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Recent years have seen a surge in interest in the multifaceted topic of human-computer interaction (HCI). Since the advent of the
Fourth Industrial Revolution, the significance of human-computer interaction in the field of safety risk management has only
grown. There has not been a lot of focus on developing human-computer interaction for identifying potential hazards in buildings.
After conducting a comprehensive literature review, we developed a study framework for the use of human-computer interaction
in the identification of construction-related hazards (CHR-HCI). Future studies will focus on the intersection of computer vision,
VR, and ergonomics. In this research, we have built a theoretical foundation for past studies’ findings and connections and offered
concrete recommendations for the improvement of HCI in danger identification in the future. Moreover, we analyzed two cases
studies related to the domain of CHR-HCI in terms of wearable vibration-based systems and context aware navigation.

1. Introduction

The importance of efficient human-computer interaction has
grown with the prevalence of computers. Human-computer
interaction (HCI) is the study of how humans and computers
work together, specifically how well computers are designed
to work with humans. The use of computers has always raised
the issue of how to connect them. Humans' means of
communicating with computers have progressed consider-
ably throughout the years. While we have come a long way in
the previous several decades, we still have a long way to go.
Every day, new technological and system designs emerge, and
research into this field has exploded. Not only has the quality
of communication between humans and computers im-
proved, but the human-computer interaction (HCI) disci-
pline has also diversified over time. Different areas of study
have paid more attention to the ideas of multimodality and
adaptable user interfaces than they have to the design of
traditional command- and action-oriented user interfaces.
In the discipline of civil engineering, “hazard” is fre-
quently defined as the source of energy that, if released and

resulted in exposure, might cause harm or death [1]. Because
of construction’s unique challenges, the industry as a whole
has a comparatively low hazard identification rate (66.5%)
when compared to other sectors. Individually, even among
construction employees with more than ten years of expe-
rience, the danger identification rate is below 80% [2]. In
order to lower the accident incidence and guarantee the
safety of construction workers, it is crucial to effectively
recognise possible risks. However, the current state of the art
in danger identification is monomodal and places too much
weight on human intuition [3]. One of the key reasons why
the worldwide number of deaths in the construction in-
dustry has not yet clearly decreased is because hazard de-
tection technology has evolved slowly and has failed to
satisfy the demands of the construction industry’s devel-
opment to date. These days, both worker safety and the long-
term viability of the construction sector rely on the ability to
accurately identify possible dangers [4].

Therefore, the rapid speed of the Fourth Industrial
Revolution is pushing the widespread use of human-
computer interaction technologies in the construction
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sector, which in turn is propelling developments in danger
identification tools. For example, scholars like Schulte et al.
[5] are working to model, measure, and improve the efficacy
of various types of interfaces between computer applications
and construction workers, as well as maximise the accuracy
with which data are mapped from one modality to another.
As aresult, it can be deduced that there is both a robust body
of academic literature and substantial room for growth in the
field of human-computer interaction technology as it per-
tains to hazard detection in the built environment [3].
Here, we use the term “CHR-HCI” to refer to studies that
investigate the intersection of HCI and hazard recognition in
the built environment. While the work of the selected few
researchers has been extensive, not nearly enough attention
has been paid to establishing a broad context for these in-
vestigations [3]. Therefore, this study aims to do the fol-
lowing: (1) review the related work presentedin the literature
of CHR and HCIL (2) analyze two case studies related to
thisfield; (3) identify the directions for future research.

2. Literatuire Review

In the following sections, the study will give detailed analysis
of the reviewed works related to human-computer in-
teraction design approaches by synthesising the
previous works.

2.1. Overview of Human-Computer Interaction Design.
Human-computer interaction is the study of how to create
efficient computer systems via assessment, design, and
implementation [6] [7]. Human-computer interaction
(HCI) is the most crucial step in the creation of any kind of
computer system since it is a crucial aspect of “man-machine
systems” [8], whose participation is not only about the work
at hand but also about the mutual understanding that might
result from being in the same room [9] to facilitate “creating
input and output modalities of information” [10] as a means
of comprehending human interaction with robots. Any
interface’s success depends on how well it facilitates “human
and computer system communication” in its entirety [11]. In
a similar vein, Sumak et al. [12] emphasised that an efficient
user interface is one that achieves faultless and harmonious
interactions between humans and computer systems, as this
is the only way in which people’s mental loads can be re-
duced fundamentally and their “operational abilities” be
enhanced [6].

