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All virtual reality (VR) systems have some inherent hand-controller latency even when operated locally. In remotely rendered VR,
additional latency may be added due to the remote transmission of data, commonly conducted through shared low-capacity
channels. Increased latency will negatively afect the performance of the human VR operator, but the level of detriment depends
on the given task. Tis work quantifes the relations between aiming accuracy and hand-controller latency, virtual target speed,
and the predictability of the target motion.Te tested context involves a target that changes directionmultiple times while moving
in straight lines. Te main conclusions are, given the tested context, frst, that the predictability of target motion becomes
signifcantly more important as latency and target speed increase. A signifcant diference in accuracy is generally observed at
latencies beyond approximately 130ms and at target speeds beyond approximately 3.5°/s. Second, latency starts to signifcantly
impact accuracy at roughly 90ms and approximately 3.5°/s if the target motion cannot be predicted. If it can, the numbers are
approximately 130ms and 12.7°/s. Finally, reaction times are on average 190–200ms when the target motion changes to a new and
unpredictable direction.

1. Introduction

Remotely rendered virtual reality (VR) enables high-fdelity
graphics on thin devices that are otherwise limited by their
computational capability due to physical constraints. One
problem with remote rendering for VR is the low latency
that is required between input and output, or motion-to-
photon (MTP) latency, a requirement of which is generally
stated to range between 7 and 20ms [1–7]. However, by
utilizing latency-mitigation techniques such as prediction
[8, 9] and just-in-time image warping [9–15], a signifcant
amount of latency can still be tolerable in remote VR
depending on content, even up to 90ms according to one
study [16]. So far, prediction and warping have been widely
deployed in terms of headset orientation and translation,
making head motions seem near-instant even during sig-
nifcant network delays. For hand controllers, prediction is
typically utilized while warping is more difcult since the
controllers are individual 3D objects that may be occluded
by or occlude other 3D objects in the rendered image. Te
state-of-the-art in 2022 3D image warping that considers

individual 3D objects in the scene were so far able to
compute new frames in the time-scale of seconds [17, 18].
While performance may be improved in the future, we have
not yet seen an implementation that would be viable for
computing VR hand-controller warping in real-time. Al-
though prediction will mitigate some latency, it cannot
provide the perfect responsiveness that image warping en-
ables. Tis is because the accuracy of prediction will de-
teriorate with increased extrapolation ranges (latency) and
sudden, unpredictable motions (of present-day sensors)
cannot be predicted at all. Late warping on the other hand
has access to the latest input data and can therefore adjust
accordingly with a short extrapolation range when used just
before scan-out to the display.

Te negative efects of latency on the performance and
presence [19] in remote manipulation have been studied
since the 1950s [20, 21]. Te high latencies associated with
space exploration tasks generated a strong interest in this
feld during the late 1950s and throughout the 1960s by
NASA and other parties [22–24]. A common topic of this era
was the problem of controlling remote vehicles, e.g., while
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operating on the moon [22]. In the 1970s, research on the
topic expanded to include the context of aircraft piloting,
commonly with the purpose of developing realistic fight
simulators using computer-generated images with low la-
tencies between controller and visual output [21, 25, 26].
Troughout the 1980s and 1990s, research expanded further
to include head mounted displays (HMDs) for pilots
[8, 10, 21, 27]. Critical knowledge was discovered and refned
during this era that enabled the modern VR headsets of
today, for example, works on prediction for HMDs [8],
image defection (warping) [10], and methods for tracking
objects in a physical space [28]. In the present era, com-
mercial VR headsets enable near-zero head-tracked latencies
by utilizing modern hardware and advanced latency-
mitigation techniques. Nonetheless, the delayed actuation
of controller inputs still cannot be mitigated in a general
way. Te emerging use case of remote VR through poten-
tially high-latency networks makes the problem relevant also
in this present era of VR.

To solve the issue of subpar hand-controller re-
sponsiveness, split rendering has been proposed for remote
rendering applications [29–31]. In such solutions, the
background and otherwise noninteractive objects are ren-
dered on the server, while interactive objects are rendered on
the client. Te two are fnally composited before presenting
the frame on the client. While minimizing hand-controller
latency, the split-rendering methods require the develop-
ment of special clients for each application which defeats the
purpose of remote rendering to some degree. Because in-
teractive objects are rendered from geometry on the client,
their visual fdelity is limited to the rendering capabilities of
the client hardware. Ideally, this should be avoided since the
purpose of remote VR is typically to provide high-fdelity
graphics on otherwise limited devices. Tere are other use
cases where increased visual fdelity is not the purpose, e.g.,
in remote operation of physical actuators where the VR view
is a live video feed. However, in such a scenario, it seems
unlikely that any visual modifcation of the actuator is
desirable.

While hand-controller latency can be mitigated visually
by, for example, present split-rendering or potential future
3D-image warping methods, the problem of delayed remote
control remains. Typically, there is some game engine or
physical actuator that is controlled remotely by the delayed
input signals.Tat delay depends mainly on the network and
codec [32], and it may be subject to physical constraints that
cannot be solved without moving the actuation to the client.
Moving the actuator may not be possible for physical ap-
plications but it could be done for some types of software by
moving the afected logic to the client. For example, if the
client is playing a game remotely, the aiming logic may be
moved to the client if it can be trusted. Regardless, we may
assume that visual issues due to latency can be solved by
future engineering endeavours, but actuator latency will still
remain due to physical constraints and applications where
logic must be computed on the server. Tus, the following
question emerges: Given a visual latency otherwise equal to
local VR, which tasks can be operated remotely and at what
hand-controller latency? If the task requires a motion of X°/s

with a maximum error in accuracy of Y°, what is then the
maximum additional network-induced latency that can be
allowed on the remote VR system? We hypothesize that
some tasks are less sensitive to latency, in particular when the
required hand-controller motion can be predicted by the
user, and most importantly, if slow motions are sufcient to
accomplish the task. On the other hand, tasks that require
signifcant speed and when motion cannot be predicted are
likely more difcult to accomplish at high latencies. In
summary, the purpose of this work is to answer the following
research questions (RQs):

(1) RQ1: How do the target speed and hand-controller
latency afect the aiming accuracy in VR?

(2) RQ2: How is aiming accuracy afected if the target
direction can be predicted by the VR operator?

Te main contributions are rooted in the collected and
presented data. We expand upon the current literature by
conducting an experiment untied to a specifc task other
than aiming at a target that changes direction and moves in
straight lines in VR. Furthermore, we provide more fne-
grained objective results on accuracy in relation to latency as
compared to subjective evaluation and specifc task
objectives.

Te remainder of the article is structured as follows:
Related work is discussed in Section 2. A basic test that
confrms the hand-controller latency reported in literature
regarding the HTC Vive VR system is included in Section 3.
Section 4 describes the main experiment of the study.
Section 5 presents the results of the experiment and provides
an accompanying discussion tied to each part of the results.
Te results are concluded in Section 6. Finally, limitations
and future work are discussed in Section 7.

