorithm,” Advances in Science, Technology and Engineering
Systems Journal, vol. 3, no. 5, pp. 311–320, 2018.

[7] N. Chakraborty and S. Mondal, “Towards improving storage
cost and security features of honeyword based approaches,”
Procedia Computer Science, vol. 93, pp. 799–807, 2016.

[8] S. Palaniappan, V. Parthipan, S. Stewart kirubakaran, and
R. Johnson, “Secure user authentication using honeywords,”
Lecture Notes on Data Engineering and Communications
Technologies, vol. 31, pp. 896–903, 2020.

[9] I. Erguler, “Some remarks on honeyword based password-
cracking detection,” IACR Cryptol. ePrint Arch.vol. 2014,
p. 323, 2014, https://eprint.iacr.org/2014/323.pdf.

[10] S. M. Homayouni and D. B. M. M. Fontes, “Metaheuristic
algorithms,” in Metaheuristics for Maritime Operations,
pp. 21–38, John Wiley & Sons, Hoboken, NJ, USA, 2018.

[11] B. T. Tezel and A. Mert, “A cooperative system for meta-
heuristic algorithms,” Expert Systems with Applications,
vol. 165, Article ID 113976, 2021.

[12] H. Malik, A. Iqbal, P. Joshi, S. Agrawal, and I. B. Farhad,
Metaheuristic and Evolutionary Computation: Algorithms and
Applications, Springer Singapore, Singapore, 2021.

[13] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new
heuristic optimization algorithm: harmony search,” Simula-
tion, vol. 76, no. 2, pp. 60–68, 2001.

[14] K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm
for continuous engineering optimization: harmony search
theory and practice,”ComputerMethods in AppliedMechanics
and Engineering, vol. 194, no. 36-38, pp. 3902–3933, 2005.

Advances in Human-Computer Interaction 9

https://eprint.iacr.org/2014/323.pdf

[15] A. Juels and R. L. Rivest, “Honeywords,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communi-
cations Security-CCS‘13, pp. 145–160, Berlin, Germany, Oc-
tober 2015.

[16] I. Erguler, “Achieving flatness: selecting the honeywords from
existing user passwords,” IEEE Transactions on Dependable
and Secure Computing, vol. 13, no. 2, pp. 284–295, 2016.

[17] N. Chakraborty and S. Mondal, “On designing a modified-UI
based honeyword generation approach for overcoming the
existing limitations,” Computers & Security, vol. 66,
pp. 155–168, 2017.

[18] A. Akshima, D. Chang, A. Goel, S. Mishra, and
S. K. Sanadhya, “Generation of secure and reliable honey-
words, preventing false detection,” IEEE Transactions on
Dependable and Secure Computing, vol. 16, no. 5, pp. 757–769,
2019.

[19] O. Z. Akif, A. F. Sabeeh, G. J. Rodgers, and H. S. Al-Raw-
eshidy, “Achieving flatness: honeywords generation method
for passwords based on user behaviours,” International
Journal of Advanced Computer Science and Applications,
vol. 10, no. 3, pp. 28–37, 2019.

[20] J. Brindtha, K. R. Hithaeishini, R. Komala, G. Abirami, and
U. Arul, “Identification and detecting of attacker in a purchase
portal using honeywords,” in Proceedings of the 2017 5ird
International Conference on Science Technology Engineering &
Management (ICONSTEM), pp. 389–393, Chennai, India,
March 2017.

[21] Z. A. Genç, G. Lenzini, P. Y. A. Ryan, and I. Vazquez San-
doval, “A critical security analysis of the password-based
authentication honeywords system under code-corruption
attack,” Communications in Computer and Information Sci-
ence, vol. 977, pp. 125–151, 2019.

[22] Z. A. Genç, G. Lenzini, P. Y. A. Ryan, and I. V. Sandoval, “A
security analysis, and a fix, of a code-corrupted honeywords
system,” in Proceedings of the 4th International Conference on
Information Systems Security and Privacy, pp. 83–95, Icissp,
Funchal, Portugal, January 2018.