2.2. Methods for HCI Design. Data and information are
entered into and extracted from a computer during the
process known as “human and computer interaction” [13]
by the use of a specialised user interface, whereby users give
their instructions to the system before it examines those
inputs, computes, and processes them and then returns the
results to the users using the same interface [14]. There are
a variety of channels via which information is exchanged and
information is extracted between humans and machines in
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the modern day, such as data communications, numerical
and symbolic interaction, voice interaction, and intelligent
interactions [11]. Tosi [6] and Jeon et al. [9] have proposed
subclassifications within the three main parts of the interface
design process: interactive design, structural design, and
visual design [15]. For instance, “the types of interactions”
and “how the interactions take place” might further cate-
gorise interactive design, which is concerned with people’s
interactions with systems [7]. When creating an interactive
interface, it is crucial to keep in mind factors such as
“people’s orientation, consistency, users’ operation ability,
shortcuts, assistance, and feedback,” as emphasised by
Esposito et al. [16, 17]. Again, structural design may be
broken down into three subcategories that focus on ana-
lysing individual requirements, the rationale for carrying out
the work, and the way in which the task was designed
[18, 19]. Finally, “visual design,” which involves combining
“complexity and imagery,” aims to make consumers pleased
with the interface [19], regardless of what other research
studies hve revealed [20]. Discussion about how to best
design cutting-edge IT (emerging technologies) has spread
to the “HCI discourse” during the last decade and has
regularly urged a reevaluation of current practises in in-
terface creation [19]. Information system experts are in-
creasingly interested in learning about HCI methods of
development; therefore, the question of HCI interface
standards for new technologies has become a hot topic of
debate [13].

3. Research Methodology

3.1. Paper Retrieval. In the first place, theinformation-
gathering tools were located. The databases used for the
literature search were Scopus, ACM Digital Library, Web of
Science, and Google Scholar, and they were chosen after
much deliberation and comparison.

Second, which literary genres to explore were chosen.
Journal articles focusing on HCI technology and risk as-
sessment serve as the primary literature foundation for this
investigation. Academic conferences are an essential route
for academics to discuss research results and address sci-
entific difficulties faced in this subject, so conference papers
should also be a crucial element of the literature resources
for studying hazard recognition and HCI [3].

In the end, the constraints to guide the literature search
were used. In order to retrieve papers, researchers have to be
very specific about what theyare looking for and what time
period theyare looking at. The terms “construction,” “haz-
ard,” “recognition,” “human-computer,” and “interaction”
were found in the dictionary and looked for their near- and
opposite-sounding counterparts. The following procedures
were taken to guarantee that the literature search was
thorough and exhaustive [3]: synonyms and antonyms were
linked using Boolean operators, and the resulting pairs were
used to query various data stores. Using the most relevant
keywords, abstracts, and publications from the search, we
inserted the missing synonyms and near-synonyms.
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3.2. Bibliometric Analysis Method. After extracting data
from four different databases, the study team compared the
titles to create a unique beginning literature list. Second, the
names of the publications were examined and then the
abstracts were verified to make sure there were not any
duplicates or useless studies. As a third stage, the broad
subject matter of the literature was studied to further weed
out the noncompliant material based on the results of
processes one and two. In the end, 274 publications met all of
the criteria and were included in the analysis [3].

CiteSpace and VOSviewer were used for the bibliometric
analysis once the sample was selected. In the study, basic
information analysis, cluster analysis, and keyword co-
occurrence analysis were used to thoroughly identify the
current research state and future development trends in this
subject, as represented by abstracts and keywords.