2. Related Work

Hand-controller latency and accuracy in VR have been
studied in previous work, but seldom in combination. When
they were combined, the results found so far are generally
tied to some specifc task which makes them difcult to
generalize to other applications. Our contribution is a result
that may be generalized based on target motion speed and
size at given latencies in contexts where the target motion
can be predicted and when it cannot. Te generalization is
applicable to scenarios where the target keeps changing
direction and moves in straight lines.

2.1. Aiming for Latency in VR: User Experiments. In 2011,
a related work was published that studied virtual hand in-
teractions in a VR environment with injected input latency
[33]. In the study, an experiment was conducted in which
users were tasked with moving their virtual fnger from one
button to another.Te fnishing button varied in size and the
authors found that users needed more time to press smaller
buttons as latency increased.Te authors concluded that it is
therefore important to avoid using small targets when input
latency is present in VR. Another fnding from the study was
that task completion time increased with latency, starting
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from the lowest tested latency at an additional 55ms on top
of a system-inherent latency of 63ms.

A related work on VR hand-controller latency published
in 2019 studied the subjective quality of experience (QoE) of
operating a forestry crane with added joystick latency [34] of
0, 50, 100, 200, 400, and 800ms. In summary, no signifcant
diference in subjective quality could be shown at latencies of
up to 200ms. In most cases, but depending on the specifc
quality parameter in question and user experience level,
800ms were required to cause a signifcantly lower mean
opinion score (MOS) as compared to cases without addi-
tional latency. Regarding the task, crane motion speed is not
mentioned in the paper, but an average time consumption of
approximately 13 s per lifted log can be derived from the
reported data. We may expect that the logs are relatively
large targets, thus decreasing the sensitivity to latency, but
the exact target size is not reported in the paper.

A related work from 2021 studied the efects of controller
latency in specifc fight simulator combat tasks using the
HTC Vive Pro [35]. Te author tested latencies of 250, 500,
750, 1000, and 1250ms with pilots and found a signifcant
efect on “combat score” at latencies of 500ms and beyond.
Tus, also in this case, relatively high latencies were ac-
ceptable. However, several factors related to the task may
have had a signifcant impact on this result. For instance, the
pilots faced AI-controlled adversaries operating inferior
aircraft. A future research question is whether latency would
have a more signifcant efect if equally skilled pilots faced of
in equal aircraft but with diferent latencies.

A related work from 2019 studied the objective user
targeting accuracy when using 120Hz eye-tracking and an
HTC Vive hand-controller [36]. In summary, the study
found that (1) Random movement of the target has a sig-
nifcant negative impact on accuracy when using a con-
troller. (2) Target speeds of 12, 24, and 36°/s corresponded to
average hand-controller accuracies of roughly 0.8–1.1°,
1.1–1.5°, and 1.5–1.8°, respectively, depending on the target
path (linear, parabola, or random). For static, nonmoving
targets, the accuracy was roughly 0.6°. Te size of the target
was 1.57° vertically and horizontally. It should be noted that
only the random path condition contained turns in other
directions in this related work. Te random turns were
furthermore smooth on a spline-form, contrary to the sharp
edges used in this work, which may impact the overall
accuracy.

Reporting the accuracy in degrees provides a generalized
result that is applicable to other displays, and we use that
format also in this work. For reference, the HTC Vive has
a pixel density of 10.68 × 9.68 [37] pixels per degree (PPD).
According to these data, the target size of 1.57° in the related
work [36] was approximately 16 × 15 pixels.

2.2. Aiming with Latency: Other Devices. While user studies
on hand-controller latency with modern VR equipment are
relatively rare, plenty of research has been conducted re-
garding the vast feld of input latency in human computer
interfaces (HCI) that dates back to at least 1968 [38]. We
present some recent and interesting results in the context of

this study from related work below. A more comprehensive
literature review of the feld from 2017 is available in [39].

2.2.1. Haptics. A study published in 2007 showed the efects
of latency on a collaborative task when using a haptic device
[40]. Two users controlled one circle each in a networked
program andwere asked to “meet,” stick together, andmove in
union towards a common goal position. Performance started
decreasing from the lowest added latency of 25ms and be-
yond, but users generally did not perceive the degradation
until at 50ms. Performance decreased steadily until around
100ms when users began to move more slowly to compensate
for the latency, thus preventing the error from increasing
further. While accuracy remained largely the same beyond
100ms, users still reported an increasingly difcult and more
disruptive experience in proportion to the added latency up to
the tested 400ms. Indeed, these results highlight the human
ability to adapt to latency by reducing movement speed while
still fnding the experience increasingly more annoying.

Another study on delayed haptic input published in 2005
found that haptic delay had little efect on performance as
compared to visual delay in a task that involved tapping two
targets as quickly as possible [41]. Results indicated that
visual latency had an increasingly negative efect on all three
performance parameters (mean intertap interval, mean
number of target misses, and mean difculty rating) starting
from the lowest tested added latency of 25ms. Haptic latency
on the other hand did only slightly afected one parameter,
the mean intertap interval, starting at the maximum tested
latency of 150ms.

2.2.2. Perceptible Latency. A study from 2014 estimated the
perceptible latency while drawing with a pen and found that
a latency of around 50ms is perceptible on average when the
hand and pen can be observed visually [42]. However, if the
hand and pen were hidden from sight, the average per-
ceptible latency doubled to around 100ms. Tus, it seems
that the presence of a visual reference may make latency
about twice as noticeable.

A study on the perceptible input latency of touch screens
was published in 2012 which showed that users are able to
perceive latencies of 1ms (and perhaps lower) on touch
hardware [43]. Qualitative feedback from the study indicated
that users commonly found that the experiment “broke”
them, because they could no longer fnd the latencies of
commodity devices acceptable after having done the exper-
iment. Tese qualitative data hint at the adaptability of the
human visual system in that we may learn to live with latency
and not notice it until a reference is available. Anecdotally,
this efect can be observed when using monitors with high
refresh rates beyond 60 fps and subsequently viewing content
at 60 fps or lower. A stutter may then become ever more
apparent in any moving content.

2.2.3. Remote Surgery. While typically viewed on a regular
monitor and not conducted in VR, remote surgery is a re-
lated feld where robotic surgical tools are operated remotely
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through a network. Te feasibility of the technology was
shown in 2002 when a successful surgery was achieved at
a distance of 14000 kmwith a mean delay of 155ms [44].Te
authors stated that a latency below 300ms should be feasible
for remote surgery, according to their research [44].

In 2005, 21 remote surgeries were reported to have been
successfully conducted at a distance of 400 km with a latency
of 135–140ms [45]. Out of the 140ms latency, only 14ms
were due to network transmission; the rest were added by the
video codec. Te authors note that the latency was per-
ceivable by the surgeons, but that they were able to adapt
their motions to compensate for the delay.

Te consensus varies regarding the latency requirements
of remote surgery. Te authors in [44] found 300ms to be
the upper limit. But a study published in 2008 found that
a delay of 450ms was considered manageable and that
a 900ms latency was cumbersome but could be overcome
with deliberation by the surgeon [46]. In 2007, a study found
that the acceptable latency largely depends on the task and
that a large variation can be observed when asking surgeons
whether surgery would be possible given the specifc task
and latency [47]. When mixing all tasks, 21% of surgeons
stated that it would not be possible to do the surgery at the
lowest studied latency of 150ms. At 350ms, that percentage
increased to 62%. A study published in 2016 found further
evidence of the impact of the task, and results suggested
a reduced surgical efectiveness at total latencies beyond
160ms [48].

