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Global symmetries play an important role in classifying the spectrum of a gauge theory. In
the context of the AdS/CFT duality, global baryon-like symmetries are specially interesting.
In the gravity side, they correspond to vector fields in AdS arising from KK reduction
of the SUGRA p-form potentials. We concentrate on the AdS4/CFT3 case, which presents
very interesting characteristic features. Following arXiv:1004.2045, we review aspects of such
symmetries, clarifying along the way some arguments in that reference. As a byproduct, and in
a slightly unrelated context, we also study Zminimization, focusing on the HVZ theory.

1. Introduction

Over the last few years there has been considerable progress towards understanding the
AdS4/CFT3 duality [1]. The maximally supersymmetric example of this duality corresponds
to theAdS4×S7 space. This space arises as the near-horizon region of the background sourced
by a stack ofM2 branesmoving in � 4 . Conversely, standarddecoupling limit arguments show
that a dual description is given by the CFT3 on the world volume of theM2 branes. Following
on the seminal work in [2, 3], Aharony, Bergman et al. (henceforth ABJM) constructed in [4]
what it is by now agreed to be the field theory dual to N M2 branes probing the � 4/�k

singularity, of which the maximally SUSY example is the k = 1 case.
Since then, much activity has been devoted to further understand this duality in less

supersymmetric cases. While there are purely theoretical reasons for that—as constructing
and understanding dual pairs shedding information on both field theoretic and gravitational
aspects-, a number of potential applications, in particular in what it has been dubbed the
AdS/CMT duality, have been recently considered.
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These less supersymmetric examples arise from M2 branes probing more involved
singularities, which generically have a rich topological structure. In particular, supergravity
p-form potentials can be KK reduced on these topologically nontrivial cycles giving rise to
vector fields in AdS. In turn, these are related to global symmetries of the dual CFT3. On
general grounds, global symmetries play an important role in classifying the spectrum of a
theory. Furthermore, they are also expected to be relevant from the point of view of potential
applications of AdS/CFT . It is thus important to understand them in the context of the
AdS4/CFT3 duality.

Of particular interest are the global baryonic symmetries. These are abelian symme-
tries whose charged states have dimensions O(N). As such, they cannot correspond to KK
states (Δ ∼ O(1)), and must be dual to wrapped branes. Thus, they must be associated to
the nontrivial topology of the cone where the M2 move. Indeed, as mentioned, nontrivial
topology allows for the supergravity p-forms to wrap on cycles leading to gauge fields
in AdS4 as potential duals to these baryonic symmetries. However, as we will discuss
below, following [5] (see also [6]) the fate of these bulk fields and their boundary duals, is
remarkably different than theAdS5 case (see, e.g., [7] and references therein for an account of
this case). In this short review we discuss several aspects of these symmetries by extracting
as much information as possible from the gravity side of the correspondence. We start in
Section 2 with a lightning overview of some relevant facts about the AdS4/CFT3 duality.
We then turn in Section 3 to the baryonic symmetries of interest. In Section 4 we suggest an
application to a particularly interesting geometry, in particular slightly clarifying arguments
presented in [5]. As a by-product, in the appendix we apply Z-minimization to the HVZ
theory.

2. M2 Branes Probing CY4: General Aspects

As discussed in the introduction, the AdS4/CFT3 duality arises as the near horizon limit of a
stack of M2 branes probing a conical geometry. In fact, the low energy limit of the M2 brane
worldvolume theory must supply the CFT side of the correspondence, according to the usual
decoupling limit arguments [1].

The best understood case is that of M2 branes in flat space, when the near horizon
region is the maximally supersymmetric AdS4 × S7 space. In turn, the dual field theory is
the U(N) × U(N) Chern-Simons theory with levels (1, −1) and particular matter content
constructed in [4]. This theory arises as a member of a whole family of N = 6 SCFT’s
with levels (k, −k) [4, 8]. For generic k the moduli space is the orbifold � 4/�k|(1, 1, −1, −1).
It is only for k = 1, 2 that there is a quantum-mechanical enhancement to N = 8 due
to special properties of monopole operators. Conversely, the gravity side of the duality is
provided by the near horizon region of the background sourced by a stack of M2 branes
proving this orbifold, namely, AdS4 × S7/�k. The �k orbifold acts by quotienting the U(1)
fiber of the fibration S7 ∼ S1 ↪→ �3. In fact, in the large k limit, the fiber shrinks and
the geometry is better understood as the IIA AdS4 × �3 background with suitable fluxes to
preserve 24 supersymmetries. From this perspective, the vector of CS levels in gauge group
space specifies the U(1) dual to the M-theory circle. Indeed, diagonal monopole operators,
charged under this U(1), become the KK states of the reduction, that is, the D0 branes [4].

It is clearly greatly desirable to understand theAdS4/CFT3 duality in the generic case,
where the M2 branes probe less symmetric spacesX. On general grounds, the radius/energy
relation of AdS/CFT requires the manifold X to be a cone over a 7-dimensional base Y ,
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that is, ds2(X) = dr2 + r2 ds(Y)2. Then the appropriate 11-dimensional supergravity solution
corresponding toN M2 branes located at the tip of X is

ds211 = h
−2/3 ds2

(
�
1, 2

)
+ h1/3 ds2(X), G = d3x ∧ dh−1, h = 1 +

R6

r6
. (2.1)

In the near horizon limit, and upon defining z = R2/r2, the space becomes a Freund-Rubin
product space between AdS4, whose metric in Poincare coordinates is

ds2(AdS4) =
dz2 + dx

(
�1,2)2

z2
, (2.2)

and the base Y

ds211 = R
2
(
1
4
ds2(AdS4) + ds2(Y)

)
, G =

3
8
R3Vol(AdS4). (2.3)

Furthermore, the flux quantization condition leads to the relation

R = 2π�P
(

N

6Vol(Y)

)1/6

. (2.4)

