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Te intersection of Federated Learning (FL) and Healthcare 5.0 promises a transformative shift towards a more resilient
future, particularly concerning pandemic preparedness. Within this context, Healthcare 5.0 signifes a holistic approach to
healthcare delivery, where interconnected technologies enable data-driven decision-making, patient-centric care, and
enhanced efciency. Tis paper provides an in-depth exploration of FL’s role within the framework of Healthcare 5.0 and its
implications for the pandemic response. Specifcally, FL ofers the potential to revolutionize pandemic preparedness within
Healthcare 5.0 in several vital ways: it enables collaborative learning from distributed data sources without compromising
individual data privacy, facilitates decentralized decision-making by empowering local healthcare institutions to contribute
to a collective knowledge pool, and enhances real-time surveillance, enabling early detection of outbreaks and informed
responses. We start by laying out the concepts of FL and Healthcare 5.0, followed by an analysis of current pandemic
preparedness and response mechanisms. We delve into FL’s applications and case studies in healthcare, highlighting its
potential benefts, including privacy protection, decentralized decision-making, and implementation challenges. By
articulating how FL fts into Healthcare 5.0, we envisage future applications in a technologically integrated health system. By
examining current applications and case studies of FL in healthcare, we highlight its potential benefts, including enhanced
privacy protection and more efective decision support systems. Our fndings demonstrate that FL can signifcantly improve
pandemic response times and accuracy. Moreover, we speculate on the potential scenarios where FL could enhance
pandemic preparedness and make healthcare more resilient. Finally, we recommend that policymakers, technologists, and
educators address potential challenges and maximize the benefts of FL in Healthcare 5.0. Tis paper aims to contribute to
the discourse on next-generation healthcare technologies, emphasizing FL’s potential to shape a more resilient healthcare
future.

1. Introduction

Te world witnessed the unprecedented impact of the
COVID-19 pandemic, highlighting the critical need for
robust healthcare systems and efective pandemic pre-
paredness strategies. As the healthcare landscape evolves to
meet these challenges, the concept of Healthcare 5.0 has

emerged, advocating for an integrated and technologically
advanced health ecosystem [1]. Te global experience of the
COVID-19 pandemic has highlighted the importance of
healthcare resilience in the face of such large-scale health
crises. Te World Health Organization defnes resilience as
“the capacity of a system, community, or individual to
absorb disturbance, reorganize while changing, and retain
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the same function, structure, identity, and feedbacks” [2]. In
healthcare, resilience translates into the ability of health
systems to prevent, respond to, recover from, and learn from
acute shocks and chronic stresses, thereby ensuring the
continuity of essential health services [3]. Healthcare
resilience is signifcant for several reasons. Firstly, it safe-
guards the continued provision of essential health services,
ensuring that populations can access the necessary health-
care even during a crisis [4].

Furthermore, healthcare resilience helps to limit the
direct mortality andmorbidity caused by the crisis, as seen in
the COVID-19 pandemic, where healthcare systems’ resil-
ience heavily infuenced the severity of the pandemic’s
impact across diferent regions [5–9]. Moreover, it mitigates
the indirect health efects of the crisis, such as those resulting
from interruptions in routine healthcare services like im-
munizations and chronic disease management [10].
Terefore, building resilient healthcare systems is critical for
global health security. Te ongoing global health crisis has
underscored the urgent need for resilient healthcare systems
capable of responding efectively to pandemics. As we work
toward resilience, our strategies must integrate the most
advanced technological tools available, harnessing the po-
tential to revolutionize the future of healthcare. In the era of
rapid technological advancements, healthcare systems are
increasingly generating vast amounts of data from diverse
sources, potentially improving patient outcomes and public
health. However, the surge in data also raises concerns over
data privacy and security, especially during pandemics,
where data sharing becomes crucial for efective responses.

Advancements in technology have revolutionized
healthcare for years, ofering new opportunities for data-
driven insights and care delivery. Among the emerging
technologies, Federated Learning (FL) is a promising ap-
proach to machine learning, especially in healthcare care [11].
FL is a privacy-preserving technique that trains an algorithm
across multiple devices or servers that hold local data samples
without exchanging the data. Te machine-learning model is
trained on the edge devices or servers, and only the model
updates are exchanged between the nodes [12]. Te approach
mitigates privacy and security concerns, making it highly
suitable for healthcare, where sensitive data is prevalent.
Parallel to the new technologies, the concept of Healthcare 5.0
is emerging as a new paradigm aimed at providing highly
personalized and efcient care using digital technologies.

Te rapid proliferation of IoTresources and applications
has led to an increasing demand to process large volumes of
data [13, 14]. Te availability of big data analytics and
computational methods, such as machine learning and deep
learning, has facilitated efective data management. AI ap-
plications are successfully deployed to address issues related
to optimized resource management and efcient antenna
selection in wireless systems and other communication
network areas. However, traditional AI models often require
users to share their individual information with a master
network for learning purposes, raising concerns about data
privacy [15]. FL is highly efective when decision-making is
based on large amounts of data scattered between various
training nodes while simultaneously addressing privacy and

security concerns [15]. In FL, machine-learning models are
developed using data collected from multiple sources to
enable predictions. However, transmitting raw data to
a centralized location becomes impractical due to bandwidth
limitations, security considerations, and storage facilities. FL
operates as a distributed learning model to ensure optimal
learning, efcient use of collected raw data, and transmission
to a centralized location [15]. FL contributes signifcantly to
the advancement of smart cities, as detailed in [16]. In smart
urban cities, policymakers can employ FL to transmit sen-
sitive information collected from IoT devices, enabling ef-
fective management of priority assets. Te FL framework
enables users to access data without compromising the
personal information of other clients. Te updated global
model constructed by the server is then distributed to all
clients, who download and utilize the new updated global
model through cloud distribution to understand in-
terference on their devices [17].