Based on the related work, it seems that the feasibility of
remote surgery depends not only on the latency but also on
the surgeon and the given task. Furthermore, when studying
the available literature in the feld, it is not always clear which
latencies are reported in the publications. Reporting varies
from showing only the network transmission latency to
showing the entire loop from motion to visual feedback at
the surgeon’s end [49]. A literature review from 2022
suggests that future eforts should improve reporting of the
signal latency and follow careful research methodology [49].

A future research question is how remote surgical tasks
can be generalized in terms of difculty in connection to
latency. What is it that makes a surgical task more or less
sensitive to latency? Herein, we hypothesize that target speed
and the ability to predict the upcoming motion are the most
signifcant factors that can be used to generalize the difculty
of this category of aiming with latency tasks.

In this work, tests are conducted regarding the accuracy
of users aiming with delayed hand-controller poses on
moving targets in VR. However, we estimate that the ex-
periment in its current state is too coarse to evaluate surgical
tasks and that the tracking system of the consumer hardware
is anyway too crude for surgery. Nonetheless, the overall
method may be applicable to surgery in future work given
amore granular experiment environment andmore accurate
tracking equipment.

2.3. VR: System Latency Estimations. Experiments in this
work were conducted with the HTC Vive. In order to
provide a generalized result, it is important that the inherent

latency of this system is known. In this section, related work
is presented that studied the latency of the HTC Vive. In
Section 3, basic measurements were also conducted in-house
to confrm that the numbers presented in the related work
are within reasonable error limits.

2.3.1. HTC Vive Update Rates. Te HTC Vive uses the
Lighthouse tracking system for tracking its controllers and
headset. Tis tracking system is based on the Minnesota
Scanner [28], developed by Sorenson et al. in 1989 [50]. In
short, a plastic box with one transparent side houses an
infrared (IR) LED array, and two motors are used to emit
sweeping light beams along the X and Y axes. Te light is
picked up by sensors built into the VR equipment which are
able to position themselves in space based on the timings of
the sensor activations. According to measurements by
a third party, the Lighthouse motors rotate at 3600 rpm each
(equivalent to 60 updates per second) [51]. Te fashes are
interleaved, resulting in horizontal and vertical updates
separated by 8.33ms (16.66ms for one complete update).
Between the fashes of 120Hz, the equipment additionally
utilizes dead-reckoning, or extrapolation, based on built-in
inertial measurement units (IMU) [51]. Te driver-internal
update rate has been measured at approximately 1000Hz
(1ms) for the headset and 360Hz (2.77ms) for the hand
controllers in the internal OpenVR interface [51]. For the
client OpenVR API, however, the update rate was measured
at 225–250Hz (∼4ms) [51].

2.3.2. Academic Research. A publication from 2022 pre-
sented the inherent hand-controller latencies measured in
common consumer VR systems [52]. In summary, hand-
controller latencies were measured for the HTC Vive, Oc-
ulus Rift, Rift S, and Valve Index VR systems. Te work
shows the diferent capabilities of the built-in motion-
estimation components of each system and how the la-
tency changes when the systems are able to estimate the
upcoming motion. For example, the HTC Vive controller is
shown to have an average MTP latency of around 31ms for
sudden movements and around 3.6ms for continuous
motions.Te best system is shown to be the Oculus Rift, with
an average sudden-movement latency of 20.6ms and
a continuous-movement latency of 1.5ms.

In contrast to hand-controller latency, the latency related
to the VR headset motion has been more widely studied.
According to a paper from 2017, the upper-bound latency of
the HTC Vive headset is 22ms [53]. Tus, the HTC Vive
headset itself appears to have faster tracking than its hand
controllers. A similar result of 21.7ms on average was shown
in another study from 2019 [54].

Although the HTC Vive MTP latency was determined to
be 22ms for the headset and at least 31ms for the controllers
with sudden motions, additional latency may still be in-
troduced by the application running the VR program. In
a study on the HTC Vive Pro from 2018 [55], the authors
found that the unity game engine introduced around one
extra frame time of latency for a total of ∼ 31.33ms when
compared to directly accessing the OpenVR API through
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a simple Python program (∼18.35ms). Tat latency was
defned as “app-to-photon” and is based on sending a signal
from the game loop of either program and waiting for it to be
indicated visually on the display by fashing the screen from
black to white.

Another study of the HTC Vive tracking system mea-
sured the MTP latency of an individual HTC Vive tracker
component, which is a general-purpose device that can be
used to track a physical object in VR. Te MTP latency of
such a device was measured at 56.14ms on average, when
using Unreal Engine 4 as basis for the VR application [56].

3. Basic Latency Estimate of the HTC Vive

To confrm the numbers regarding the HTC Vive latency
given in the related work, some basic measurements were
conducted in-house and are presented in this section.

3.1. Pose Update Rate. Te OpenVR function, GetCon-
trollerStateWithPose(), used in [51] was tested from the
public client API [57]. Although deprecated by the time of
writing, the documentation describes the function as polling
the most recently updated controller pose. Indeed, the av-
erage update interval is measured at 3.9955ms (250Hz)
based on approximately 25000 samples. However, an un-
natural characteristic of spikes can be observed at the 2, 4,
and 6ms intervals in the distribution of the time con-
sumption between successful polls where positions were not
identical (see Figure 1). Based on the measured distribution,
it seems that the system polls poses with a 2ms interval
(500Hz), but that they will be updated only every 4ms
(250Hz). Tis result was obtained on Windows 10 running
Steam VR 1.23.7 on both HTC Vive (Base Station 1.0) and
the valve index headset (Base Station 2.0).

Te measurements support the minimal delay found for
the HTC Vive in [52] (3.6ms on average for continuous
motion with a standard deviation of 3.9ms). Indeed, it seems
reasonable to assume that the best possible hand-controller
latency for the HTC Vive is 4 ± 2 ms given the measurement
results and related work.

3.2. Controller MTP. Moving on to measurements of the
MTP for sudden hand-controller motions, a simple ex-
periment was conducted where the hand-controller and
headset display were both visible in a camera recording at
480 fps (see Figure 2). To capture the MTP, the headset
display was rendered either all green (if the controller moved
more than 1mm since the previous frame) or all red
(otherwise) depending on the present hand-controller
motion. Tus, we deduce the MTP latency by pushing the
controller and counting the number of frames from the start
of its motion until a green image is shown on the display.
Although usually more refned, this overall method of
measuring MTP is common and used for example in [52].