On the other hand, constructing the corresponding dual field theories has proved
remarkably difficult. Only in the last few years we have seen big progress along these lines.
From the CFT point of view, general field theory arguments, discussed for the 3d case at
hand in [9], show that theories with N ≥ 2 are of special interest due to the existence of
a U(1)R symmetry. This symmetry endows the moduli space of a graded structure which
allows to classify chiral operators according to their R-charge; which equals, in virtue of the
superconformal algebra, their scaling dimension. At the same time, it automatically implies
that the moduli space has a cone-like structure. We will thus demand N ≥ 2, which in
turn requires, on general grounds [10], the M2 branes to move in spaces of at most SU(4)
holonomy. Following the ABJM example, it is natural to consider Chern-Simons-matter
theories as potential SCFT duals. As shown in [11], N ≥ 3 fixes the superpotential couplings
to be proportional to the CS levels, thus almost ensuring conformal invariance. However, for
our purposes we will be mostly interested in the less restrictive but yet tractable (due to the
existence of U(1)R) N = 2 case, where the dual geometry is strictly CY4 (i.e., Y is Sasaki-
Einstein), which we will further assume toric. While we refer the reader to the standard
literature for a thorough introduction to toric geometry (for a physics related discussion, see,
e.g., [12]), let us briefly highlight, for completeness, the basic ideas. The cone C(Y) is toric if
it can be seen as aU(1)4 fibration over a polyhedral cone in �4 . This polyhedral cone defined
as the convex set of the form ∩{x · vα ≥ 0} ⊂ �4 , where vα ∈ �4 are integer vectors. The
Calabi-Yau condition implies that, with a suitable choice of basis, we can write vα = (1,wα),
with wα ∈ �3. If we plot these latter points in �3 and take their convex hull, we obtain the
toric diagram. In fact, the toric diagram contains all the relevant information about the CY4

geometry.
As shown in [13–15] and briefly reviewed in Section 4, toric manifolds naturally arise

as moduli space of N = 2 CS-matter quiver gauge theories with toric superpotentials whose
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Figure 1: The toric diagram for C(Q111).

levels add up to zero. (By toric W we mean a W where each field appears exactly twice,
one time in a monomial with + sign, another time in a monomial with sign −.) Furthermore,
very much like in ABJM, the CS level vector in gauge space selects the M-theory circle, which
at generic level is quotiented. Thus, the actual moduli space of these N = 2 Chern-Simons-
matter theories is a certain �k quotient of the toric CY4. In Section 4 we will study in more
detail one such example, conjectured to be dual to the cone over Q111, whose toric diagram
we show in Figure 1.

We should note that, as opposed to the ABJM case, in the N = 2 cases this circle
generically collapses as one moves on the base of the cone. This motivates the recently
appeared proposals [16, 17] involving fundamental matter as well as bifundamental fields,
as, on general grounds, associated to these collapsing loci there can be extra flavor branes in
the IIA reduction.

Yet one more warning note is in order. While the construction [13–15] yields to
toric CY4 classical abelian moduli spaces, it yet remains to be understood whether at the
nonabelian quantum level these theories are indeed SCFT’s. Only very recently a manageable
criterion to determine whether a 3d theory flows to an IR fixed point, which amounts to
the minimization of the partition function Z, has been proposed in [18] (see also [19]). One
particular example where to put this at practice is the HVZ theory [20]. While at the classical
abelian level the moduli space is � 2/�k×� 2 , a more careful analysis [21] shows that the chiral
ring (studied at large k to avoid subtleties with monopole operators) contains completely
unexpected nonabelian branches while there is no trace of the necsessary SO(4)R symmetry
of the generically N = 4 orbifold. In fact, as shown in [22], the superconformal index fails
to meet the gravity expectations. Indeed, as briefly discussed in the appendix, when the Z-
minimization is applied to the HVZ theory it suggests that for no k it can be dual to the
ABJM model. In [23] a variant of the theory with explicit N = 3 SUSY and no extra branches
in the chiral ring was considered, finding however, that the index computation was still in
disagreement with the expectations.

3. Global Symmetries in AdS4/CFT3 and Their Spontaneous Breaking

We have so far discussed generic aspects of the AdS4/CFT3 duality. As described, the
cases of interest are those where a stack of M2 branes probes a CY4 cone. In turn, these
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cones generically have a nontrivial topology, in particular containing b2(Y)/= 0 2 cycles. This
allows the fluctuations of the supergravity potentials to wrap on them yielding to vector
fields on AdS4. In fact, due to Poincare duality dim H5(Y) = dim H2(Y) = b2(Y). We can
then introduce a set of dual harmonic five-form α1, . . . αb2(Y) and consider 6-form potential
fluctuations of the form

δC6 =
2π
T5

b2(Y)∑
I=1

AI ∧ αI. (3.1)

Upon KK reduction, this gives rise to b2(Y)massless gauge fieldsAI inAdS4. These fields sit
in certain multiplets, known from the supergravity point of view as Betti multiplets (see, e.g.,
[24]).

In the context of the AdS5/CFT4, these Betti symmetries correspond to global
baryonic symmetries on the field theory side. In fact, these arise from the U(1) factors
inside the

∏
U(N) total gauge group, which in 4d are IR free. It is possible to show that

indeed the b2 nonanomalous suchU(1)’s—which appear as global baryonic symmetries—are
identified with these Betti multiplets (see, e.g., [7] and references therein for a comprehensive
discussion).

In turn, in the AdS4/CFT3 case the role of this symmetries must be different. This can
be inferred from general field theory arguments, as they clearly cannot arise from decoupled
U(1) factors, which are not IR free in 3 dimensions. Nevertheless, due to their origin, similar
to the AdS5 case, we will still refer to them as baryonic symmetries. (When referring to
the ABJM theory the difference U(1) gauge field is sometimes also called baryonic U(1),
mirroring the Klebanov-Witten terminology—recall that ABJM is described by the same
quiver an superpotential as the Klebanov-Witten theory, only in one dimension less and
adding CS for the gauge groups. We stress that our baryonic symmetries are very different
from this one, which is basically the M-theory circle.) Since on general grounds global
symmetries are of much help in classifying the spectrum of a gauge theory, the study of such
baryonic-like U(1)’s is indeed of much interest. Let us now turn to the supergravity side to
extract as much information as possible about these symmetries and their implication in the
dual field theory.