3.3. Basic Information Analysis. The underlying data from
the 274 publications were analysed once the sample was
determined. The major purpose of this section, like the
descriptive statistics in some experimental research, is to
give readers the basics, such as the number of annual
publications and the make-up of literary genres in this field.
Examining the distribution of different types of publications
(journals, conferences, and reviews) over time sheds light on
the development of knowledge and may provide clues as to
the future of CHR-HCI.

3.4. Number of Annual Publications. Figure 1 displays the
trend in these types of yearly publications from the year 2000
to the year 2021 [3]. Most years before 2009 had a relatively
low number of relevant articles published. Publications have
been on the rise since 2011, especially since 2015, increasing
from nine articles in 2015 to 59 papers in 2021. This statistic
demonstrates how many articles have been written on this
topic despite the influence of the COVID-19 epidemic.

Furthermore, a regression model was performed using
the least-squares approach, with the number of publica-
tions serving as the dependent variable and the year serving
as the independent variable; the resultant slope is positive,
as illustrated by the dashed line in Figure 1. Furthermore,
the cost index was determined by dividing the sum of all
publications by the sum of only those published in the
recent five years (2017-2021; because 2022 has not yet
concluded, used those years as a proxy) (defined as
2000-2021). With a price index of 0.068, it was clear that
studies in this area will only get better over time rather than
get stale. Therefore, it can be concluded that CHR-HCI
research has garnered considerable interest and has been
a rapidly expanding field of study in recent years, as evi-
denced by the increasing volume of annual publications in
this area [3].

3.5. Composition of Literature Types. As shown in Figure 2,
articles accounted for 56 percent of all investigations con-
ducted. Following this category were conference papers
(42%), followed by review articles (2%) [3].
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3.6. Keyword Co-Occurrence Network. The scientific

knowledge graph shown in Figure 3 of [3] reveals the de-
velopment of CHR-HCI research by keyword co-occurrence
analysis. Second, the cluster analysis of the term co-
occurrence network yielded a mean silhouette (P) value
of 0.7533 and a modularity (Q) value of 0.796, both of which
are credible. Figure 3 depicts a term co-occurrence network,
which may be used directly in cluster analysis. Finally,
Figure 3’s research terms can be classified into two groups,
one for lower-level concepts and one for higher-level con-
cepts, depending on their frequency of occurrence. At the
top is the overarching research question, followed by a tier of
keywords related to human-computer interaction and a tier
of keywords related to terms concerning construction safety
and hazard recognition.

3.6.1. Terms Related to Human-Computer Interaction.
The term “human-computer interaction” was used to de-
scribe the dynamic in which human beings and computer-
related machinery coexist during the execution of a pre-
determined automated task. Due to this, there has been
a dramatic improvement in the detection of danger. There
are three main categories into which the current HCI
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research on hazard recognition can be sorted: key tech-
nologies, typical products, and product performance.

Technologies that are “key” to the development of HCI-
related products for use in hazard recognition can be either
fundamental or ground-breaking. Sensor technology, po-
sitioning and map construction, robot operating systems, 3D
modeling, and virtual simulation are all examples of basic
technologies; breakthrough technologies include computer
vision, computer simulation, neural networks, and high-
performance material manufacturing. Figure 3 [3] displays
how the researchers’ use of terms such as “virtual reality,”
“three-dimensional computer graphics,” “computer simu-
lation,” and “computer vision” demonstrates their interest in
technology.

Construction robots for narrow scenarios and auto-
mated construction systems for broad integration are just
two examples of the types of typical HCI products that have
been developed with specific hazard recognition functions so
far. Excavation robots, handling robots, and painting robots
are all examples of scene-specific robots that can recognise
hazards and perform the same tasks repeatedly. ABCS
systems and SMART systems with more comprehensive
hazard recognition functions are two examples of automated
construction systems used in integrated scenarios, and both
have the ability to integrate multiple single-task robots [21].