FL is an approach to machine learning that benefts
privacy and efciency [11]. FL ofers a unique opportunity to
take advantage of the vast amounts of data generated in
healthcare settings while prioritizing patient privacy. FL has
emerged as a promising solution to balance the need for data
collaboration with privacy preservation. A decentralized
machine-learning approach allows multiple institutions or
devices to train a global model collaboratively while keeping
raw data locally [18, 19]. By doing so, FL enables the ag-
gregating of knowledge from distributed datasets without
sharing sensitive information, ofering an avenue for en-
hancing pandemic preparedness and response mechanisms.
FL is a distributed model that allows training machine-
learning models across multiple nodes, utilizing local data
without direct exchange, thereby maintaining data privacy
[12]. By minimizing the need to move data and instead fo-
cusing on learning from the data at its origin, FL paves the
way for advanced, data-driven, and secure healthcare systems.

However, amidst this paradigm shift, specifc challenges
persist in preparing for pandemics within the Healthcare 5.0
framework.Te challenges include the need for collaborative
data-driven solutions while safeguarding individual data
privacy, decentralized decision-making to respond rapidly
to dynamic situations, and the requirement for real-time
surveillance to detect and contain outbreaks efectively. In
essence, this paper explores how FL can provide innovative
solutions to these challenges, thereby enhancing pandemic
preparedness within the context of Healthcare 5.0. Tis
paper explores the role of FL in building the next generation
of healthcare systems, Healthcare 5.0, to improve pandemic
preparedness. Healthcare 5.0, a term describing a techno-
logically advanced, highly integrated, and patient-centred
healthcare model, is expected to use technologies such as FL
to move healthcare. In this context, this paper seeks to
explore the potential of FL in advancing healthcare resil-
ience, particularly concerning pandemic preparedness in the
evolving framework of Healthcare 5.0. We propose to ex-
amine the implications of FL for pandemic preparedness
within the framework of Healthcare 5.0, ultimately seeking
to understand howwe can strengthen resilience in our future
healthcare systems.
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1.1. Motivation and Contributions. Te motivation behind
this paper comes from the pressing need to enhance
healthcare resilience in the face of pandemics and the po-
tential of FL in Healthcare 5.0. Te global COVID-19
pandemic has highlighted the vulnerabilities of healthcare
systems worldwide and the critical importance of efective
pandemic preparedness and response mechanisms. Tradi-
tional approaches to healthcare care, which are heavily based
on centralized data processing, need more privacy, scal-
ability, and agility. FL, a distributed machine-learning ap-
proach that enables model training on decentralized data
sources while preserving privacy, has emerged as a prom-
ising solution. Using the power of FL in the context of
Healthcare 5.0, which emphasizes the integration of ad-
vanced technologies, there is an opportunity to revolutionize
healthcare systems and strengthen pandemic preparedness.

Tis paper aims to bridge the gap between the potential
of FL in healthcare and its practical application in the
context of pandemic preparedness. Although FL has suc-
ceeded in various domains, its specifc implications for
healthcare care and pandemic response require further
exploration. Te paper flls the gap by providing a com-
prehensive analysis of the role of FL in Healthcare 5.0, fo-
cusing on its potential benefts, challenges, and future
applications. By examining case studies and hypothetical
scenarios, the article addresses the gap in understanding how
FL can improve pandemic preparedness within the frame-
work of Healthcare 5.0.

Tis paper makes several signifcant contributions to the
understanding and practical implementation of FL in the
context of Healthcare 5.0 for pandemic preparedness. Te
key contributions of this paper are as follows:

(1) Te paper provides a comprehensive analysis of FL
in healthcare, specifcally focusing on its implications
for pandemic preparedness. We explore the FL and
Healthcare 5.0 concepts, providing a solid founda-
tion for understanding their integration.

(2) Te paper presents real-world case studies in which
FL has been successfully implemented in healthcare
environments. Te case studies highlight FL’s
practical applications and benefts for pandemic
preparation, highlighting its potential to improve
predictive models, data privacy, and decision-
making processes.

(3) Building on the concept of Healthcare 5.0, the paper
explores future applications of FL in the context of
a highly advanced and technologically integrated
health system. Te paper speculates potential sce-
narios and outlines how FL can contribute to a more
resilient healthcare future.

2. Related Work

Te progression of healthcare has been marked by a series of
evolutions, each characterized by key technological and
methodological breakthroughs. Today, we are on the
precipice of Healthcare 5.0, a new era of healthcare that aims
to provide highly personalized and efcient care using digital

technologies [20]. Healthcare 3.0 with the introduction of
the digital age and electronic health records [21]. Healthcare
4.0 brought us to the current era of digital healthcare, in-
tegrating the Internet of Tings (IoT) devices, big data, and
artifcial intelligence into healthcare systems [22]. Health-
care 5.0 represents the next step in this progression, aiming
to leverage technologies like AI, IoT, blockchain, and FL to
create an intelligent, interconnected healthcare system. Te
emphasis is on understanding individual health character-
istics and adapting healthcare care accordingly, leading to
precision medicine [23]. Table 1 provides a concise com-
parison of the key aspects of healthcare paradigms, from
Healthcare 3.0 to Healthcare 5.0. Te key to this trans-
formation is the integration of technologies. For example, AI
can facilitate predictive analytics and intelligent decision-
making. IoT can contribute through real-time patient
monitoring and data collection. Lastly, FL can ofer an ef-
fcient method for preserving privacy to develop robust AI
models using diverse data sources, as mentioned earlier [24].
Te progression to Healthcare 5.0 thus ofers an opportunity
to redefne and enhance healthcare delivery, addressing
present and future health challenges more efectively.

Te combination of AI, IoT, blockchain, and FL within
Healthcare 5.0 revolutionizes healthcare delivery [25, 26].
Te technologies empower healthcare systems to provide
patient-centric, data-driven care, ensure data security and
integrity, and foster collaboration among healthcare stake-
holders. Together, they exemplify the transformative po-
tential of Healthcare 5.0 in improving healthcare outcomes
and pandemic preparedness. Imagine a patient with
a chronic medical condition who uses a wearable IoTdevice
to monitor vital signs continuously. Te data from the IoT
device is securely transmitted to a blockchain-protected
electronic health record (EHR). AI algorithms analyze this
data in real time, detecting subtle changes in the patient’s
health. Te AI system alerts the patient’s healthcare team if
a concerning trend is identifed. FL continuously improves
the AI model’s accuracy, leveraging insights from multiple
healthcare institutions without exposing individual patient
data. In this scenario, combining AI, IoT, blockchain, and FL
enhances patient care, ensures data security, and enables
healthcare professionals to provide timely interventions.