Let us note that while the CY4 might have other types of cycles, only 2 cycles (and the
Poincare-dual 5 cycles) are relevant for our discussion. As discussed in [5], the toric CY4 of
interest can typically have additional 6 cycles, which manifest themselves as internal points
in the toric diagram. Nevertheless, it is clear that these will not lead to vector fields in AdS4

upon KK reduction of SUGRA p-forms on them, and so their role must be different than that
of 2 and 5 cycles. In fact, as briefly discussed in [5], it appears that these 6 cycles can yield
to nonperturbative corrections to superpotentials, as euclidean 5-branes can be wrapped on
them. Since we will be mostly concerned with global baryon-like symmetries, we will not
touch upon these 6 cycles and focus for the rest of the contribution on 2 and 5 cycles.

Finally, making use of results in [5, 25] it was argued that the number of such two cyles
is given by b2(Y) = d − 4, with d being the number of external points in the toric diagram.
While this result is strictly valid only for isolated singularities, we note that it coincides with
the conjecture in [26, 27]. We note that, as discussed above, internal points, being related to
6 cycles over which no SUGRA p-form yields an AdS4 vector upon KK reduction, are not
related to baryonic symmetries. Conversely, the d − 4 number of such symmetries does not
depend on the number of internal points.
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3.1. Gauge Fields in AdS4

The b2(Y) vector fields satisfy, at the linearized level, Maxwell equations in AdS4. (The
vector fields arising from KK reduction correspond to abelian bulk gauge fields, and thus
will correspond to global/gauged U(1) boundary symmetries. In fact, as discussed in the
main text, wrapped branes behave as sources of this abelian theory. Thus, we do not expect
any nonabelian enhancement.) Note that this argument is strictly applicable to isolated
singularities. Furthermore, these b2(Y) copies of 4d E & M generically contain both electric
and magnetic point like sources in AdS4. From the 11-dimensional point of view, these point
like electrons and monopoles will become wrapped branes, and their role will be crucial in
the following.

Let us analyze more in detail E and M in AdS4. In fact, we will keep the discussion
generic and consider a vector field in AdSd+1. We can set Az = 0 away from the sources.
Then, using the straightforward generalization toAdSd+1 of the coordinates in (2.2), the bulk
equations of motion set

Aμ = aμ + jμzd−2, (3.2)

where the aμ, jμ satisfy the free Maxwell equation in the boundary directions. Furthermore,
Lorentz gauge for these is automatically imposed. In fact, this can be naturally interpreted as
fixing bulk Coulomb gauge upon regarding z as the time coordinate. The condition Az = 0
away from the source is then the standard radiation gauge in that context.

TheAdS/CFT duality requires specifying the boundary conditions for the fluctuating
fields in AdS. In particular, and crucially different to AdS5, vector fields in AdS4 admit
different sets of boundary conditions [28–30] leading to different boundary CFT’s. Coming
back to (3.2), it turns out that in d < 4 both behaviors have finite action, and thus can
be used to define a consistent AdS/CFT duality. Furthermore, the fluctuations aμ, jμ are
naturally identified, according to the AdS/CFT rules, with a dynamical gauge field and a
global current in the boundary, respectively. In accordance with this identification, (3.2) and
the usual AdS/CFT prescription shows each field to have the correct scaling dimension for
this interpretation: for a gauge field Δ(aμ) = 1, while for a global current Δ(jμ) = 2.

Let us now concentrate on the case of interest d = 3, where both quantizations are
allowed. In order to have a well-defined variational problem for the gauge field in AdS4 we
should be careful with the boundary terms when varying the action. In general, we have

δS =
∫{

∂
√
detgL
∂AM

− ∂N
∂
√
detgL

∂∂NAM

}
δAM + ∂N

{
∂
√
det gL

∂∂NAM
δAM

}
. (3.3)

The bulk term gives the equations of motion whose solution behaves as (3.2). In turn, the
boundary term can be seen to reduce to

δSB = −1
2

∫

Boundary
jμδa

μ. (3.4)

Therefore, in order to have a well-posed variational problem, we need to demand δaμ = 0;
that is, we need to impose boundary conditions where aμ is fixed in the boundary.
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On the other hand, since in d = 3 both behaviours for the gauge field have finite action,
we can consider adding suitable boundary terms such that the action becomes [30]

S =
1
4

∫ √
det gFABFAB +

1
2

∫

Boundary

√
detgAμFzμ |Boundary. (3.5)

The boundary term is now

δSB =
1
2

∫

Boundary
aμδj

μ, (3.6)

so that we need to impose the boundary condition δjμ = 0; that is, fix the boundary value of
jμ.

The radiation-like gauge Az = 0 suggests to interpret z as the time direction. Defining
then the usual electric and magnetic fields �B = (1/2)εμνρFνρ and �E = Fμz, we have

Bμ = εμνρ∂νaρ + εμνρ∂νjρz, Eμ = jμz2. (3.7)

In terms of these, the two sets of boundary conditions correspond, on the boundary, to either
setting Eμ = 0 while leaving aμ unrestricted, or setting Bμ = 0 while leaving jμ unrestricted.
To be more explicit, recalling the AdS/CFT interpretation of aμ, jμ, the quantization Eμ = 0
is dual to a boundary CFT where the U(1) gauge field is dynamical, while the quantization
Bμ = 0 is dual to a boundary CFTwhere theU(1) is ungauged and is instead a global symmetry.
Furthermore, as discussed in [31] for the scalar counterpart, once the improved action is taken
into account the two quantizations are Legendre transformations of one another [6], as can
be seen by for example, computing the free energy in each case.

In turn, this has an important consequence for the spectrum of electrons and
monopoles in this 4d E &M—which of course come wrapped branes from an 11-dimensional
point of view-. Let us consider an M5 brane wrapped in one of the b2(Y) 5 manifolds
Σ5 ⊂ Y . From the AdS4 point of view, this brane looks like a pointlike electric charge for
the corresponding vector field. On the other hand, the linearized C6 fluctuation which such
brane sources must be of the form δC6 ∼ f(z)dt ∧ Vol(Σ5). Upon reduction this precisely
yields to E0 /= 0 while Bμ = 0. Thus, it follows that wrappedM5 branes are only allowed upon
choosing the quantization condition which fixes aμ. Conversely, dual wrapped M2 branes,
though nonSUSY, would only be allowed upon choosing the boundary conditions which fix
jμ. In turn, these boundary conditions do forbid the wrapped M5.