With this rough estimation of the MTP latency, results
were obtained in the range 33.3–47.9ms (39.2ms on av-
erage) for the valve index and 27.1–47.9ms (35.7ms on
average) for the HTC Vive with an error of at least 2ms due

to using a 480 fps camera.Te numbers do not match exactly
those from the related work [52] where the index at 90 fps
was measured at 37.5ms average (∼2ms diference) and the
HTC Vive at 30.8ms average (∼5ms diference). However,
based on the related work and additional estimations, it is
safe to assume that sudden motion of the controller will
generally produce a visual result 3-4 frames later at 90 fps on
the HTC Vive. Terefore, to determine the total MTP la-
tency, four frames of latency should be added to any arti-
fcially injected latency in the experiments conducted in this
work. Note also that for precise calculations, 11.169ms
should be used as the frame-interval time as the exact frame
rate is actually 89.53 fps in the HTC Vive and not 90 fps [58]
as used in writing for the sake of brevity.

4. Methods

To answer the research questions, an experiment was
designed in which human participants played a simple VR
game containing the task of aiming with a virtual laser
pointer that was projected with a varying degree of input
latency in the 3D VR world. To be clear, latency is only
injected into the laser dot and target position; headset and
controllers are rendered no diferent than from standard
local VR. Tus, a perfect visual warping is assumed but with
a remaining delay on actuation. Visual examples of the laser
dot and target are available in Figure 3.Te game program is
based on Valve’s example code for Open VR [57] and was
developed in C++ with OpenGL.

4.1. Experiment. During the experiment, a target moves in
a random pattern along a wall at a speed randomly selected
from a set of test conditions. Te random pattern is con-
strained to consist of fve lines whose length scales linearly
with the speed. Te users are tasked with aiming the hand
controller as accurately as they can towards the center of the
target while it moves along the wall. Te hand controller acts
as a laser pointer that renders a red dot at the location where
the laser beam hits the wall or target. Te wall and target are
located in front of the user in the 3D world at Z coordinate
−7.5, while the user is located at 0 (with some deviation due
to physical movement and arm length). Tis represents
a distance of approximately 7.5m between the eye and the
target.

When the test is running, a score is accumulated for each
frame based on how close the laser dot is to the center of the
target. Te goal of the user is to achieve a score as high as
possible by keeping the laser on-point while the target is
moving. Te immediate accuracy is continuously presented
in discrete steps to the user in the range 0–11 (see Figure 3)
for examples. Meanwhile, data such as angular accuracy are
stored in the background for later analysis.

In addition to varying latency and target speed, one
additional parameter was added that toggles the rendering of
lines that show the upcoming path of the target (see
Figure 4). Tis parameter adds coverage for use cases in
which the user may or may not be able to predict in what
direction the target will move after the next junction. For an
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overview of all parameters included in the test (see Table 1).
Upper and lower limits for the parameters speed and added
latency were chosen based on previous experiments [59] and
a supplementary testing made while developing the system.
A logarithmic division of the parameter space increases
precision in the region closer to 0 and makes larger jumps
between higher values where the exact number is not as
important anymore.

In summary, the experiment tests every speed with every
latency, both with and without rendering the path, for a total
of 96 diferent parameter combinations (test condition
triplets). A single run tests one condition triplet. For ex-
ample, the hand-controller latency may be set to 8 frames,
and the target moves with a speed of 1m/s while the up-
coming path is rendered. During the run, the direction of the
target will change fve times and run for an average of 520
frames regardless of speed for a total of almost 6 s per run at
90 fps. See Figure 4 for an example of a run and its fve
random junctions. Te total length of runs is kept nearly

identical by adjusting the length of the lines linearly based on
the speed that will be used during that run. To clarify, low
speeds yield short lines but running those lines takes the
same amount of time as running at higher speeds with longer
lines. Te number of frames will vary only slightly due to
low-level errors such as foating point precision limits and
potentially due to random frame misses that may occur in
a Windows 10 consumer-grade system.

In the end, the user will spend around 10minutes in the
main part of the VR experiment (6 s × 96/(60 s/min) �

9.6min). However, the exact time depends on how long the
user waits before starting each run. In addition, there is
a training session containing eight conditions and a half-
time pause of fve minutes. A pause is a common practice in
user experiments and was included to reduce the risk of
exhausting users and to help themmaintain focus during the
entire experiment. To start the next run, the user must aim at
the target center and press the trigger of the controller. Te
requirement of centering before each start ensures that the
user is ready for the next run and that all tests start in similar
conditions. For a visual overview of the experiment program
see Figure 5.

Objective data are continuously gathered each frame the
target is active for each run of each user session. In the end,
conclusions are based on the statistics of the collected data,
and the efect on accuracy of the tested parameters is
determined.

4.2. Participants. Te experiments were conducted at the
Blekinge Institute of Technology at campuses Karlskrona (7
users) and Karlshamn (8 users) as well as at Ericsson Re-
search in Luleå (10 users). A total of 25 users participated in
the study, aged 19–63. Details of the demographic data are
presented in Figure 6. All users signed an informed consent
form that provided the details of the experiment. Tey were
further informed that they may abort the experiment at any
time for any reason and should not participate if they are
prone to experiencing simulator sickness. Te shared VR
equipment was sanitized with disinfectant between each user
and disposable face pads were ofered for use with the VR
headset. Finally, a small snack was ofered during the half-
time break to maintain the energy and focus of the
participants.

Figure 2: Frame of physical impact (left) with corresponding green
frame indicating movement (right) displayed 15 camera frames
later. Te resulting MTP delay is thus approximately 31ms due to
recording at 480 fps. Tis test confrms that our hardware behaves
roughly the same as reported in the related work.
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Figure 1: Distribution of the time consumed between polls to GetControllerStateWithPose() where the polled position was diferent from
the previous one.
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A Simulator-Sickness Questionnaire (SSQ) [60] was flled
in by each participant before and after the experiment to
determine whether the experiment program may be labelled
a “problem simulator” [61] and thus potentially afect the
results. Te results of the SSQ are presented in Section V–H.

Swedish law requires an ofcial ethical vetting on re-
search that involves, for example, health risks or animal
testing.Te law can be applicable to VR experiments that are
designed with the purpose of afecting research persons
mentally or if the experiment poses an obvious risk of harm.

In this case, we found no such purpose and no risk of harm.
An ethical approval was therefore not submitted.

5. Results and Discussion

A large amount of data was collected during experimen-
tation and the most relevant results are presented here.
Several plots were compiled and are shown with accom-
panying discussions. A synopsis of the chapter follows:

(1) Total Score: provides an overview of the variation in
performance among participants.

(2) Average Accuracy: shows how the average accu-
racy, in terms of degrees of-center of the target,
varies with latency, speed, and predictability of
the path.

(3) Trends: shows how the average accuracy deteriorates
with increasing latency depending on the path
parameter.

(4) Average Accuracy over Time: shows the distinct
average accuracy curves over time during each in-
dividual line movement.

(5) Peak Inaccuracy: shows the reaction times after
target direction change as a function of latency.

(6) Optimal Target Sizes: mentions briefy how recom-
mended target sizes can be derived from the data tables.

(a) (b)

Figure 3: Examples of target, laser dot, and visual feedback based on accuracy (numbers 11 and 4 in respective boxes). Note that the
feedback text is perceived as larger and more readable when viewed through the headset. (a) Laser dot in center. (b) Laser dot in the
fourth ring.