FL transforms how we handle and learn from data in
numerous felds, with healthcare signifcantly benefting. It is
a distributed, privacy-preserving machine-learning ap-
proach that allows a model to be trained on multiple devices
or servers that hold local data samples without exchanging
actual data [24, 27]. FL allows each participating device, or
node, or hospital to download the shared global model,
improve upon it by learning from local data, and then
upload the model updates back to the global model. Te
process is iterative until the model performance is
optimized [28].

Te FL approach has three signifcant implications. FL
helps to resolve the traditional tension between data privacy
and utility in machine learning. By keeping data local and
sharing only model updates, FL avoids the need to centralize
sensitive data, thus safeguarding privacy [29, 30]. Tis is
especially relevant in healthcare, where data privacy is
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paramount due to regulations like the US’s Health Insurance
Portability and Accountability Act (HIPAA) or the EU’s
General Data Protection Regulation (GDPR). Second, FL
can improve the efciency and scalability of machine-
learning models. With traditional centralized learning ap-
proaches, large-scale data collection, transmission, and
storage could present signifcant challenges. By learning
from data at its origin, FL minimizes the need for data
movement and allows for more scalable solutions [31, 32].
Finally, FL has the potential to yield more robust and
generalizable models. Since it learns from diverse data
sources without aggregation, it can capture broader data
variations and thus yield models that are more resilient to
overftting and better at handling real-world heterogeneity
[33]. FL has signifcant potential for data-driven felds,
particularly healthcare, by enabling more secure, efcient,
and robust machine-learning models. Table 2 provides
a clear and structured overview of the importance of dis-
cussing FL in pandemic preparedness and its relevance to
addressing challenges posed during the COVID-19
pandemic.

Pandemic preparedness and response mechanisms have
been scrutinised in recent years, particularly during the
COVID-19 pandemic. Current systems have demonstrated
several gaps and shortcomings, emphasizing the need for
a more resilient healthcare infrastructure [34]. A key
challenge in pandemic preparedness is the need for real time,
global data sharing and surveillance systems. Existing dis-
ease surveillance and information-sharing mechanisms
must be more cohesive and provide timely and complete
data, hampering the ability to identify and respond quickly
to emerging threats [35]. In addition, varying standards and
protocols for data sharing across countries and regions
further complicate matters [36]. Another problem is that
healthcare systems often need to be equipped to handle the
demand for healthcare services during a pandemic. Many
need more resources or fexibility to scale up operations in
response to a sudden increase in patient volume [9]. Tere is
also the issue of resource allocation. Determining the most
efective use of limited resources—such as personnel, hos-
pital beds, and medical supplies—remains challenging.
Tese decisions must often be made quickly under condi-
tions of extreme uncertainty [37]. Finally, current response
mechanisms often need to consider a pandemic’s socio-
economic and psychological impacts adequately. Te efects
of a pandemic are not limited to direct health impacts but
extend to economic disruption, mental health issues, and the
exacerbation of social inequities [38].

3. Federated Learning

FL has increasingly found applications in the healthcare
sector due to its ability to leverage dispersed datasets for
learning while ensuring data privacy. Many healthcare ap-
plications already exist, with several more under explo-
ration. One of the most promising applications is in
medical imaging, where FL can facilitate the development
of more accurate and generalizable diagnostic models. By
leveraging data from diferent healthcare facilities, FL can

help build robust AI models trained on diverse patient
populations and imaging technologies, improving their
applicability across diferent settings [39]. For instance,
applying FL in brain tumour segmentation has shown
signifcant promise [40].

Another application is predictive modelling for patient
outcomes. In traditional settings, developing these models
often involves centralizing data from diferent healthcare
providers, which can be cumbersome and fraught with
privacy concerns. FL provides an alternative where pre-
dictive models can be built using data from diferent sites
without data ever leaving its original location [41]. FL is also
being explored for use in wearable and IoT devices. Te
devices generate massive amounts of health data that can be
used for personalized health monitoring and intervention.
However, transmitting this data to a centralized location for
processing can be inefcient and privacy invasive. FL pro-
vides a solution by allowing the data to be processed locally
on the device, with only the learning outcomes transmitted
to a central model [42]. Moreover, FL can facilitate the
integration of multiomics data (genomic, proteomic,
metabolomic, etc.) from diverse sources in a privacy-
preserving manner, enabling the development of more
comprehensive and precise disease risk prediction and
treatment response models [43].

With the rapid advancements in computer software and
hardware technologies, an ever-increasing amount of
healthcare data is becoming available from various sources,
including patients, healthcare organizations, pharmaceutical
companies, and insurance frms [44]. Te abundance of data
presents an invaluable opportunity for data science tech-
nologies to extract insights and elevate the quality of
healthcare services. However, due to strict privacy laws and
data ownership considerations, acquiring massive, diverse,
and centrally stored healthcare datasets faces signifcant
challenges. Conversely, AI models demand a growing vol-
ume of healthcare data to make more informed decisions. In
this context, FL emerges as a promising solution to address
this issue.