When discussing the product performance of HCI in the
context of hazard recognition, we are talking about things
such as product attributes, product cost, operation effi-
ciency, operation quality, and operation safety. [3]. Both
horizontal and vertical comparisons of human resources,
building material consumption, machine quality, machine
power, machine load, movement speed, operation accuracy,
etc., as well as comparisons of typical HCI products and
traditional operation methods, can be used to assess

performance [22]. Integration of design and construction,
increased mobility in humanoid robots, and improved load
capacity and positioning accuracy in intelligent machinery
were all areas where HCI products applied to hazard rec-
ognition were expected to focus on in the future.

3.6.2. Terms Related to Construction Safety and Hazard
Recognition. There has been a significant paradigm shift in
the area of CHR-HCI research over the last 21 years, with the
emphasis moving from accident investigation to hazard
prediction and prevention [23]. Forecasting is the key word
in Figure 3 that illustrates this change [3]. As opposed to
looking at accidents after they have already happened, the
focus of accident prevention and hazard prediction is on
making sure workers in the construction industry are aware
of and prepared for any prospective dangers [3]. Because of
this shift in philosophy, terms such as “risk perception” and
“risk analysis” have emerged as vital tools for helping
construction workers see potential dangers in high-stakes
settings [24].

Earthquakes, a significant natural hazard, have also
garnered scientists’ ongoing interest in the study of risk
prediction and hazard awareness. Researchers have begun
promising new inquiries from the vantage points of
earthquake design, urban planning, and cutting-edge ma-
terials [25]. The evolution of this field is reflected in the
vocabulary of the field itself: terms such as “earthquakes,”
“seismic design,” “seismology,” “architectural design,” and
“reinforced concrete” are all part of the study of earthquakes
and their effects [26].

Alterations in management structure in this area are
reflected in the keyword co-occurrence network. In order to
make accident prevention and hazard prediction a reality,
revolutionary changes in organisational management and
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safety technology are essential [27]. Due to the inextricable
link between management and construction safety, experts
are always looking for new ways to enhance the industry’s
already stellar safety record. The evolution of this field is
reflected in the rise of new concepts such as decision-
making, monitoring, safety training, and risk manage-
ment. After 21 years of study, scholars such as Yeo et al. [28]
consider risk management, risk decision-making, engi-
neering structural health, and safety training in engineering
construction to be significant areas of inquiry.

3.7. Cluster Analysis. Cluster analysis was used to describe
the most important developments in the field of CHR-HCI
[3]. Using optimum computational techniques in statistics,
cluster analysis is a way of analysis that may be used to
analyse text data and uncover interesting study subjects. In
this investigation, VOSviewer and CiteSpace were used for
cluster analysis, with CiteSpace being used to fine-tune the
data obtained by VOSviewer. Log-likelihood ratio, mutual
information, and greatest word frequency are the three most
commonly used approaches to naming modules in Cite-
Space [29, 30]. Because the names of the modules are so
descriptive, we settled on using the highest word frequency
technique to determine which ones existed.

Figure 4 [30] shows the results of the study and opti-
mization, which led to the creation of four modules with no
clear link between them: computer vision, ergonomics,
computer simulation, and virtual reality [3].

3.7.1. Cluster 1: Computer Vision. Out of a total of 251
articles found, 177 were directly relevant to the keyword [3].
This highlights the important role that computer vision plays
in hazard identification investigations. Constant refinement
of deep learning techniques such as convolutional neural
networks, stacked autoencoder network models, and deep
belief networks underpins recent developments in computer
vision technology. Topics such as content-based picture
extraction, posture assessment, multimodal data identifi-
cation, autosomal motion, image tracking, scene re-
construction, image recovery, and system integration are
crucial areas of study. There are two main lines of inquiry in
computer vision related to danger recognition [3]. As an
example, Luo et al. [31] have developed models and analysed
cognitive connections.

3.7.2. Cluster 2: Ergonomics. Since 2015, CHR-HCI has been
strongly tied to ergonomics, which has progressed toward
more diversity, humanization, and intelligence [3]. In order
to enhance the efficiency of danger identification, scientists
are now using physiological and psychometric methods to
investigate the rational coordination link between the
structural-functional, psychological, and mechanical com-
ponents of the human body and computers [32]. Sixty-five of
the 251 papers retrieved were associated with this keyword,
demonstrating that the relationship between construction
hazard identification and ergonomics is sufficient and that
a large number of researchers have carefully studied the

technological methods [3]. Task assessment and quantifi-
cation, brain-computer interfaces, and experimental para-
digms in engineering psychology are now at the centre of
this field’s investigation [3].