One can consider electric-magnetic duality in the bulk theory, which exchanges Eμ ↔
Bμ thus exchanging the two boundary conditions for the AdS4 gauge field quantization.
This action translates in the boundary theory into the so-called S operation [28]. This is an
operation on three-dimensional CFTs with a global U(1) symmetry, taking one such CFT to
another. In addition, it is possible to construct a T operation, which amounts, from the bulk
perspective, to a shift of the bulk θ-angle by 2π . In fact, these two operations generate an
SL(2, �)algebra transforming among the possible generalized boundary conditions [28, 29].
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3.1.1. Wrapped Branes in AdS4 and Baryonic Operators

As the gauge symmetries inAdS4 of interest arise from reduction of the SUGRA potentials, it
is clear that no usual KK-state will be charged under them—the converse holds for the dual
operators in the CFT side. In turn, as described above, the relevant objects charged under
them are M5 branes, which act as electric sources once the appropriate boundary conditions
have been selected. Let us discuss these branes in more detail for the toric CY4’s at hand.
In these cases, an M5 brane wrapped on a five-manifold Σ5 ⊂ Y , such that the cone C(Σ5),
is a complex divisor in the Kähler cone C(Y), is supersymmetric and leads to a BPS particle
propagating inAdS4. As we argued in the previous subsection, since the M5 brane is a source
for C6, this particle is electrically charged under the b2(Y) massless U(1) gauge fields AI .
One might also consider M2 branes wrapped on two cycles in Y . However, such wrapped
M2 branes are not supersymmetric, as there are no calibrating 3 forms for the cone over the
Σ2 submanifold which they would wrap.

For toric manifolds there is a canonical set of wrapped M5 brane states, where C(Σ5)
are taken to be the toric divisors. In fact, the set of vectors defining the toric diagram
introduced above is precisely the set of charge vectors specifying the U(1) subgroups of
U(1)4 that have complex codimension one fixed point sets, and thus must correspond to
the 5 manifolds where to wrap the M5 branes. To make this precise, in the Q111 example the
toric divisors correspond to the 6 external points in the toric diagram in Figure 1.

The standard rules of the AdS/CFT prescription allow to identify these wrapped M5
branes, whenever the boundary conditions allow for them, with chiral operators in the dual
field theory. In fact, as they correspond to nonperturbative states in supergravity, we should
expect their scaling dimension to be of order N. In order to check this, we can consider
changing to global coordinates for AdS, such that the energy of a particle in AdS in units
of 1/R is directly the scaling dimension in the field theory. For the wrapped branes under
consideration it is straightforward to show that the action reduces to

S = T5Vol(Σ5)R5
∫
dt
√
ĝĝtt, (3.8)

where ĝ stands for the AdS4 metric in global coordinates. Thus, this indeed describes a mass
m = T5R5 Vol(Σ5) particle in global AdS4. Thus, through AdS/CFT , the dimension of the
dual operator is

Δ(Σ5) = mR = T5R6Vol(Σ5) =N
π

6
Vol(Σ5)
Vol(Y)

. (3.9)

As the ratio of the volume of the 5 manifold to the ratio of Y is an O(1) number, it follows
that in fact these wrapped M5 branes must correspond to O(N) operators.

3.2. Field Theory Perspective of Betti Symmetries

In the previous sections we have seen that the KK reduction of supergravity potentials must
lead, on the boundary, to either a gauge or a global symmetry, depending on the choice
of boundary conditions. This arises as, crucially, both boundary behaviors for gauge fields
in AdS4 are allowed; and it is the choice of boundary conditions that selects wether these
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bulk gauge fields correspond to a boundary gauge or global symmetry. Consistently, the
choice of boundary conditions also determines which wrapped objects are allowed. Through
AdS/CFT , as discussed in the previous subsection, these objects correspond to operators of
dimension O(N).

On general grounds, the suitable CFT’s dual to the toric geometries of interest will
be

∏
U(N) gauge theories. These theories will contain a chiral ring consisting on a set

of chiral operators with protected dimensions such that in the large N limit they remain
O(1). As their dimensions remain small, these operators must correspond to KK states in the
gravity side. On the other hand, if a global baryonic symmetry is present in the theory, we
expect baryon-like operators with dimensions O(N). The natural form of these operators is
B = detX, with X being a certain field charged under the corresponding baryonic symmetry.
Conversely, these O(N) dimension operators must correspond to wrapped branes in the
gravity dual, that is, the M5 branes wrapped on toric divisors we have just discussed.
In turn, from the gravity analysis above, we learn that these branes are allowed once the
suitable boundary conditions have been chosen, namely, those fixing aμ on the boundary
and leaving a dynamical jμ, which has the correct properties for a global symmetry current.
On the other hand, the set of boundary conditions which do not allow for the wrapped M5
branes must correspond to a theory where the baryonic symmetry is gauged (instead of
global). Consistently, the boundary aμ is dynamical, which in fact has the correct features
to be identified with a gauge field. In turn, being the U(1)B a gauged symmetry, the baryon-
like operators would be forbidden because of gauge noninvariance; thus reflecting the lack
of wrapped M5’s. Therefore, for each baryonic symmetry we should expect two different
dual CFTs, each associated to a choice of boundary conditions, where the baryonic U(1)
symmetries are either gauged or global. We stress that these theories are different CFTs,
related though by the gauging/ungauging of the U(1)B’s. In fact, the gravity dual allows
us to be more precise. As reviewed above, the exchange of the boundary conditions stands
for the electric-magnetic duality of the AdS4 E & M. It is possible to enhance this action
with yet another transformation so that we have an SL(2, �) action. Following [28] (see
also [29]), these bulk actions translate in a precise way to the boundary CFT. Starting with
a three-dimensional CFT with a global U(1) current jμ, one can couple this global current
to a background gauge field A resulting in the action S[A]. The S operation then adds a BF
coupling of A to a new background field B and at the same time promotes A to a dynamical
gauge field by introducing the functional integral over it, while the T operation instead adds
a CS term for the background gauge field A:

S : S[A] −→ S[A] +
1
2π

∫
B ∧ dA, T : S[A] −→ S[A] +

1
4π

∫
A ∧ dA. (3.10)

As shown in [28], these two operations generate the group SL(2,�). (Even though we are
explicitly discussing the effect of SL(2,�) on the vector fields, since these are part of a whole
Betti multiplet we expect a similar action on the other fields of the multiplet. We leave this
investigation for future work.) In turn, as discussed above, the S and T operations have the
bulk interpretation of exchanging Eμ ↔ Bμ and shifting the bulk θ-angle by 2π , respectively.
It is important to stress that these actions on the bulk theory change the boundary conditions.
Because of this, the dual CFTs living on the boundary are different.
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3.3. Spontaneous Symmetry Breaking

We have seen that the choice of boundary conditions where we fix the boundary value of
the bulk vectors arising from KK reduction of the supergravity potentials lead, on the CFT
side, to global symmetries. On general grounds, we might then consider their spontaneous
breaking to further test the consistency of the picture. In turn, generically, we should expect
spontaneous symmetry breaking to correspond, in the gravity side, to Calabi-Yau resolutions
of the cone [31] where an S2—of radius b—is blown up.