3.1. Privacy. One of the remarkable features of FL is its
ability to train models without compromising healthcare
data privacy. FL holds tremendous potential for connecting
diverse healthcare data sources while ensuring data privacy,
using a central server to train a standard global model while
keeping all sensitive data localized within the respective
institutions [45]. Consequently, FL empowers healthcare
organizations to engage in collaborative training without
disclosing their data to external parties. Te groundbreaking
approach opens up new possibilities for industry and re-
search, greatly enhancing healthcare worldwide. FL’s posi-
tive impact extends to all stakeholders and the entire
treatment cycle, providing clinicians with improved di-
agnostic tools, including enhancedmedical image analysis. It
fosters collaborative and expedited drug discovery, enables
precision medicine by facilitating the identifcation of
similar patients, and ultimately reduces costs and time-to-
market for pharmaceutical companies [46].
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3.2. Reduced Computational Cost and Power Consumption.
As the accuracy of AI models improves with increased data,
training a model with all healthcare data centralized in one
location becomes time-consuming and resource-intensive
[47]. However, FL eliminates the need to store data in
a specifc location. Instead, a global model is trained based
on parameters shared by local models. Unlike conventional
models, FL does not require access to personal data from the
local models, leading to decreased computational resource
costs and lower power usage [48].

3.3. Personalization. One of the key advantages of FL is its
ability to enable personalized model training. With FL, local
models can be trained on the users’ devices or local net-
works. At the same time, the cloud server aggregates the
distributed datasets from various local nodes for training the
global model [49]. However, relying solely on the shared
model may not yield optimal results for a specifc user, as it
accounts only for the common traits shared by all health
users. Each user incorporates the learned global model with
unique health data to address this, facilitating personalized
health monitoring. Local devices obtain the global model
from the cloud and train their unique model to capture
tailored services for each user. Moreover, using the global
model from the cloud, a balanced dataset is created for every
device, reducing the disparity between individualized and
global models [50].

4. Federated Learning in Healthcare 5.0

FL models are implemented using PyTorch and pretrained
on ImageNet and Scratch, with diferent GPU confgurations
[51, 52]. While the works highlight the trade-of between
model accuracy and privacy preservation, they often over-
look communication efciency [51, 52]. Te authors of [51]
provided visual explanations and highlighted critical regions
on patients’ CXR images, generating maps for classifcation.
In contrast, [52] explored integrating decentralized block-
chain technology in DL models. Te authors of [52] pro-
posed a theoretical framework for diferential privacy in
COVID-19 CT imaging data using FL. Furthermore, the
authors of [52] presented technical details of their DL
model implementation, achieving enhanced sensitivity for

COVID-19 detection from lung CTscans. On the other hand
[53] proposed a novel dynamic fusion-based FL approach,
focusing on communication efciency and improved model
performance while ensuring data privacy for COVID-19
identifcation. FL has been successfully implemented in
various healthcare settings, showcasing its potential for
transforming health service delivery and research.

In the context of Healthcare 5.0’s integration of wearable
and IoTdevices, FL emerges as a critical enabler of enhanced
data analysis while preserving data privacy. FL seamlessly fts
into this framework by allowing these devices to improve
their machine-learning models collaboratively without
compromising sensitive health data. Each device, such as
a wearable health tracker or IoT sensor, locally trains its
model using the data it collects. For example, a smartwatch
can analyze heart rate data locally to predict irregular
heartbeats. Te locally trained models then send their up-
dates to a central server, ensuring that only model updates,
not raw data, are transmitted. Te server aggregates these
updates to create a global model, which is then shared with
individual devices. Te iterative process allows each device
to improve its model based on insights from a broader
dataset, enabling real-time health data analysis.

Real life examples illustrate the transformative potential
of FL in healthcare 5.0 from diferent hospitals, as shown in
Figure 1: (i) Predictive Healthcare Models: In a collaborative
research efort, hospitals across regions utilize FL to train
predictive models for diseases such as diabetes. Te models
are trained on diverse patient populations, resulting in more
accurate predictions and personalized treatment plans. (ii)
Privacy-Preserving Medical Imaging: FL is employed in
medical imaging to develop AI algorithms for diagnosing
conditions like cancer. Multiple healthcare institutions
contribute to model training without sharing patient-
specifc data, ensuring privacy while advancing di-
agnostics. And (iii) Global Health Data Research: FL enables
global health data research collaborations. Researchers can
analyze data from various sources worldwide without data
leaving individual institutions, leading to breakthroughs in
understanding and addressing diseases.

Concrete scenarios exemplify how FL upholds data
privacy while delivering substantial benefts. For instance, in
remote patient monitoring, a wearable device can contin-
uously analyze health data and detect anomalies, providing

Table 2: Importance of FL in pandemic preparedness and relevance to COVID-19.

Aspect Explanation

Data privacy concerns FL addresses data privacy concerns, crucial in healthcare where patient data are
sensitive and must be protected

Decentralized decision-making Pandemics require decentralized decision-making. FL’s collaborative model
training aligns with this need

Real-time surveillance Timely data analysis and surveillance are vital. FL enables real-time model updates
while protecting privacy

Relevance to COVID-19

Contact tracing: protects personal data while aiding in tracking potential exposure
Drug discovery: accelerates drug discovery by analyzing patient data while

preserving privacy
Resource allocation: optimizes resource allocation in overwhelmed healthcare

systems while ensuring data privacy

6 Advances in Human-Computer Interaction



alerts to healthcare providers without disclosing the patient’s
detailed health information. In a broader context, IoTsensors
in a city can collect environmental and population movement
data. FL facilitates the collaborative analysis of this data to
identify public health trends, such as early indications of
disease outbreaks, without revealing individual identities or
personal information. In addition, wearable ftness trackers
employ FL in personalized ftness coaching to ofer person-
alized recommendations based on individual health data,
ensuring privacy while continuously enhancing the accuracy
of ftness advice. Integrating FL with wearable and IoT de-
vices, Healthcare 5.0 optimizes real-time health data analysis
while maintaining rigorous data privacy standards, shaping
a more resilient and patient-centric healthcare future.