3.7.3. Cluster 3: Computer Simulation. A computer simu-
lation, often called an “emulation,” is software designed to
mimic the behaviour of a model of a system in order to learn
more about that system [33]. Of the 251 articles found, 97
were directly connected to the search term [3]. With the goal
of simulating hazards in construction scenarios through
simulation software and external parameters, current hazard
recognition research in computer simulation focuses on
discrete simulation, analogous simulation, simulation based
on probe elements, and simulation of stochastic processes or
deterministic models [3]. Creating new code and improving
upon preexisting systems are both vital parts of this study.
Discrete event simulation languages such as GPSS, SIM-
SCRIPT, GASD, CSL, and SIMULA and continuous system
simulation languages such as DARE, ACSL, CSS, and CSSL
have been continuously optimised by a large number of
researchers, laying a firm groundwork for human-computer
interaction technology and fostering the growth of hazard
recognition [34].

3.7.4. Cluster 4: Virtual Reality. The purpose of virtual re-
ality (VR) technology is to allow people to experience
a computer-generated environment with all their senses.
[35]. The 52 articles that were found while searching for this
keyword among the 251 results show that the introduction of
virtual reality into the area of hazard detection has great
potential for future growth [3]. Scholars are trying to op-
timise dynamic environment modeling, real-time 3D
graphics creation, stereo display and sensor technology, and
system integration technology from the standpoint of
technological development [3]. From an application
standpoint, virtual reality technology is primarily developed
for use in construction risk assessment and worker safety
training. The expensive cost of manufacture and the un-
reliability of the user’s visual experience are two of virtual
reality’s key technological drawbacks [36].

4. Case Studies and Analysis

Two case studies are offered here to highlight how HCI
research may include human values throughout the process.

4.1. Case Study 1: Wearable Vibration-Based Computer [37].
Information technology is being put to good use in many
facets of modern life. Machines have become more vital due
to the difficulties people have in conveying and processing
information. One of the primary goals of speech recognition
systems is to permit more widespread usage of computer
systems that aid people’s work in a variety of professions by
allowing them to communicate with one another through
voice [37].
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FIGURE 4: Cluster analysis [30].

Humans rely mostly on verbal exchanges for commu-
nication [37]. Understanding and identifying the speaker,
their gender, age, and emotional state are all possible [38].
Humans’ ability to communicate verbally begins in their
minds, where a combination of motivation and neuronal
activity produces audible speech. Speech is received by the
auditory system, which transforms it into neural signals that
the brain can interpret [39].

The inability to localise the source of a sound is the
primary challenge faced by those with hearing loss. The
primary aim in this research [37] was to find a way to help
the hearing-impaired identify the source of an incoming
sound and move in that direction. The other goal was to
make sure that people with hearing loss could still un-
derstand who was talking and how loud they were talking. A
voice recognition application’s primary function is to take in
speech data and generate an approximate translation. To do
so, the captured audio from the microphone must be
converted from analogue to digital, after which the char-
acteristics of the acoustic signal can be extracted and used to
identify critical features.

Two characteristics of the sound wave itself are very
important. Specifically, we are talking about amplitude and
frequency [37]. The treble and bass qualities of a sound are
determined by the frequency, while the intensity and energy
of a sound are established by the amplitude. Analysis and
classification of acoustic signals are useful for sound rec-
ognition systems. Real-time tests of the wearable device have
also been conducted, and the results have been compared.
The device, worn by the user as shown in Figure 5 [37], can
detect the presence of a deaf person by sensing vibrations
transmitted through the user’s clothing in real time.