Upon resolution, theCY4 will only be asymptotically conical. In fact, the first correction
to the asymptotic cone-like metric generically goes like r−2, which leads to the following
behavior for the warp factor

h ∼ R6

r6

(
1 +

b

r2
+ · · ·

)
. (3.11)

Recalling the relation between the cone radial coordinate and the appropriate AdS4 radial
coordinate, according to the standardAdS/CFT rules the subleading correction O(z−1)must
be dual to a dimension 1 operator which acquires a VEV proportional to b. In fact, the natural
candidate is the scalar component U in the global current multiplet, whose dimension is
protected by supersymmetry to be 1. This operator is roughly the moment map of the U(1)B
action and is of the form

U =
1
N

∑
charged fields

Tr qXiXiX
†
i . (3.12)

It is then clear that spontaneous symmetry breaking, triggered by a VEV of a scalar with
charge qXi under the U(1)B , will give a VEV to U. Furthermore, this VEV must trigger an
RG flow to a different fixed point. In turn, in the gravity side, much like in [32], upon using
the appropriate radial coordinate, close to the branes the space develops an AdS4 throat
which stands for the IR fixed point.

3.3.1. The Order Parameter for SSB

The baryonicU(1)B symmetry is broken whenever a field X charged under it takes a VEV. In
particular, theU operator discussed above signals such breaking. However, a natural operator
to consider is the associated baryon B = detX, which, as discussed above, corresponds to a
BPS particle in AdS4 arising from a wrapped M5 brane on Σ5. From the gravity perspective
we can compute its VEV by considering the action SE of an euclidean brane which wraps the
cone over Σ5—the so-called baryonic condensate. Indeed, the AdS/CFT dictionary allows to
identify

〈B〉 = e−SE . (3.13)

Let us concentrate on the modulus of the VEV, which comes from the exponential of the DBI
action of the euclidean brane. Quite remarkably, as shown in [5], this contribution, which
amounts to the warped volume of the cone over Σ5, can be computed generically for the
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toric CY4 of interest. Such warped volume is divergent, and it is then necessary to regulate it
cutting off the integral at some large rc. We refer to [5] for the details of the computation. For
the time being, let us quote the most relevant aspect of the result, namely, that the modulus
of the VEV is proportional to

〈B〉 ∼ z−Δ(Σ5). (3.14)

This result from supergravity can be seen as a prediction for the field theory dual. Indeed, if
the expected dual operator is 〈detX〉, we would expect its scaling dimension to beNΔ(X),
so that Δ(X) =N−1Δ(Σ5), in agreement with (3.9).

3.3.2. The Emergence of the Goldstone Particle and the Global String

In the preceding section we concentrated on the modulus of the VEV of the baryonic operator
obtaining nontrivial expectations for the dual field theory. However, a complete picture of
spontaneous symmetry breaking must involve the identification of the associated Goldstone
boson. On general grounds, field theoretic spontaneous symmetry breaking can lead to
cosmic strings around which such Goldstone boson would have a nontrivial monodromy. In
fact, following theAdS5 example [33], in the gravity dual these strings can be easily identified
as M2 branes wrapping the blown-up 2 cycles. Remarkably, these branes remain of finite
tension at the bottom of the cone in the warped geometry (2.1) where ds2(X) is replaced by
the resolved cone metric.

The finite tension M2 branes wrapped on the blown-up cycle appear as a pointlike
object in the Minkowski directions. In fact, in 3-dimensions they correspond to cosmic
“strings”. In order to complete this picture, we must find the Goldstone boson winding
around them. To that matter, we consider a 3-form linearized fluctuation [5]

δC3 = A ∧ β, (3.15)

where β is a 2 forms which, in the bottom of the cone, becomes the volume of the blown-up 2
cycles. Furthermore, 11-dimensional supergravity demands it to obey

dβ = 0, d
(
h�8β

)
= 0; (3.16)

where the �8 is the Hodge-dual with respect to the 8-dimensional resolved cone metric.
Following [33] it is possible to argue for the existence of such β. First, in the unwarped case
β is just a harmonic two forms. Furthermore, in the warped case the equations above can be
seen to arise from an action, thus satisfying a minimum principle.

On the other hand, the 1-form A can be conveniently dualized into a scalar in the 3-
dimensional field theory directions. In fact, the Hodge dual of the above 3-form potential
involves

δG7 = �3dA ∧ h�8β. (3.17)
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Defining �3 dA = dp, we can write the above field strength fluctuation as

δG7 = dp ∧ h�8β. (3.18)

Thus, making use of the equations of motion above, we see that we can take δC6 = ph�8β.
As β is proportional, in the bottom of the cone, to the volume form of the blown-up cycle, its
dual precisely goes through the Σ5 cycle. Thus, this supergravity fluctuation couples to the
baryonic condensate described above through the Wess-Zumino part of the euclidean brane
action. In fact, this provides the phase of the B VEV, so that schematically

〈B〉 ∼ z−Δ(Σ5)eip (3.19)

which shows that p must be identified with the Goldstone boson of symmetry breaking.
Indeed, we could use a different gauge for the δG7 field strength such that assymptotically

δC6 ∼ zdp ∧Vol(Σ5) (3.20)

which implies 〈JBμ 〉 ∼ ∂μp for the boundary theory.