Medical Imaging. Te authors of [41] applied FL to
create a multiinstitutional model for predicting car-
diovascular events based on intravascular ultrasound
(IVUS) images. Despite the geographical and in-
stitutional diferences between the diferent datasets, FL
enabled the creation of a robust predictive model
without sharing raw patient data between institutions,
ensuring data privacy. Case Study 2: Predictive Mod-
eling. A collaborative study involving several hospitals
in the U.S. utilized FL to develop models predicting
patient mortality, readmission, and length of stay. Te
federated model performed comparably to traditional
centralized models, with the added advantage of pre-
serving data privacy [39].
Genomic Research. In a groundbreaking study, the
Personal Genome Project used FL to develop models

predicting disease susceptibility based on genomic data
from several research institutions. Te study demon-
strated that FL could enable collaborative research
while respecting the privacy and confdentiality of
individual genomic datasets [24].
Wearable and IoT. Devices Google applied FL to im-
prove the predictive text feature on their Android
keyboard, Gboard. Te same concept can be extended
to healthcare wearables, where data privacy is crucial.
Personal health data can be processed locally, with only
the learning outcomes transmitted to a central
model [54].

Te case studies underline the potential of FL in facil-
itating multiinstitutional collaborations and patient-centric
care while ensuring data privacy. Te evolution towards
Healthcare 5.0 stands to beneft immensely from these ca-
pabilities, particularly in enhancing pandemic preparedness
and response.

Table 3 presents various healthcare domains, where FL
has been successfully implemented and the benefts and
challenges associated with each application. Tis table
provides an overview of the diverse areas where FL is used to
leverage collective knowledge from distributed datasets
while addressing potential challenges.

4.1. Te Role of FL in Pandemic Preparedness. FL is
a decentralized machine-learning platform for the Internet
ofTings that allows several devices to cooperatively develop
machine-learning models without transferring any actual

Hospital 1 Hospital 2 Hospital 3 Hospital n

Model
aggregation

Training local
model

Training local
model

Training local
model

Training local
model

Local data Local data 
Local data 

Local data 

Global
model

Upload Local model

Download Local model

Figure 1: FL for Healthcare 5.0.
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data. FL’s architecture is seen in Figure 2, including data
collection, FL, evaluation and monitoring of healthcare
layers. Data collection is from heterogeneous devices, while
FL processes data locally and sends updated models to
evaluate patients’ healthcare. Te doctor, nurse and patient
or patient’s family can monitor the patient’s health based
on collected data form diferent devices. Preventing the
leak of patient information improves the intelligent
healthcare system. In the healthcare system depicted in
Figure 2, which is based on FL, embedded sensors collect
medical data from healthcare providers, multiple edge
devices work together to develop FL algorithms, and
machine-learning techniques evaluate the patient’s well-
being and, if necessary, seek out immediate help in the
cloud. Due to the extraordinary guarantee it ofers for
analyzing fragmented sensitive material, FL is a paradigm
that has lately gained popularity. It allows training
a common global model on a centralized server while
keeping data in the appropriate organizations instead of
integrating data from many sources or depending on the
conventional fnd-then-replicate technique. Below, we
discuss the advantages of adopting FL over conventional
methods in the healthcare domain. FL can signifcantly
infuence pandemic preparedness and response due to its
data-centric and privacy-preserving attributes.

4.1.1. Enhanced Surveillance and Early Detection. FL can
help develop robust and generalizable models for disease
surveillance, facilitating early detection of emerging threats
across diferent geographical regions and patient de-
mographics. In practice, this couldmean creating algorithms
that analyze medical images, electronic health records, or
genomic data from disparate locations to predict the
emergence of disease hotspots [41].

4.1.2. Real-Time Decision-Making. During pandemics,
healthcare systems need to make quick and informed de-
cisions on resource allocation. FL can enable the develop-
ment of predictive models that forecast the demand for
healthcare resources such as hospital beds, ventilators, and
medical personnel in real-time, helping healthcare systems
better prepare for and manage surges in patient volume [39].

4.1.3. Advancing Terapeutic Research. FL can help accel-
erate the development of treatments and vaccines during
a pandemic. It can do so by allowing researchers to leverage
diverse datasets from multiple institutions for drug dis-
covery and clinical trials without sharing raw patient data,
thus overcoming privacy-related and regulatory
constraints [55].

4.1.4. Improving Public Health Interventions. FL can support
the creation of models that predict the spread of diseases
and the impact of various public health interventions,
informing strategies for social distancing, lockdowns, and
reopening [43].

4.1.5. Patient Monitoring and Care. With the rise of tele-
medicine and remote patient monitoring during pandemics,
FL can enable the development of personalized care models
that consider individual patient data fromwearables and IoT
devices without compromising privacy [54]. In essence, FL
provides a fexible and privacy-preserving framework for
harnessing the power of collective data in healthcare, as
shown in Figure 2. Its use in pandemic preparedness and
response could be a game-changer inmanaging future health
crises.

Table 4 illustrates the strengths and limitations of tra-
ditional pandemic preparedness mechanisms are presented.
Each mechanism is listed along with its respective strengths
and potential drawbacks. Te comparison can help readers
understand the existing methods used for pandemic pre-
paredness and the challenges that need to be addressed for
more efective preparedness strategies.

Table 5 provides a clear and structured comparison
between FL and traditional pandemic preparedness
methods, highlighting the advantages of FL in various
scenarios and specifying the situations of FL excels.

4.2. Benefts of FL in Pandemic Preparedness. In the context
of pandemic preparedness, FL can provide numerous
benefts that address the key challenges of data privacy,
decentralized decision-making, and overall efciency.

4.2.1. Privacy Protection. Traditional methods of data
consolidation for healthcare research often pose signifcant
privacy risks. However, by design, FL allows models to be
trained on data across various locations without moving or
sharing raw data, thereby ensuring privacy. Tis can facil-
itate broader and more cooperative research eforts during
pandemics while complying with data protection regulations
such as the General Data Protection Regulation (GDPR) and
the Health Insurance Portability and Accountability Act
(HIPAA) [56, 57].

4.2.2. Decentralized Decision-Making. FL enables decen-
tralized decision-making by allowing local model training
and insights. Tis can be invaluable in pandemic situations,
where regional disease progression and resource availability
disparities require tailored responses. By providing locally
relevant insights, FL supports decision-making at the point
of care, which can lead to more efective resource allocation
and patient management [44, 58].