The primary goal of this research [37] was to determine
whether individuals with hearing loss may detect sounds
such as brake or horn noises coming from behind them.
People who have trouble hearing may experience distress
when they hear noises approaching from behind. Addi-
tionally, the ability to hear the sounds of brakes and horns is

crucial and permits people with hearing problems to travel
safely. The goal is to develop a product that people with
hearing difficulties can use on a daily basis to improve their
lives. This will give them instantaneous, real-time access to
additional perception and decision-making skills.

Ketabdar and Polzehl’s research [40] included creating
a smartphone app that would analyse sound, detect vibra-
tions, and display alerts in the event of a loud event. This
programme is helpful for the deaf and anyone with hearing
impairments since it alerts them about nearby loud activities.
The mobile phone’s microphone is used by the spoken
content analysis algorithm to collect data on the user’s
environment, which is then analysed for any shifts in the
level of background noise. When changes occur or other
circumstances arise, the app alerts the user with visual or
vibratory-tactile cues that correspond to the altered speech
content. The user will now know about the mishap [37].
With the study of user actions, this algorithm may be im-
proved to do even more tasks [40]. As part of their research,
Shivakumar and Rajasenathipathi used hardware control
techniques and a screen input application to link people who
are deaf or blind to a computer so that they may use modern
computer technology for communication purposes, such as
vibrating gloves [41].

The wearable solution underwent preliminary testing
and deployment in the field. Incoming data were estimated
in real time, and the user is updated instantly through vi-
brations. As the system reacts and reroutes the user, our
wearable device predicts the direction once more. This
method was used to determine which of the previously
described methods was the most effective, and then that
method was put into use. Subjects were played recordings of
voices coming from a variety of locations and asked to
identify their source. The success of our wearable system was
evaluated by comparing these numbers to those obtained in
the real world [37].

The second step involves hooking up the system to
a computer and bringing the voices and their instructions
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FiGURe 5: Testing a wearable device on the user in real time [37].

into the digital realm. Each time the data were gathered from
four separate microphones, they were stored in a matrix, and
this process continued until a sizable data set had been
amassed. Preprocessing, feature extraction, and classifica-
tion were all successful with the data that were generated.
Results were compared to the live application and discussed
in context [37].

Four microphone ports were integrated into the final
wearable system (Figure 6 [37]). To ensure clear audio in all
cardinal directions, four microphones were used. Initial tests
were conducted with only three microphones, but it was
determined that four were required due to the system’s low
success rates and the fact that there are four main directions.
With the help of the HCI, they were positioned to the right,
left, front, and back of the user (Figure 6 [37]). Using four
microphones as opposed to three improved accuracy in
experiments, the system’s design called for two vibration
motor outlet units, one on each fingertip, to indicate the
direction of sound via vibration frequencies. The high
concentration of nerves in the fingertips is the primary factor
in this preference. Furthermore, vibration motors positioned
on the fingers are more user-friendly and cause less
disruption [37].

The designed system has four LED outlets, and when
asound is detected, the LED of the outlet facing the direction
of vibration is illuminated. The combination of vibration and
LED lights enhances the user’s ability to identify the correct
direction. LEDs were used to provide a visible alert.
Meanwhile, the possibility of using four distinct LED lights
for the four cardinal directions is being studied. There are
LEDs for the user to glance at if they are confused by the
vibrations. In this investigation, vibration serves to stimulate
the sensation of touch in those who are deaf or hard of
hearing. Hearing-impaired people will have a better chance
of comprehending and feeling at ease if they can commu-
nicate with others via touch [37].

A 32-bit MCU based on the ARM architecture and flash
storage were included in the creation [37]. It has a maximum
frequency of 72MHz, a 3.6V application supply, seven
timers, two ADCs, and nine communications. The wearable
gadget that we created ran on rechargeable batteries. On the
batteries, about 10 hours of run time are possible. Vibration
allows people to detect the direction from which an

incoming sound is coming 20 milliseconds after the vibra-
tion has been given, that is, the listener will be able to
recognise the sound coming in within 20 ms [37].