Figure 4: Example of an entire run with a path shown. Te line
length is based on the target speed that will be applied during that
segment. Note that users will never be shown all lines during the
experiment as seen here, but only the next three. In the no-path
setting, no line is shown but the underlying motion logic is the same.

Table 1: Experiment parameters.

Parameter Unit Data
Render path Bool 0 1
Added latency Frames 0 1 2 4 8 16 32 64
Speed m/s 0.25 0.5 1 2 4 8
Angular speed μ∗ °/s 1.8 3.5 6.8 12.7 24.1 37.5
Angular speed σ∗ °/s 0.1 0.2 0.6 1.5 3.2 9.7
∗Measured angular speed at the corresponding m/s, for reference, not
a fxed parameter.
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(7) Statistical Signifcance: shows t-tests applied to the
collected data from which conclusions can be drawn.

(8) SSQ: shows the results of the SSQ.

5.1. Total Score. Te participants gathered a total score
throughout the experiment based on their performance in
pointing the laser at the moving target. Te score is cal-
culated each frame based on the angle between the target
center and laser dot. Te maximum score is eleven and

decreases by one in discrete steps shown as rings on the
target model (see Figure 3).

Total scores ranged from 306 k to 413 k with mean
μ � 366 k and standard deviation σ � 25 k. To provide an
overview, the scores of all individuals are illustrated in
Figure 7.

Te main take-away of this data follows: (1) Te total
score does not follow a Gaussian distribution at this number
of samples. (2) Tere is no signifcant diference between the
demographic groups in terms of total score. (3) Tere are
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three borderline cases of outliers in the highest score and the
two lowest scores.

Indeed, borderline cases may be considered outliers
depending on the method of detection. For example, outliers
may be detected by using interquartile ranges (IQR) [62] as
follows with the outlier score k:

k<Q1 − 1.5 × IQR,

k>Q3 + 1.5 × IQR,

IQR � Q3 − Q1.

(1)

If the quartiles Q1 and Q3 are calculated inclusive of
the median, where, e.g., Q1 is defned as the middle
number in the lower half including the median, the three
borderline cases are considered outliers. However, if Q1
andQ3 are calculated exclusive of the median, there are no
outliers. Another simple method for detecting outliers is
to defne the upper and lower limits as μ ± 3σ, also in that
case there are no outliers. Tus, the borderline cases are
not extreme outliers but may or may not be included
depending on the method and were therefore kept in the
analysis in this work.

5.2. Average Accuracy. Te total score shows the overall
performance of the participants, while it is an arbitrary
measure based on the target size in the 3D scene. A more
generalized measure of accuracy is the angle between the
target center and laser dot; this data is presented in Figure 8.
Te plots reveal that there is an increasingly signifcant
diference in average accuracy between the path modes at
higher latencies and speeds.

Showing the path allows for prediction, which explains
the signifcantly better accuracy as speeds and latency in-
crease. When speeds and latency are low, there is no sig-
nifcant diference which indicates that prediction may be
unnecessary in those cases.

Another observation from the plots is the linear re-
lationship in accuracy between higher speeds and latency
levels. For example, the speeds 8, 4, and 2m/s all yield similar
average accuracies at 16, 32, and 64 frames of added latency,

respectively. Tus, halving the speed allows for similar ac-
curacy at double the latency, and vice versa.

5.3. Error-Increase Trends. It is evident that accuracy de-
teriorates with higher speeds and latencies and that there
exists a threshold beyond 4 or 8 frames depending on path
visibility where a signifcant increase in the average degree of
error can be observed.Te decrease in accuracy is clear when
observed as an error-percentage increase between each la-
tency step and this is plotted in Figure 9. While the increase
varies irregularly when viewed at the individual speed-levels,
plotting the average increase in error among all speed-levels
reveals the underlying characteristic. A roughly linear in-
crease is observed in the range 8–64 frames of latency when
users can predict the target motion (show path), and
a downward polynomial function can be observed in the no
path condition at latencies 4–64 frames.

When showing the path, a linear increase in error with
increased latency is an intuitive pattern. Because the user will
be able to predict where the target will go and therefore
follow it accordingly, but lag behind based on the added
latency. It should be noted though, that there were a few
exceptions to this rule where some users skipped the current
line, due to it moving too fast for the given latency, and
moved to the next line in order to get back on track with the
pursuit of the target.

In the case of no path, the increase in average error
between latency levels is not as steep, and the increase will
wear of at the 64-frame mark. At 64 frames of latency, the
increase is just 80%, as compared to 70% at 32 frames of
latency. Tus, the increase in error wears of compared to
show path where 64 frames of latency yield an increase of
110% from 32 frames, which increased by 60% from the
lower level of 16 frames latency. Tis behaviour may be
caused by limitations in the experiment. For example,
the error cannot grow infnitely since the tested 3D-space
is limited and the individual path lines always
change direction after approximately one second. Te
accuracy may therefore reach a point where it cannot get
much worse.
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Te main takeaways from Figure 9 are the two diferent
thresholds at which the error starts to signifcantly increase
and the diference in uniformity between the speed levels
when a path is shown and when it is not.

5.4. Average Accuracy over Time. As the target moves in the
experiment program at a particular speed and latency, it
changes direction fve times and runs for approximately 520
frames, which is almost 6 seconds at 90 fps. Tis means that
a direction will be maintained for around 105 frames. A
question that emerges is how long it takes for users to get
back on point when these changes occur, because there will
be a sudden change that the user must react to. To get insight

into the latency of the readjustment period, the average error
of each 105-frame run is plotted in Figure 10. Te plots
reveal how latency afects the average performance during
the readjustment periods and in particular the diferent
characteristics that occur when showing and not showing
the upcoming target path during the experiment.

When a path is shown, the performance is more uniform
throughout the run, and the peaks occur seemingly at
random at lower speeds. Te highest latency of 64 frames is
an exception which reveals a distinct peak of inaccuracy at all
speeds even in the Show Path case. At higher speeds, lower
latencies also start to reveal peak inaccuracies visible by the
concave downward curves. In contrast, when no path is
shown, all speeds yield a distinct peak inaccuracy and
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downward concave curve characteristic, as can be observed
in Figure 10.

An anomaly in the graphs is the widely diferent behaviour
of the 64-frame curve when compared to all others. It begins
with an earlier peak as compared to both the 32- and 16-frame
curves and ends with an increasing error in every scenario
contrary to all other latencies. It is not clear why this occurs, but
it is possible that the users are always overshooting at this
latency and do not have enough time to establish a stable
pursuit of the target before it changes direction. If the target
path lines were longer before changing direction, it is possible

that the curve would reduce its amplitude over time and
converge towards a minimal error. Conducting such an ex-
periment would be part of future work though.