4. An Example: The Cone Over Q111

We have so far kept the discussion generic. Let us put the previous machinery at work in a
particularly interesting example: the cone overQ111. This is a toric CY4 manifold, whose toric
diagramwe anticipated in (2.1). Its isometry group is SU(2)3×U(1)R, and in local coordinates
the explicit metric is

ds2
(
Q111

)
=

1
16

(
dψ +

3∑
i=1

cos θi dφi

)2

+
1
8

3∑
i=1

(
dθ2i + sin2θi dφ

2
i

)
. (4.1)

Here (θi, φi) are standard coordinates on three copies of S2 = � �1 , i = 1, 2, 3, and ψ has period
4π . The two Killing spinors are charged under ∂ψ , which is dual to the U(1)R symmetry. The
metric (4.1) shows very explicitly the regular structure of a U(1) bundle over the standard
Kähler-Einstein metric on � �1 × � �1 × � �1 , where ψ is the fibre coordinate and the Chern
numbers are (1, 1, 1).

We now consider a stack of N M2 brane at the tip of this cone. The near horizon
geometry is the standard Freund-Rubin type AdS4 × Q111. Since b2(Q111) = 2, according to
the general discussion above, we should expect two vector fields in AdS4 arising from KK
reduction on the dual 5 cycles of C6 fluctuations.
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Figure 2: The toric diagram for C(Q111).

4.1. Two Versions for the Same Theory

From the toric diagram in Figure 1 we can immediately read the minimal gauged linear
σ-model (GLSM) realizing the variety. It contains 6 fields whose charges under the U(1)I ×
U(1)II gauge symmetries are

a1 a2 b1 b2 c1 c2

U(1)I −1 −1 1 1 0 0
U(1)II −1 −1 0 0 1 1

(4.2)

Following the ABJM example, we look for a Chern-Simons matter theory where to
embed this minimal GLSM. As shown in [34], we can succinctly encode such theory in the
quiver shown in Figure 2.

We assume all the nodes to come with an N = 2U(N) Chern-Simons action with the
level indicated in Figure 2. Furthermore, the superpotential reads

W = Tr
(
C2B1AiB2C1Ajε

ij
)
. (4.3)

It can be shown [34] that this theory indeed contains, at k = 1, the desired GLSM,
where ai ↔ Ai, bi ↔ Bi, ci ↔ Ci. Let us give a flavor on the proof by describing the generic
construction associated to N = 2 toric Chern-Simons-matter quiver theories (see [13–15] for
more details). For a start, we note that N = 2 SUSY in 3 dimensions can be thought as the
dimensional reduction along, say, x3 of 4-dimensionalN = 1. In particular, upon gauge fixing,
the 3-dimensional vector supermultiplet contains two scalarsD, σ arising, respectively, from
the 4-dimensional D scalar and A3 component of the gauge field. Crucially, it turns out that
both scalars are auxiliary fields for Chern-Simons matter theories (see, e.g., [11]) and thus
must be integrated out. The resulting F and (generalized) D flatness conditions turn out to
be

∂XabW = 0 , −
G∑
b=1

Xba
†Xba +

G∑
c=1

XacXac
† =

kaσa
2π

, σaXab −Xabσb = 0, (4.4)

where latin indices run to the G gauge groups (in the case at hand four) and Xab is a
(U(N)a, U(N)b) bifundamental.
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The last equation in (4.4) is automatically satisfied upon diagonalizing our fields and
taking σa = σIN∀a. Thus, the theory breaks into N copies of the U(1) version. Furthermore,
assuming

∑
ka = 0 it is easy to see that the equations setting μa = 0 reduce to G − 2

independent equations. On the other hand, it is a standard result that for toric W the set
of F-flat configurations the so-calledmaster space, see, for example, [35] is of dimension G+ 2.
Thus, out of this G + 2-dimensional master space and after imposing the G − 2 generalizedD
terms, we finally have a 4-dimensional toric manifold as moduli space. One can verify that
for the case at hand, at k = 1, this manifold is indeed the cone over Q111. Let us stress that
this computation merely focuses on the abelian moduli space. In fact, at the abelian level the
W vanishes. A more detailed analysis requires the study of the chiral ring at the nonabelian
level, which on general grounds must match the coordinate ring of the variety. Generically,
this is a very difficult task, as we a priori expect crucial nonperturbative effects associated to
monopole operators. In order to simplify the problem, we can consider the large k limit, as
the dimension of such monopole operators should scale with k thus decoupling. In that limit,
the chiral ring is composed out of standard gauge invariant operators, that is, closed loops
in the quiver modulo F-terms. Conversely, the k /= 1 moduli space is indeed an orbifold of
the k = 1 variety. As shown in [36], it is possible to exactly match the coordinate ring of this
orbifolded variety to the nonabelian chiral ring of the theory above, in particular explicitly
checking theW structure. We refer to [36] for a complete discussion.

Let us note that the orbifold action breaks the original SU(2)3 down to the single SU(2)
present in the superpotential. This action in fact has fixed points away from the tip of the cone.
This motivated the authors [16, 17] to propose alternative theories containing fundamental
matter associated to the flavor branes, from a IIA perspective, to which these singularities
lead. We refer to these works, as well as to [37], for further details.

Being the gauge group of the theory we have just discussed U(N)4, it cannot
accommodate for gauge invariant baryon-like operators. It must then correspond to a choice
of boundary conditions in the gravity dual where the 2 vector fields inAdS4 arising from KK
reduction on the b2(Q111) = 2 2 cycles have jμ = 0; that is, they are dual to boundary gauge
symmetries. As discussed above, the field theory dual to changing these boundary conditions
can be found by acting with the {T, S}SL(2, �)generators, as these correspond to swapping
boundary conditions. In order to further proceed, let us strip off the abelian part of the gauge
symmetry and denote the corresponding generatorsAi. We define

Bk = A1 +A2 − A3 − A4, Bd = A1 +A2 +A3 +A4,

A+ = A1 −A2, A− = A3 −A4.
(4.5)

It is not hard to show that the full action at k = 1 can be written as (we focus on the bosonic
content)

S =
1
4π

∫
A+ ∧ dA+ −

1
4π

∫
A− ∧ dA− + SSU, SSU =

1
4π

∫
Bk ∧ dBd + SR, (4.6)

where SR collects the remaining terms from the original Lagrangian and in particular contains
A± through the covariant derivatives of the fields. In fact, let us consider the theory defined
by this action per se. We note that this is an SU(N)4 ×U(1)k ×U(1)d theory, where the abelian
factors are given by the Bk, Bd fields above.
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Starting from SSU alone, we can think of the A± as background nondynamical gauge
fields. Thus, we are in the situation described in [28], where we can act with the generators
{S, T}. (We will follow a slightly different path as in [5]. We thank C. Closset and S.
Cremonesi for discussions on this topic.) Let us now act with the S generator by adding
new background gauge fields C±