A total of eight directions were used during five days of
testing with four deaf people and two individuals with mild
hearing loss, with findings compared to those of normal
participants. The effectiveness was measured by playing
recordings made from the left, right, front, and back and
identifying the locations where these directions were
intersected. In this research, we analysed the data from four-
and eight-directional studies and conducted further tests in
both controlled and natural settings [37].

Actual human subjects were employed as sound gen-
erators in these real-time studies [37]. An outdoor stroll
would be interrupted by a call from behind, with the user’s
ability to hear the voice being measured. The computer
system used a loudspeaker to play the audio. In this ex-
periment, the participant’s left and right fingertips were
attached to vibration motors, and microphones were placed
on their right, left, behind, and in front of them. For in-
stance, the left fingertip’s vibration motor would activate in
response to a sound coming from the left. The right and left
vibration motors would be used for forward and reverse
movement, respectively. In the forward movement, three
quick vibrations from the right-to-left motors would be
produced. The vibration motors would cycle through three
times of vibration in the back, right, and left directions. The
typical time taken for the user to discern the product’s
direction is 70 milliseconds. This research helped classify
individuals based on how loud or quiet they sound, so those
with hearing impairments could pay attention. When
someone was making a loud noise nearby, for instance, those
with hearing impairments might still comprehend what was
going on and behave accordingly.

4.2. Case Study 2: Context-Aware Navigation System [42].
In mobile navigation contexts, context awareness is a fas-
cinating issue due to the great degree of application-specific
change. Not just during development but also in real time
when the device is being used, navigation services take the
user’s current circumstances into account. A user’s behav-
iour and the device’s location are two examples of
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FIGURE 6: The developed wearable system [37].

circumstances that might influence the services that a mobile
navigation app offers. This article [42] addresses the prob-
lems of context-aware systems, which include acquiring
context, interpreting context, and adapting applications to
context. The work proposes a method for strengthening the
precision and dependability of context-aware navigation
systems via the use of inexpensive sensors in a multilevel
fusion strategy. The experiments show that smartphones
may be used for outdoor navigation with the help of context-
aware personal navigation systems (PNS) [42].

Applications that are “context-aware” take external
factors, such as the user’s actions, into account when making
judgments about the user and/or the environment. While
many approaches have been explored for automatic context
and environment recognition for context-aware applications
(such as healthcare, sports, and social networking), there is
still room for improvement. The study presented in [42], for
example, is one of the firsts to apply user activity context to
PNS, and more specifically, vision-aided navigation [43]. For
the purpose of recognising and using context in PNS ap-
plications, a new hybrid paradigm was introduced. When
using a navigation app, the user’s current activity (such as
walking or driving) and the device’s current location and
orientation provide valuable context.

In the field of pervasive computation, Caetano suggested
using a hybrid mythology to combine the best features of
data-driven and knowledge-driven approaches [44]. Arato
et al. proposed a knowledge-driven hybrid method for
continuous and real-time activity recognition in smart
homes via the use of multisensor data [45]. In this research,
ontology-based semantic reasoning and classification are
used for activity recognition, but domain knowledge is
heavily leveraged throughout the entire process [42].

An activity recognition module is created to determine
which sensors and features best aid in the development of
a reliable context detection algorithm. With the help of the
activity recognition module and a battery of experiments, it
was possible to gauge how well it performed across a variety of
user motions and modes [42]. The data collection for this

study was performed using a Samsung Galaxy Note 1
smartphone. This proposed context-aware model for navi-
gation services uses a client-server architecture for its soft-
ware. This architecture allows for the separation of application
logic between the user’s local Android device and a server-side
resource with access to more extensive data stores and
processing capabilities. Examples include sending the average
value of a window of recorded accelerometer data from a local
Android device to a web server for comparison against
a database of context patterns. Wi-Fi allows for instantaneous
data synchronisation with a server. An app is built to snag
information from a mobile device and transmit it to a server
[42]. This software creates timestamped data that can be used
in real time. The main software and the user’s data are stored
on servers in a remote location, and the end users access the
applications through a lightweight mobile application. Au-
tomatically or at the user’s urging, all relevant sensor data for
detection were preprocessed and sent to the server. The next
step involves sending the results of the context detection and
navigation solution back to the mobile user. Two men and two
women, ranging in age from 26 to 40, participated in the study
to provide data on their physical activities [42]. Testing data
were collected with the smartphone in a variety of positions,
such as in a purse, a jacket pocket, on a belt, held close to the
ear while talking, and at the user’s side while the arm was
swung. The only restriction on how the smartphone should be
worn is where on the body it should be kept. After two
minutes, data from each activity with a unique device
placement mode were saved to the server’s database (DB).
Subjects were asked to mark the beginning and end times of
their primary activities in order to construct the reference
data [42].