4.2.3. Scalability and Efciency. FL leverages distributed
data sources, allowing for scalable and efcient model
training. Tis is especially important in a pandemic, where
time is of the essence and rapid insights are needed to inform
public health interventions. In addition, FL reduces the
computational load on any system by distributing the
learning process across multiple nodes, making it a sus-
tainable and scalable approach for large-scale health data
analysis [59, 60].
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4.2.4. Enhanced Generalizability. FL’s ability to incorporate
diverse and decentralized data can lead to models with
greater generalizability. During a pandemic, predictive
models and decision-making tools can better account for
disease presentation and progression variability, treatment
responses, and patient outcomes across diferent pop-
ulations and geographical regions [61].

4.2.5. Facilitating Collaborative Research. Pandemic re-
sponses require collaborative eforts. FL can facilitate
multiinstitutional, interdisciplinary research without data
sharing, enabling a collective approach to problem-solving,
which is critical in pandemic preparedness and
response [62].

Table 6 presents an overview of the potential benefts FL
can ofer in the context of pandemic preparedness. Each
beneft is described concisely, showcasing how FL addresses

key challenges and efectively provides advantages in
responding to pandemics.

Table 7 provides a structured overview of the regulatory
and ethical considerations in FL and suggests corresponding
remedies and best practices for addressing each concern
when implementing FL systems in healthcare and other
domains.

4.3. Challenges and Limitations FL in Pandemic Preparedness.
Despite the potential benefts of FL in pandemic pre-
paredness, there are several challenges and limitations.

4.3.1. Data Heterogeneity. FL assumes that data across
diferent locations are identically and independently dis-
tributed, which may not be accurate in healthcare settings
[63]. Hospitals, for example, may have diferent patient

Table 4: Existing pandemic preparedness mechanisms.

Mechanism Strengths Limitations
Surveillance systems Early detection of outbreaks Limited coverage and timeliness
Vaccination programs Efective in reducing disease spread Limited availability and production capacity
Healthcare infrastructure Adequate treatment facilities Overwhelmed during large-scale pandemics
Quarantine measures Containment of infected individuals Compliance challenges and economic impact
Contact tracing Identifcation of exposed individuals Relies on accurate and timely reporting
Stockpiling medical supplies Quick response to outbreaks Limited shelf life and availability of specifc items

FL layer

Data 
collection

layer 

Healthcare 
monitoring 

Evaluation 
layer 

Blood Pressure Wearable devices ECGMedical imageGlucometer

Evaluation Feature extraction Health recognition

Doctor Nurse Patient Medical group

Figure 2: FL-based healthcare monitoring for Healthcare 5.0.
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populations, treatment protocols, and health record systems,
leading to signifcant heterogeneity in the data. Tis can
impact the performance and generalizability of FL models,
requiring careful design and validation of models [64].

4.3.2. Computational and Communication Overheads. FL
involves iterative communication between the central server
and local nodes, which can incur considerable computa-
tional and communication overheads. Tis can be chal-
lenging, particularly in resource-constrained settings or
during a pandemic when systems are strained [65].

4.3.3. Data Security and Trust. Although FL does not involve
sharing raw data, transmitting model parameters could
potentially expose sensitive information if intercepted. Tis
necessitates robust cybersecurity measures, which may re-
quire signifcant investment [66]. Trust among institutions
participating in FL is also crucial, as any breach can un-
dermine the system [67].

4.3.4. Regulatory and Ethical Issues. While FL can somewhat
mitigate privacy concerns, there are still unresolved regu-
latory and ethical issues. Tese include ensuring patient
consent for data use, determining liability in case of in-
accurate predictions, and ensuring fair beneft sharing
among participating institutions [68].

4.3.5. Interoperability and Standardization. Te need for
more standardization in healthcare data and systems can
complicate the implementation of FL. Interoperability issues
need to be addressed for efective data integration andmodel
deployment across diferent systems [69].

5. FL in Healthcare 5.0: A Resilient Future

Healthcare 5.0, a vision of the future healthcare system, seeks
to create an environment that is personalized, preventive,
predictive, participatory, and purpose-driven [70]. FL can
potentially signifcantly enhance healthcare in practical
ways. For instance, in busy urban hospitals, FL can optimize
resource allocation and reduce patient wait times through

predictive models. Collaborative data analysis with FL can
improve disease detection and diagnosis, helping doctors
detect diseases earlier and initiate timely treatments. In
addition, FL facilitates the creation of highly personalized
treatment plans based on genetic markers, improving pa-
tient outcomes. In remote areas, FL-enabled telemedicine
ensures access to specialized care, while in pharmaceutical
research, FL accelerates drug discovery, potentially lowering
medication costs. Tese examples demonstrate how FL can
make healthcare more efcient, efective, and patient-
centric, benefting providers and patients. In this context,
FL can play a pivotal role in materializing this vision.

5.1. Personalized Care. FL enables the creation of sophisti-
cated machine-learning models that can utilize patient data
across diferent locations to provide highly personalized
care. By keeping data localized, FL allows for developing
personalized models that account for individual variations
without breaching privacy, a critical component of
Healthcare 5.0 [71]. FL is reshaping personalized care within
the Healthcare 5.0 framework, ofering tailored treatments
and healthcare services while safeguarding patient privacy.
By collaboratively analyzing diverse datasets without sharing
individual patient data, FL opens the door to highly cus-
tomized care. For example, a patient diagnosed with diabetes
benefts from a treatment plan refned through FL, in-
corporating insights from similar cases to optimize their care.
In addition, FL empowers predictive health monitoring
through wearable devices, issuing early warnings for potential
health issues based on real-time data analysis while preserving
user privacy. Medication personalization becomes more
precise, considering genetic markers and the responses of
similar patients to adjust dosages efectively. Lastly, mobile
health apps leverage FL to ofer tailored wellness advice,
ensuring users receive recommendations aligned with their
unique attributes and preferences. Te examples showcase
how FL blends customization and data privacy, exemplifying
the future of patient-centric Healthcare 5.0.