5.5. Peak Inaccuracy. To get a detailed understanding of how
latency and target speed afect the readjustment delay, two
plots were created that show the average peak error at all
speeds and latencies (see Figure 11). Tese plots reveal that
the peaks are random at lower latencies and speeds when
a path is shown but remarkably similar for all speeds when
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Figure 10: Average error curves of all experiments after the initial target direction has changed (the frst line is excluded since the target is
stationary at that starting point). Te plotted data in the two subfgures are separated by the path parameter. (a) Show path. (b) No path.
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a path is not shown. Tis suggests that the readjustment
latency is independent of speed when the path cannot be
predicted; the absolute angular error is naturally higher at
higher speeds though. Indeed, the average peak inaccuracy
index between speeds can be estimated with R2 � 0.99 by the
simple linear function y � 2x + 21 shown in Figure 11
(excluding latency 64 and the outlier at latency 0 and
speed 0.25m/s). Te derived function indicates that the
average minimal reaction latency is 21 frames and that each
added frame of latency adds two frames to this reaction time.
21 frames of latency are approximately equal to 235ms at
89.53 fps. 235ms is a reaction time in line with previous
research that found the visual reaction time in medical
students to be in approximately the range 220–250ms [63].
However, recall that the inherent device latency was de-
termined to be in the range 3-4 frames. Tus, the fnal result
is inclusive of this delay which lowers the actual human
reaction time to around 17–18 frames or roughly
190–200ms. According to a literature review on human
reaction times [64], the reported average simple reaction
times to visual stimuli varies in literature between 180 and
220ms, which is in line with the results. Simple reaction
times are based on a single stimulus with a single possible
response. Two other types of reaction-time experiments are
also defned in the literature as recognition and choice
experiments. In recognition experiments, there are some
stimuli that should elicit a reaction and some that should
not. In choice experiments, the stimuli dictate the correct
response, e.g., showing the letter “A” should be responded to
with a button press “A.” Te literature review found that
recognition experiments in literature yielded average la-
tencies of 384ms and choice experiments 420–630ms,
depending on the number of choices [64]. Tus, it is clear
that the conducted experiment falls into the category of
simple reaction-time experiments, even though there are
multiple possible directions to choose from.

5.6. Optimal Target Sizes. Numerical data in the form of the
minimal, maximal, and average error as well as the peak
inaccuracy index are provided in Tables 2 and 3. From
Tables 2 and 3, recommended target sizes based on speed
and latency can be derived. For example, to design for

maximum accuracy at 64 additional frames of latency,
a target moving and changing direction at 0.25m/s at 7.5m
(approximately 1.8°/s) should be of the size 2.3° (no Path
max), and an average accuracy of 1.3° can be expected at best
(if the path is known, otherwise 1.7°).

5.7. Statistical Signifcance

5.7.1. Show/No Path. Paired two-sample t-tests were con-
ducted between the average accuracy for all parameters
between the two path modes. Te resulting p values are
presented in Table 4. Overall, the information is similar to
the visual representation shown in Figure 8 but in
a numerical form.

Since the number of t-tests is large, there is an increasing
risk of randomly getting signifcantly small p values. Te
Bonferroni correction [65] suggests dividing the signifcance
level by the number of tests 0.05/48 ≈ 0.001. Tus, p values
above 0.001 in the tables presented in this section should be
treated with some scepticism and are therefore marked in
yellow, while p values above 0.05 are marked in red. Te
main takeaway of the table is how showing a path, and
therefore providing predictability of target motion, becomes
more important for accuracy as speed and latency increase.
An exception is again the 64-frame case which indicates
more randomness, possibly due to its difculty regardless of
path visibility and the mentioned strategy where some users
skipped lines at high latencies to catch up with the target.

5.7.2. Latency. Additional t-tests were conducted on the
latency parameter in order to clearly identify which latency
levels signifcantly impair the accuracy. Tese tests compare
the means of the 0-frame latency levels with higher latencies
at the same speeds; they are presented in Table 5 for no path
and VI for show path. Te main take-away of these tables is
the clear diference at the 8- and 16-frame latency levels. No
path yields signifcantly worse accuracy for most speeds at 8
frames of latency while the limit is 16 frames for Show Path.
Note also that there appears to be a transition phase towards
lower p values at higher speeds already at the previous la-
tency steps. 4 and 8m/s at 8 frames of latency yield p � 0.002

Fr
am

e N
um

be
r a

t
Pe

ak
-I

na
cc

ur
ac

y 

No Path Show Path

1 2 4 8 16 32 640
Extra Frames of Latency

0
20
40
60
80
100

0
20
40
60
80

100

0.25
0.5
1
2 (m/s)

4
8
Estimate

0.25
0.5
1
2

(m/s)

4
8

1 2 4 8 16 32 640
Extra Frames of Latency

Figure 11: Peak inaccuracy index for all parameters. Estimate function for no path (left): y � 21 + 2x.

12 Advances in Human-Computer Interaction



for show path and, for no path, 1, 2, 4, and 8m/s at 4 frames
of latency yield p≤ 0.001, p � 0.001, p � 0.041, and
p � 0.004, respectively.

5.8. SSQ. TeSSQ [60] was flled out by the participants before
and after the experiment in order to determine whether the
experiment procedure may trigger potentially performance-

Table 2: Accuracy statistics (no path).

0.25 0.50 1.00 2.00 4.00 8.00
∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp

64 1.3 2.3 1.7 41 2.4 4.8 3.5 42 3.8 7.0 5.3 42 7.8 15.7 11.3 43 10.2 30.4 19.9 44 16.1 39.8 27.8 44
32 0.8 1.4 1.0 84 1.3 2.5 1.8 82 1.8 4.8 3.0 84 3.6 10.1 6.0 83 6.0 20.3 11.1 83 10.2 28.9 17.1 84
16 0.5 1.0 0.7 53 0.7 1.5 1.0 50 1.1 3.0 1.8 52 1.7 6.3 3.3 52 2.7 13.0 6.1 51 4.2 18.5 9.3 51
8 0.4 0.7 0.5 37 0.5 1.2 0.7 36 0.8 2.2 1.3 36 1.3 4.6 2.4 36 2.0 9.8 4.2 35 2.9 14.8 6.6 36
4 0.3 0.6 0.4 27 0.5 1.0 0.6 28 0.7 2.2 1.1 28 1.1 3.9 1.9 29 1.6 8.0 3.4 27 2.7 11.5 5.5 29
2 0.3 0.5 0.4 23 0.5 1.1 0.7 24 0.6 1.8 1.0 24 1.0 3.5 1.7 24 1.6 8.1 3.2 24 3.1 11.1 5.4 24
1 0.3 0.6 0.4 22 0.4 0.9 0.6 22 0.7 1.9 1.0 21 1.0 3.7 1.7 22 1.6 6.8 3.0 21 2.8 9.8 4.9 22
0 0.3 0.5 0.4 50 0.4 0.9 0.6 21 0.6 1.6 0.9 21 0.9 3.1 1.6 23 1.7 6.3 3.1 21 2.9 8.6 4.5 21
∧, Min avg. error (°); ∨, max avg. error (°); μ, mean error (°); kp, frame index at peak error (frame).

Table 3: Accuracy statistics (show path).