[23] L. Catuogno, A. Castiglione, and F. Palmieri, “A honeypot
system with honeyword-driven fake interactive sessions,” in
Proceedings of the 2015 International Conference on High
Performance Computing & Simulation (HPCS), pp. 187–194,
Amsterdam, Netherlands, July 2015.

[24] T. Nathezhtha and V. Vaidehi, “Honeyword with salt-chlo-
rine generator to enhance security of cloud user credentials,”
Communications in Computer and Information Science,
vol. 746, pp. 159–169, 2017.

[25] K. S. M. Moe and T. Win, “Improved hashing and honey-
based stronger password prevention against brute force at-
tack,” in Proceedings of the 2017 International Symposium on
Electronics and Smart Devices (ISESD), pp. 1–5, Yogyakarta,
Indonesia, October 2017.

[26] P. B. Shamini, E. Dhivya, S. Jayasree, and M. P. Lakshmi,
“Detection and avoidance of attacker using honey words in
purchase portal,” in Proceedings of the 2017 5ird Interna-
tional Conference on Science Technology Engineering &
Management (ICONSTEM), pp. 260–263, Chennai, India,
March 2017.

[27] P. D. Shinde and S. H. Patil, “Secured password using hon-
eyword encryption,” 5e IIOAB Journal, vol. 9, no. 2,
pp. 78–82, 2018, https://www.iioab.org/IIOABJ_9.2_78-82.
pdf.

[28] A. Karthik and M. D. Kamalesh, “Rat trap: inviting, detection
& identification of attacker using honey words in purchase
portal,” in Proceedings of the 2017 5ird International

Conference on Science Technology Engineering & Management
(ICONSTEM), pp. 130–132, Chennai, India, March 2017.

[29] A. Juels, “A bodyguard of lies,” in Proceedings of the 19th ACM
Symposium on Access Control Models and Technologies-
SACMAT ‘14, pp. 1–4, Ontaria, Canada, February 2014.

[30] Q. Zhu and X. Tang, “An ameliorated harmony search al-
gorithm with hybrid convergence mechanism,” IEEE Access,
vol. 9, pp. 9262–9276, 2021.

[31] L. Fu, H. Zhu, C. Zhang, H. Ouyang, and S. Li, “Hybrid
harmony search differential evolution algorithm,” IEEE Ac-
cess, vol. 9, pp. 21532–21555, 2021.

[32] D.-W. Kang, L.-P. Mo, and K.-Q. Zhou, “An improved
harmony search algorithm with segmented search,” IOP
Conference Series: Materials Science and Engineering, vol. 864,
no. 1, Article ID 012063, 2020.

[33] A. K. Al-Shamiri, A. Sadollah, and J. H. Kim, “Harmony
search algorithms for optimizing extreme learning machines,”
Advances in Intelligent Systems and Computing, vol. 1275,
pp. 11–20, 2021.

[34] I. F. Faeq, M. G. Duaimi, and A. T. Sadiq Al-Obaidi, “An
efficient artificial fish swarm algorithm with harmony search
for scheduling in flexible job-shop problem,” Journal of
5eoretical and Applied Information Technology, vol. 96, no. 8,
pp. 2287–2297, 2018.

[35] M. Dubey, V. Kumar, M. Kaur, and T.-P. Dao, “A systematic
review on harmony search algorithm: theory, literature, and
applications,” Mathematical Problems in Engineering,
vol. 2021, Article ID 5594267, 22 pages, 2021.

[36] A. Askarzadeh and E. Rashedi, “Harmony search algorithm:
basic concepts and engineering applications,” Intelligent
Systems, IGI Global, Hershey, PA, USA, 2017.

10 Advances in Human-Computer Interaction

https://www.iioab.org/IIOABJ_9.2_78-82.pdf
https://www.iioab.org/IIOABJ_9.2_78-82.pdf