5.2. Preventive and Predictive Health. FL can help build
robust prediction models for disease onset and progression,
aiding preventive care. Tis can help anticipate health issues

Table 6: Summaries the potential benefts of FL in pandemic preparedness.

Benefts Description

Privacy preservation Local model training preserve data privacy by keeping raw data at individual
institutions

Enhanced data security Encrypted communication and decentralized model training reduce data security
risks

Improved data utilization Aggregating knowledge from multiple sources enhances insights for more efective
responses

Decentralized decision-making Collaborative model training enable local decision-making with the beneft of
shared knowledge

Real-time surveillance Aggregated data from various sources enable early detection and monitoring of
outbreaks

Improved predictive models Larger and diverse datasets result in more accurate and robust predictive models
Resource optimization Efcient allocation of resources based on aggregated insights and predictions
Rapid response and adaptability Quick model updates enable adaptive responses to changing pandemic conditions
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before they manifest clinically, enabling early interventions.
Moreover, FL’s ability to learn from diverse, real-world
datasets can enhance the accuracy and generalizability of
these predictive models, a central pillar of Healthcare
5.0 [72].

5.3. Participatory Health. Healthcare 5.0 envisions a system
where patients actively participate in their health manage-
ment. FL, given its decentralized nature, aligns well with this
vision. It can allow patients to contribute their data to
improve healthcare models while maintaining control over
their data, fostering patient trust and participation [73].

5.4. Purpose-Driven Care. Te ultimate goal of Healthcare
5.0 is to improve patient outcomes and healthcare delivery.
FL can facilitate this by improving the quality and efciency
of care, whether it is through optimizing hospital operations,
enhancing disease detection and diagnosis, or personalizing
treatment strategies [74].

By integrating FL into Healthcare 5.0, we can ensure that
the next generation of healthcare is technologically advanced
and resilient to health crises such as pandemics. Tis ap-
proach can set the foundation for a health system that re-
spects patient privacy, harnesses the power of collective data,
and responds efectively to emerging health threats.

FL has made signifcant strides in real-world healthcare
applications within the Healthcare 5.0 framework. Google’s
FL of Cohorts (FLoC) showcases the potential of FL for
cohort-based patient data analysis, preserving privacy while
facilitating research. Secure Multiinstitutional FL for Brain
Tumor Segmentation exemplifes how FL can be employed
for collaborative medical imaging tasks across institutions.
Te Stanford COVID-19 Chest X-ray Dataset demonstrates
FL’s role in pandemic response by enabling collaborative
disease detection across healthcare providers. Apple’s use of
diferential privacy in health research underscores FL’s
contribution to population health insights. Tese projects
illustrate FL’s power to advance healthcare while main-
taining stringent data privacy, underscoring its trans-
formative potential in Healthcare 5.0.

6. Case Studies

Te following case studies will glimpse how FL within the
framework of Healthcare 5.0 could signifcantly enhance
pandemic preparedness.

6.1. Predictive Modeling for Pandemic Preparedness. A pre-
dictive modelling study to forecast fu trends across diferent
regions can serve as a model case. Healthcare systems can
train local prediction models using FL without sharing raw
data, preserving patient privacy. Te results from individual
local models can then be aggregated to create a global model
that predicts fu trends more accurately. Tis federated
predictive model could be integral to pandemic pre-
paredness, enabling proactive responses to potential fu
outbreaks [75].

6.2. International Collaboration on Vaccine Development.
Another case worth mentioning is the global efort to de-
velop vaccines during a pandemic. Historically, such eforts
have been hampered by barriers to data sharing due to
privacy concerns. FL could transform this process by
allowing for collective learning without sharing individual
patient data.Tis would facilitate faster vaccine development
and deployment, signifcantly boosting global pandemic
preparedness [76].

6.3. Diagnostic Imaging for Pandemic Response. During the
COVID-19 pandemic, diagnostic imaging was crucial in
disease diagnosis and management. FL could facilitate the
development of AI models that can interpret diagnostic
images from diverse populations without sharing the actual
images, ensuring privacy. Tese models can enhance pan-
demic responses by speeding up diagnoses and improving
treatment outcomes [77, 78].

6.4. Global Infectious Disease Surveillance System. Given the
increasing interconnectedness of our world, a global in-
fectious disease surveillance system could be critical for
future pandemic preparedness. In this scenario, FL could
enable the creation of a global model that learns from di-
verse, geographically distributed data from health systems
worldwide without compromising patient privacy. It could
help track infectious disease patterns and trigger early
warning signals, potentially preventing the spread of future
pandemics [79].

6.5. PersonalizedVaccineDevelopment. As we move towards
more personalized healthcare, developing personalized
vaccines could become a reality. FL could play a crucial role
by facilitating the learning of models from diverse genetic,
environmental, and lifestyle data, enabling the development
of personalized vaccines without sharing sensitive individual
data. Tis advancement could drastically enhance the speed
and efectiveness of vaccination campaigns during
a pandemic [80].

6.6. AI-Assisted Remote Patient Monitoring. Te recent
pandemic has signifcantly increased remote patient mon-
itoring systems. In a future scenario, FL could enable the
creation of AI models that learn from vast amounts of data
generated by these systems across the globe. Tese models
could predict disease progression and trigger alerts, enabling
timely interventions and reducing the burden on healthcare
systems during pandemics [81].

6.7. Privacy-Preserving Contact Tracing. As seen in the
COVID-19 pandemic, contact tracing is a crucial strategy in
controlling the spread of infectious diseases. A FL-based
contact tracing app could be developed to learn from mobile
data without sharing raw data. Tis would ensure privacy-
preserving contact tracing and could contribute to more
efcient control of future pandemics [82].
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7. Challenges, Opportunities, and
Future Directions

7.1. Overcoming Data Shortage. One of the inherent ad-
vantages of FL is its ability to analyze multisite data without
pooling, which ofers a partial solution to the data shortage
problem. However, achieving better model training still
relies on addressing the challenges related to data quality,
bias, and scalability [83]. Within the healthcare system,
various general problems, such as the scarcity of quality data,
data cluttering, and inefciency, can hinder the general-
ization of sample results. Moreover, specifc data-related
challenges arise in the context of the COVID-19 situation.
For example, only lab-confrmed COVID-19 infections are
confrmed, which poses limitations in countries with limited
diagnostic capacity and a shortage of testing kits, especially
in low-income nations. Researchers face the challenge of
obtaining access to biased data with similar demographics,
device brands, and environmental factors to produce gen-
eralizable results. Addressing the data-related complexities
becomes a crucial aspect of conducting efective healthcare
research.