SSU[A+,A−] −→ SSU[A+,A−] +
1
2π

∫
C+ ∧ dA+ +

1
2π

∫
C− ∧ dA−. (4.7)

While we will not write it explicitly, the S operation also introduced a functional integral
over A±. We can act again with the S generator on the newly generated background gauge
symmetries C±, so that we find, grouping terms

SSU[A+,A−] +
1
2π

∫
C+ ∧ d(A+ +D+) +

1
2π

∫
C− ∧ d(A− +D−). (4.8)

Again, we stress that a functional integration, this time over C± has been introduced. Acting
now with the T generator on the new background gauge symmetries D± we find

SSU[A+, A−] +
1
2π

∫
C+ ∧ d(A+ +D+) +

1
2π

∫
C− ∧ d(A− +D−)

+
1
4π

∫
D+ ∧ dD+ −

1
4π

∫
D− ∧ dD−.

(4.9)

The functional integration over C± leads to a functional δ setting D± = −A±, thus recovering
exactly SU. Thus, from this perspective, we can consider the theory defined by SSU as the
dual to the background with boundary conditions fixing aμ in the boundary. In turn, these
boundary conditions allow for wrapped M5 branes and must be dual to a theory with global
baryonic symmetries. Conversely, upon considering the SSU theory, we no longer need to
demand gauge invariance with respect to theA± gauge symmetries. Thus, operators such as,
for example, detAi become gauge-invariant and are the natural candidates for duals to the
wrapped M5 branes.

We can understand the previous procedure in yet a different manner. The M5 branes
corresponding to baryonic operators are in one-to-one correspondence with the divisors,
encoded in the toric diagram arising from the GLSM charge matrix (4.2). Thus, that
particular combination ofU(1)’s naturally encodes the baryonic charges necessary to describe
all baryonic operators. In turn, the Chern-Simon-matter theory described above contains
precisely this GLSM. In fact, the sequence of {T,S} operations above amount to ungauge
precisely these two U(1)’s (which are nothing but A+ ± A−).

4.2. Spontaneous Symmetry Breaking

As discussed, spontaneous symmetry breaking amounts to resolution in the gravity dual. In
[5] a comprehensive algebraic analysis of the cone overQ111 was performed, paying attention
in particular to the space of Kahler parameters which account for the resolutions. From the
point of view of the GLSM above, by turning on Fayet-Ilopoulos parameters we can achieve



16 Advances in High Energy Physics

every possible resolution of the geometry. In turn, for each of the resolutions of C(Q111), there
is a corresponding Ricci-flat Kähler metric that is asymptotic to the cone metric over Q111.
More precisely, there is a unique such metric for each choice of Kähler class, or equivalently
FI parameter ζ1, ζ2 ∈ �. Roughly speaking, these parameters correspond to the volumes of
the 2 cycles which can be blown up. Denoting the radii of these blown-up S2’s by (a, b), the
resolved Calabi-Yau metric is given by

ds2(X) = κ(r)−1dr2 + κ(r)
r2

16

(
dψ +

3∑
i=1

cos θidφi

)2

+

(
2a + r2

)

8

(
dθ22 + sin2θ2dφ

2
2

)

+

(
2b + r2

)

8

(
dθ23 + sin2θ3dφ

2
3

)
+
r2

8

(
dθ21 + sin2θ1dφ

2
1

)
,

(4.10)

where

κ(r) =

(
2A− + r2

)(
2A+ + r2

)

(2a + r2)(2b + r2)
, (4.11)

a and b are arbitrary constants determining the sizes of the blown-up S2’s; and we have also
defined

A± =
1
3

(
2a + 2b ±

√
4a2 − 10ab + 4b2

)
. (4.12)

We are interested in studying supergravity backgrounds corresponding to M2 branes
localized on one of these resolutions of C(Q111). If we placeN spacetime-filling M2 branes at
a point y ∈ X, we must then solve the following equation for the warp factor:

Δxh
[
y
]
=

(
2π�p

)6
N√

detgX
δ8
(
x − y

)
, (4.13)

where Δ is the scalar Laplacian on the resolved cone. In order to simplify the problem, let us
analyse the case in which we partially resolve the cone, setting a = 0 and b > 0. With no loss
of generality, we put theN M2 branes at the north pole of the blown-up S2 parametrized by
(θ3, φ3). We then find

h(r, θ3) =
∞∑
l=0

Hl(r)Pl(cos θ3),

Hl(r) = Cl
(

8b
3r2

)3(1+β)/2

2F1

(
−1
2
+
3
2
β,

3
2
+
3
2
β, 1 + 3β,− 8b

3r2

)
,

(4.14)

where Pl denotes the lth Legendre polynomial,

β = β(l) =

√
1 +

8
9
l(l + 1), (4.15)
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and the normalization factor Cl is given by

Cl =
3Γ

(
(3/2) + (3/2)β

)2
2Γ

(
1 + 3β

)
(

3
8b

)3

(2l + 1)R6,

R6 =

(
2π�p

)6
N

6vol
(
Q111

) =
256
3
π2N�6p.

(4.16)

In the field theory this solution corresponds to breaking one combination of the two global
U(1) baryonic symmetries, rather than both of them. As discussed in general above, the
resolution of the cone can be interpreted in terms of giving an expectation value to a certain
operator U in the field theory. This operator is contained in the same multiplet as the current
that generates the broken baryonic symmetry and couples to the corresponding U(1) gauge
field in AdS4. Since a conserved current has no anomalous dimension, the dimension of U
is uncorrected in going from the classical description to supergravity [31]. According to the
general AdS/CFT prescription [31], the VEV of the operator U is dual to the subleading
correction to the warp factor. For large r one can show

h(r, θ3) ∼
R6

r6

(
1 +

18b cos θ3
5r2

+ · · ·
)
. (4.17)

In terms of the AdS4 coordinate z = r−2 we have that the leading correction is of order
z, which indicates that the dual operator U is dimension 1. This is precisely the expected
result, since this operator sits in the same supermultiplet as the broken baryonic current, and
thus has a protected dimension of 1. Furthermore, its VEV is proportional to b, the metric
resolution parameter, which reflects the fact that in the conical (AdS) limit in which b = 0 this
baryonic current is not broken, and as such 〈U〉 = 0.