0.25 0.50 1.00 2.00 4.00 8.00
∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp ∧ ∨ μ kp

64 1.1 1.5 1.3 37 2.2 3.1 2.7 38 3.3 5.4 4.3 43 7.0 13.2 10.0 41 10.1 24.0 17.6 43 15.4 30.4 23.5 43
32 0.6 0.8 0.7 62 0.9 1.4 1.1 82 1.8 2.7 2.2 67 3.1 4.8 4.0 74 5.3 11.9 8.2 80 8.1 16.3 11.9 82
16 0.5 0.6 0.5 52 0.6 0.9 0.7 50 1.0 1.5 1.2 48 1.8 2.8 2.2 50 2.9 6.1 4.2 50 4.0 10.8 6.5 49
8 0.4 0.6 0.5 64 0.6 0.8 0.7 34 0.8 1.1 0.9 34 1.2 2.2 1.6 35 2.1 4.1 2.9 33 3.2 7.2 4.5 35
4 0.5 0.7 0.6 46 0.5 0.7 0.6 52 0.8 1.0 0.9 46 1.1 1.8 1.5 33 1.8 3.7 2.7 26 2.8 5.7 4.0 27
2 0.4 0.6 0.5 42 0.5 0.8 0.7 34 0.8 1.2 1.0 41 1.2 2.1 1.6 26 1.8 3.1 2.3 22 3.2 5.7 4.3 23
1 0.4 0.6 0.5 1 0.5 0.8 0.7 47 0.8 1.1 0.9 1 1.1 1.7 1.4 1 1.5 3.2 2.2 20 2.6 4.6 3.5 20
0 0.4 0.5 0.5 11 0.5 0.8 0.6 38 0.7 1.1 0.9 35 1.1 1.9 1.5 1 1.9 3.0 2.5 1 2.5 4.6 3.7 35
∧, Min avg. error (°); ∨, max avg. error (°); μ, mean error (°); kp, frame index at peak error (frame).

Table 4: P values of paired two sample T-test (means of no path compared to show path).

0.25 0.386 0.114 0.034 0.016 0.826 0.016 0.033

0.50 0.588 0.503 0.883 0.495 0.239 0.426

1.00 0.228 0.161 0.801 0.002 0.049

2.00 0.053 0.014 ≤0.001

4.00

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001≤0.001

≤0.001

≤0.001 ≤0.001

8.00 0.042 0.001 0.039

0 1 2 4 8 16 32 64

Table 5: P values of paired two sample T-test (means compared to zero latency, no path).

0.25 0.845 0.584 0.661 0.001

0.5 0.406 0.022 0.162

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

1 0.010 0.045 ≤0.001

2 0.370 0.167 0.001

4 0.783 0.653 0.041

8 0.254 0.007 0.004

0 1 2 4 8 16 32 64
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degrading symptoms. A simulator is said to be a “problem
simulator” if one of the scores reaches beyond 20 [61]. Te
compiled score of the SSQ-data is presented in Figure 12 and
does not indicate problematic levels in any of the scores.

Te time spent in VR during the experiment session was
relatively long (around 10–15min). Te half-time pause of
fve minutes and the ofering of a small snack may have
helped in maintaining the energy of participants and
avoiding any potentially strong negative symptoms covered
by the SSQ. Note that the participants were informed that
they could end the experiment at any time. Yet, all par-
ticipants chose to complete it.

6. Conclusions

Human performance in terms of hand-controller accuracy
in VR has been measured with the varying parameters la-
tency, target speed, and predictability of target path. Te
tests have been carried out in a context where a target
changes direction multiple times while moving in straight
lines. Te collected data have been presented and the main
conclusions given in tested context is as follows:

(1) Predictability signifcantly improves the average
accuracy at higher speeds and latencies. Generally, as
indicated by Table 4, prediction becomes signif-
cantly important (α � 0.05) at speeds beyond ap-
proximately 3.5°/s (1m/s at 7.5m) and at latencies

beyond roughly 130ms (8 + 4 frames at 90 fps, where
4 is the inherent device latency).

(2) Latency has a signifcantly higher impact on accuracy
when the target path cannot be predicted. Tables 5 and
6 indicate that scores start to get signifcantly worse
with No Path at latencies of 4+ 4 frames ( ≈ 90ms)
with a speed of 1m/s ( ≈ 6.8°/s). Show path yielded
signifcantly worse scores starting later, at 16+4 frames
( ≈ 220ms) of latency and 1m/s ( ≈ 6.8°/s)
target speed.

(3) When the target changes to a direction that cannot
be predicted, the average peak inaccuracy occurs on
average 190–200ms later (excluding device latency),
which is in line with related work on simple reaction
times with a single stimulus and response [64].

(4) As indicated in Figure 11, the frame index of the peak
inaccuracy after direction change increases by la-
tency multiplied by 2 when the new target direction
cannot be predicted.

7. Limitations and Future Work

7.1. Game Contexts. In future work, the data and insights
generated from this study may be tested in praxis-relevant
scenarios, for example, in remote VR game contexts con-
taining some aiming components. We hypothesize that the
given latencies, motion speeds, and corresponding accuracy
levels are applicable directly and/or scale with similar
characteristics in other 3D scenes. Also, we expect that the
results based on predictability are applicable to scenarios
with no visible target path but that nonetheless contain
a predictable motion path that must be followed according to
the rules of the given scenario.Te predictability of such paths
may be communicated to the user by rendering them directly
as a helping overlay, as was done in this study, but it can also
be communicated more subtly by other means. To maintain
the realism of the 3D content, the guidance that conveys
upcoming motions can be integrated into the specifc game
scene. Trivial examples could be trains that are part of the
game and act as targets in some manner; they move along
rails, clearly visible to the user, without requiring an unnatural
overlay. Cars are another example, moving along roads. In-
ertia is a property that also can be used to convey information
about motion; for example, slowly moving naval vessels in

Table 6: P values of paired two sample T-test (means compared to zero latency, show path).

0 1 2 4 8 16 32 64

0.25 0.202 0.054 0.048 0.245 0.035 ≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

0.5 0.576 0.393 0.536 0.106 0.012 0.005

1 0.255 0.264 0.471 0.211 ≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

≤0.001

2 0.341 0.539 0.604 0.325

4 0.979 0.691 0.178 0.002

8 0.469 0.321 0.120 0.002
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Figure 12: Te SSQ scores of the experiment: nausea (N), ocu-
lomotor (O), disorientation (D), and total score (TS).
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a war-themed gamemay bemore suitable targets to users with
high input latency than erratically moving airborne drones.
More complex objects are characters, whether human or
otherwise. Tey are common in games and typically need to
be able to move relatively freely. Hinting where such char-
acters are heading next is not trivial, but it is possible to give
some indication by using animations. For example, characters
about tomake a jumpmay frst need to play an animation that
shows the bracing before the jump, and movement on the
ground can be driven by the animation of the legs. Another
scenario is sports-themed games, which typically contain fast-
moving airborne items, such as tennis balls or hockey pucks.
While such projectiles will follow a predictable path according
to physics, their change in direction when, for example,
another player hits them, remains difcult to predict, and is
typically a central part of the game. In such scenarios, where
prediction is not possible and/or unwanted, one may consider
including adjustable parameters for the target speed and size
instead, if accommodation for high input latency is a priority.