7.2. Challenges of Data Heterogeneity. Collaborating across
multiple institutions in the context of COVID-19 data poses
data standardization problems. Te heterogeneous nature of
the data requires preprocessing steps such as data scaling,
resizing of images, and model augmentation to ensure
compatibility for FL analysis [24, 26]. Traditional FL
frameworks are designed for balanced data, where each
institution contributes an equal amount of data, which may
not be feasible in the COVID-19 scenario.Tis inherent data
imbalance can lead to issues with the FL algorithm, FedAvg,
particularly under extremely skewed data distributions [84].
Studies have shown that the FL model experiences accuracy
degradation due to data imbalance [85, 86]. While some
novel FL frameworks have been developed to address im-
balanced data [87], there is a need for further exploration
and research in the feld to tackle data heterogeneity
efectively.

7.3. Communication Overhead. Te FL model training
process involves synchronization of distributed data, re-
quiring uplink (user to server) and downlink (server to user)
communication [88]. Te number of users participating in
training and the overhead associated with computation and
communication directly impact model performance [86].
Surprisingly, communication efciency has received limited
attention in COVID-19 research studies, and most studies
do not consider it [51, 52]. However, in other research areas,
signifcant communication overhead has been reported
[86, 89], prompting eforts to reduce communication
overhead while maintaining data privacy [90].

7.4. Privacy Concerns in FL. Although FL ofers promising
secure collaboration, it does not guarantee privacy. In
healthcare data collection, there is an inherent risk of privacy

leakage. Te FL training process is based on shared in-
formation and is vulnerable to potential data leakage
through model gradients, reverse engineering of model
updates, and model manipulation [91, 92]. Multiple studies
have reported data leakage issues, with patient information
potentially being back-traced from shared gradients [93].
Eforts to address this problem have beenmade, as evidenced
in [52], but more secure FL frameworks are encouraged for
sensitive research areas like COVID-19. Further study and
untapped countermeasures are needed to ensure robust data
privacy in FL, making it an active and critical research
area [84].

7.5. Collaboration Trust Concerns. FL systems collaborate
with decentralized parties, which can be based on trusted or
untrusted relationships. Trusted collaborations involve en-
forceable agreements and set principles, providing a stan-
dard collaboration approach. On the contrary, untrusted
collaborations ofer a broader spectrum of information but
have inherent risks, including privacy concerns, integrity
execution, model encryption, and susceptibility to malicious
attacks [94]. Solid and trusted collaborations are crucial in
healthcare, especially during COVID-19. Each party in-
volved prioritizes their patients’ privacy and seeks to safe-
guard information from business rivals or the general public
to prevent panic. Implementing the FL collaborative
mechanism requires either a trustworthy third party as the
overall controller or stricter mutually agreed protocols,
which may involve additional costs and eforts [84].
Addressing these trust concerns becomes essential to en-
suring the success and security of FL collaborations in
sensitive research areas like healthcare.

7.6. Considerations of Reliability. Te reliability of a user in
FL is contingent on their availability to participate in a round
of computation for model training. Distributed learning in
the data center and FL across silos typically exhibit more
excellent reliability with minimal dropouts. However, in
cross-device FL, the output may be less reliable, with
dropout rates potentially exceeding 5% in a computation
round [84]. Healthcare collaborators with robust compu-
tational resources and advanced systems for improved
model training are generally considered more reliable
[95, 96].

7.7. Traceability and Accountability in FL. Ensured trace-
ability of resources is a crucial requirement in FL systems,
encompassing data access history, training structure, se-
lection of hyperparameters, and modifcations [94]. Once an
optimal model is achieved, traceability and accountability
are vital in determining participants’ contribution levels,
enabling relevant compensation, and establishing a revenue
model [97]. Tese aspects also aid researchers in explaining
and interpreting a global model by investigating the data
sources from which the models are trained. Each user can
access its raw data within intranode security measures.
Although issues related to the traceability of FL training data
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records have been addressed in some research studies [98],
more attention is needed to improve transparency and ac-
countability in FL systems.

Table 8 presents the key challenges of implementing FL
in pandemic preparedness and provides potential mitigation
strategies to address each challenge efectively.

 . Conclusion

We have embarked on a journey to explore the trans-
formative potential of FL in the context of Healthcare 5.0,
emphasizing its critical role in enhancing healthcare resil-
ience, especially in the face of pandemics. By harnessing the
power of FL, we can predict, prepare for, and respond to
pandemics in ways that were once unimaginable. Tis is not
just about technological innovation; it is about safeguarding
lives, ensuring timely healthcare delivery, and, ultimately,
making our healthcare systems more robust, adaptable, and
better equipped to address global health challenges. Te
future brims with potential as we stand at the intersection of
cutting-edge research and real-world applications. Ongoing
research endeavours and implementing FL in real-life
healthcare projects will continue to shape how we utilize
this groundbreaking technology. With each project,
breakthrough, and innovation, we have moved closer to
a healthcare landscape that is resilient, highly responsive,
and capable of ensuring the well-being of individuals and
populations alike. Te profound impact that FL can have on
healthcare includes more than just a technology; it is
a catalyst for change, a powerful force that can revolutionize
healthcare and empower us to face pandemics and health
crises with unwavering strength. Te potential is limitless,
and as we embrace FL in Healthcare 5.0, we take a bold step
toward a future where healthcare is not just a system but
a lifeline, ready and resilient in the face of adversity.
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