Those sensors that correlate most strongly with the
activity classes are the most optimal for activity recognition.
In order to detect motion, accelerometer sensors have be-
come increasingly popular. The gyroscope can record the
user’s movements and the device’s new orientation. When
trying to differentiate between groups of on-body device
placements and identify the device’s orientation in each
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placement, orientation determination is a crucial feature
[42]. In addition to assisting with orientation and heading
determination, magnetometer sensors also provide absolute
heading information. Device orientation can also be esti-
mated using the orientation software sensor (or soft sensor)
made available by the Android API. The orientation angles
are generated by fusing three signals from an accelerometer,
a gyroscope, and a magnetometer in this sensor. The values
of these angles characterise the relationship between the
device’s coordinate system and the regional navigational
reference frame. The orientation soft-sensor’s output can
stand on its own as a sensor or be used to transform data
from one coordinate system (the device’s) to another (the
reference navigation system). Multiple sensors’ context
recognition outputs have been analysed as a whole [42].

Calibration and noise reduction are applied to the raw
data captured by sensors, as depicted in Figure 7 [42]. Signal
processing algorithms are then applied to the data in order to
extract useful features. Although there is a vast pool of
features from which to choose, only a few should be
implemented for reliable, real-time context recognition [42].
Afterwards, the feature space can be classified using clas-
sification methods. Tervo et al. [46] noted that there is a wide
range of feature extraction and classification methods and
that the best method to use is often context-specific.

5. Conclusion

This paper proposes a framework to categorise the
CHR-HCI field into three levels, acknowledging that
human-computer interaction is an emerging in-
terdisciplinary field encompassing numerous disciplines and
that hazard recognition also requires complex theoretical
knowledge and practical techniques. The papers reviewed
several related work in the field of CHR-HCI and analyized
two related case studies.

From a research perspective, hazard identification is
interested in the construction industry’s practise of
finding, perceiving, and recognising dangers and their
influencing variables for the sake of risk assessment,
accident prevention, foresight, prediction, and in-
telligent monitoring. The primary improvement in
engineering safety driving philosophy during the last
21 years has been the shift from postaccident analysis to
preaccident prediction and prevention, made possible
by advancements in human-computer interface tech-
nology. As a result, this is one reason why we are
pushing for the widespread use of HCI methods.

Theoretically speaking, there are two basic components
to hazard recognition: theory pertaining to the hazards

or risks involved and theory pertaining to the actual act
of recognising or identifying the hazards. Theoretical
guidance for the implementation of HCI technologies
may be found in fields including risk psychology, er-
gonomics, human factors engineering, behavioural
psychology, and sociology. Academics have paid a lot of
attention to engineering ethics because of its supervi-
sory role in scientific experiments, and this is because of
the importance of engineering as science and tech-
nology progress. As such, engineering ethics should be
taken into account as a fundamental compass for
identifying potential dangers [47, 48].

In terms of real-world implementation, hazard rec-
ognition should find most use in computer simulation,
computer vision, VR/AR, and robotics [49]. The three
issues we have highlighted are where we think re-
searchers should focus in the future when studying
hazard recognition. First, researchers want to find ef-
ficient ways to process multimodal data in hazard
recognition experiments, and second, they want to use
these data to create intuitive devices for hazard rec-
ognition. The end goal is to create a user-friendly
platform for managing safety measures that uses
multimodal data. Accordingly, these three areas of
study have seen some practical application and also
point in clear future directions.
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