Adding the predictability of motions, lowering the target
speeds, and/or increasing the target sizes reduces or miti-
gates the negative efects on accuracy as latency increases.
For instance, the study indicates, based on Table 2, that
a target without a path, moving at 4m/s ( ≈ 24.1°/s), yields
an accuracy within 3.1° on average without additional input
latency. Tat size almost doubled, to 6.1°, at 16 frames of
additional latency. Indeed, there is an approximate doubling
at all target speeds for these latency levels when no path is
shown. Future research may perform experiments with
these numbers in game contexts to determine whether the
data is sufciently accurate in practice. For example, can
users with 16 additional frames of input latency in the
HTC Vive play, e.g., a ping-pong game and perform
similarly as without extra latency if their ping-pong balls
are doubled in size?

Te study indicates that it is best to keep the total
input latency below ≈ 90ms. If that cannot be done, the
game design may alleviate the negative efects on accuracy
of remote operation in various ways by adjusting target
parameters and providing hints about upcoming mo-
tions. However, it is still of critical importance, since the
context is entertainment, that this does not negatively
impact the “fun-factor” of the game. We may be able to
hit slowly moving, large balls in high-latency ping-pong,
but is it still a fun game? Tis is an important question
that falls outside the scope of this study as only the
objective performance was recorded and analyzed. In-
deed, one may be able to adapt to latency and maintain
the performance, but it may make the task increasingly
annoying to perform, which is unsuitable when the
purpose is entertainment.

7.2. Physical Actuation Contexts. Outside entertainment,
there are other contexts where a path should be followed
while input may be delayed. We have considered remote
surgery to be one such potential scenario. A simple example
would be an operation in which a surgeon makes a cut
through skin while using remote robotic tools, where the cut

should follow a correct path with high accuracy. However, in
terms of surgery, the applicability of our experimentation
methods may be limited to simple examples. When oper-
ating inside the body or when otherwise performing com-
plex motions such as stitching, the motion path is no longer
dependent on just two dimensions, but three. Te surgeon
must not only cut at the correct X and Y coordinates but also
at the correct depth and direction (Z). Accuracy measure-
ments in 3D are outside the scope of this study and part of
potential future research. An experiment measuring the
accuracy in 3D could be conducted, for example, by ren-
dering a form of cone shape along a target 3D path. Te
pointed edge of the cone would indicate from where and in
what direction the controller should be pointing. To con-
struct the correct 3D path, one could, for example, record the
operator motions while the task of interest is performed
accurately without additional latency.Te 3D path may then
be played back in a simulator where an experiment con-
ducting person tries to follow this path as accurately as
possible while latency is injected into the controller input. It
may then be possible to determine at which level of latency
the task can be performed accurately, and running the ex-
periment could even be useful for training. Still, it is not
evident that this method would provide accurate results for
complex tasks such as surgery. Te complex task may in-
volve multiple correct options and higher-level decision-
making, and the speed is not fxed but can be decided by the
operator.

Another potential scenario outside of entertainment is
in military applications, where the remote feed may
originate from a camera sight used for manually aiming
some weapon. In that case, the study indicates the ex-
pected accuracy depending on input latency and target
speed. However, one would also need to consider the
projectile speed in that case, which is outside the scope of
this study. Furthermore, the controller mechanics would
likely be diferent from VR hand controllers, which may
signifcantly impact the results.

Data Availability
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implementation of a VR-architecture for smooth motion,” in
Proceedings of the ACM Symp. On Virtual Reality Software
And Technology, Ser. VRST ’07, pp. 153–156, Association for
Computing Machinery, New York, NY, USA, November
2007.

[15] E. M. Peek, B. C. Wünsche, and C. Lutteroth, “Image warping
for enhancing consumer applications of head-mounted dis-
plays,” in Proceedings of the Australasian User Interface Conf,
pp. 47–55, Auckland, New Zealand, January 2014.

[16] Y.-C. Li, C.-H. Hsu, Y.-C. Lin, and C.-H. Hsu, “Performance
measurements on a cloud vr gaming platform,” in Proceedings
of the 1st Workshop on Quality of Experience (QoE) in Visual
Multimedia Applications, October 2020.

[17] N. Somraj, P. Sancheti, and R. Soundararajan, “Temporal view
synthesis of dynamic scenes through 3D object motion es-
timation with multi-plane images,” in Proceedings of the IEEE

Int. Symp. On Mixed and Augmented Reality (ISMAR),
pp. 817–826, Singapore, October 2022.

[18] V. Kanchana, N. Somraj, S. Yadwad, and R. Soundararajan,
“Revealing disocclusions in temporal view synthesis through
inflling vector prediction,” in Proceedings of the IEEE/CVF
Winter Conf. On Applications of Computer Vision (WACV),
pp. 3093–3102, Waikoloa, HI, USA, January 2022.

[19] R. Held and N. Durlach, “Telepresence, time delay and ad-
aptation,” Pictorial communication in virtual and real envi-
ronments, vol. 01, pp. 232–246, 1993.

[20] J. E. Conklin, “Efect of control lag on performance in
a tracking task,” Journal of Experimental Psychology, vol. 53,
no. 4, pp. 261–268, 1957.

[21] G. L. Ricard, “Manual control with delays: a bibliography,”
SIGGRAPH Comput. Graph, vol. 28, no. 2, pp. 149–154, 1994.

[22] J. L. Adams, An Investigation of the Efects of Time Lag Due to
Long Transmission Distances upon Remote Control, National
Aeronautics and Space Administration, Washington, DC,
USA, 1961.

[23] W. R. Ferrell, “Remote manipulation with transmission de-
lay,” IEEE Transactions on Human Factors in Electronics,
vol. 6, no. 1, pp. 24–32, 1965.

[24] W. R. Corliss and E. G. Johnsen, “Teleoperator controls. an
aec-nasa technology survey,” 1968, https://www.osti.gov/
biblio/4797359.

[25] F. R. Cooper, W. T. Harris, and V. J. Sharkey, Te Efect of
Delay in the Presentation of Visual Information on Pilot
Performance, Naval Training Equipment Center, Orlando, FL,
USA, 1975.

[26] G. K. Miller and D. R. Riley,Te Efect of Visual-Motion Time
Delays on Pilot Perforamnce in a Simulated Pursuit Tracking
Task, NASA, Hampton, Virginia, 1977.

[27] R. H. Y. So and M. J. Grifn, “Efects of time delays on head
tracking performance and the benefts of lag compensation by
image defection,” in Proceeding of the Flight Simulation
Technologies Conference, New Orleans, LS, USA, August 1991.

[28] B. Sorensen, M. Donath, G.-B. Yang, and R. Starr, “Te
Minnesota scanner: a prototype sensor for three-dimensional
tracking of moving body segments,” IEEE Transactions on
Robotics and Automation, vol. 5, no. 4, pp. 499–509, 1989.

[29] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S. Lee, “Furion:
engineering high-quality immersive virtual reality on today’s
mobile devices,” IEEE Transactions on Mobile Computing,
vol. 19, no. 7, pp. 1586–1602, 2020.

[30] E. Cuervo, A.Wolman, L. P. Cox et al., “Kahawai: high-quality
mobile gaming using gpu ofoad,” in Proceedings of the
Annual Int. Conf. On Mobile Systems, Applications, and
Services, pp. 121–135, Association for Computing Machinery,
New York, NY, USA, May 2015.
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