Furthermore, we can compute, following the steps described for the general case, the
VEV of the baryonic condensate as the volume of an euclidean brane wrapping the cone over
Σ5. While the details of the computation can be seen in [5], here we content ourselves with
quoting the result

e−S(rc) = e7N/18
(

8b
3r2c

)N/3(
sin

θ3
2

)N

, (4.18)

where rc is the radial cutoff. From (4.18) we can read off the dimension of the associated
baryonic operator Δ(B) = N/3, which suggests that if B = detX, then Δ(X) = 1/3. In fact, in
accordance with the results in [38], a similar computation shows that all baryonic operators
must have the same scaling dimension. In turn, in the context of the Chern-Simons-matter
quiver gauge theory described in the previous subsection, this implies that all fields have
the same Δ = 1/3 scaling dimension, and hence R = 1/3. This is in fact consistent with the
sextic superpotential, as this assignation of R charges ensures it to be marginal at the putative
fixed point. In fact, in view of these results it would be very interesting to apply the recently
discovered techniques of [18] along the lines of the appendix for the Q111 theory to confirm
or disprove its potential agreement. We leave this as an open question for future work.
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5. Conclusions

Global symmetries are important tools in studying the spectrum of a gauge theory. In the
context of the AdS/CFT duality a particularly important set of such symmetries are those
which arise from KK reduction of the supergravity p-forms in nontrivial cycles yielding
to AdS vectors. Following the terminology of the AdS5 case, we dubbed such symmetries
as baryonic. These symmetries appear as particularly interesting and important in the
AdS4/CFT3 case, as they behave much differently from the AdS5 case. In particular, on
the gravity side, the two possible fall-offs are admissible, thus leading to two possible
AdS4/CFT3 dualities depending on the chosen boundary conditions. In turn, in the field
theory side, these correspond to a choice of gauged versus global baryonic symmetry.

As briefly mentioned, the CY4’s of interest can also potentially contain 6 cycles. While
they are not directly related to the baryonic symmetries we discussed—as they do not yield
to vectors in AdS4 upon KK reduction of p-forms, it would be very interesting to clarify their
role as they might lead to nonperturbative, instantonic, corrections to the superpotentials. We
refer to [5] for a first study along these lines.

While a lot has been learned recently about the AdS4 × CFT3 duality, much remains
yet to be clarified, specially from the field theory perspective in the N = 2 case. In particular,
the gravity analysis briefly reviewed above following [5]must yield to important consistency
checks. As we described, in the particular C(Q111) case described, the gravity predictions are
in fact consistent with the expectations for the theory proposed in [34]. Nevertheless, it still
remains to perform a conclusive Zminimization analysis in the spirit of that in the appendix.
Very recently a series of very refined checks involving the superconformal index have been
performed in [39, 40]. While flavored theories appear better behaved, the full picture yet
remains to clarified. We leave such analysis as an open problem for the future.

Appendix

Z-Minimization for HVZ

Following [18], the properties of the putative fixed point of a 3d theory are encoded in the
minimization of the modulus squared of the partition function regarded as a function of the
trial R-charges (which in 3d are equal, at the SCFT point, to the scaling dimensions). As the
theories which we consider do not break the parity symmetry, the partition function itself is
real, and thus it is enough to minimize it. Following the localization procedure in [18, 19],
one can check that for a generic quiver theory with gauge group U(N)G and a number of
bifundamental fields X in the (�αX , �βX) under the αX, βX factors and with trial scaling
dimension ΔX, the partition function on the S3 can be written as

Z =
(−1)NG

N!G

∫ G∏
g=1

∏
αg

du
g
αg e

iπkg(u
g
αg )

2 ∏
αg<βg

sinh2
(
π
(
u
g
αg − u

g

βg

))∏
X

N∏
αX, βX

e
�(1−ΔX+i (uiαX−u

f

βX
))
.

(A.1)

Let us now compare the HVZ and the ABJM theories. In order to simplify the computations,
let us just focus on the U(2) × U(2) case. After some algebra, the ABJM partition function
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reads (we refer to [18, 19] as well to the pioneering papers on 3d localization [41, 42] for the
definition of the special function �)

ZU(2)
ABJM =

1
4k

∫
dx dyei2πk(x

2−y2)sinh2(2πx)sinh2(2πy)ef(x,y), (A.2)

with

f
(
x, y

)
= 2

∑
s1=±, s2=±

�
(
Δ + s1

(
x + s2y

))
+ �

(
1 −Δ + s1

(
x + s2y

))
. (A.3)

In order to obtain these expressions we made use of the constraints imposed by the
superpotential, which allows to express all dimensions as a function of a single one Δ. As
expected, the partition function is minimized at Δ = 1/2, which leads to

ZU(2)
ABJM =

1
210k

∫
dxdyei2πk(x

2−y2) sinh2(2πx)sinh2(2πy)

cosh4(π(x + y
))
cosh4(π(x − y

)) . (A.4)

On the other hand, for HVZ, we obtain

ZU(2)
HVZ =

1
4k

∫
dx dyei2πk(x

2−y2)sinh2(2πx)sinh2(2πy)ef(x,y), (A.5)

with

f
(
x, y

)
= 2

∑
s1=±

∑
s2=±

�
(
1 −Δ + is1

(
x + s2y

))
+ 4�(Δ) + 2

∑
s=±
�(Δ + i2sx). (A.6)

While this expression is very similar to the ABJM expression, it is not quite the same.
In fact, while it is minimized at Δ = 1/2, leading to the R-charge assignation guessed in [21],
the final expression becomes

ZU(2)
HVZ =

1
210k

∫
dx dyei2πk(x

2−y2) sinh2(2πx) sinh2(2πy)

cosh2(π(x + y
))
cosh2(π(x − y

))
cosh2(πx)

, (A.7)

which is just different from the ABJM result (A.4) for all k. We note, however, that the same
computation for U(1) ×U(1) indeed gives the same answer for the two theories.
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