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In lattice Schrödinger picture, we investigate the possible effects of trans-Planckian physics on the
quantum trajectories of scalar field in de Sitter spacewithin the framework of the pilot-wave theory
of de Broglie and Bohm. For the massless minimally coupled scalar field and the Corley-Jacobson
type dispersion relation with sextic correction to the standard-squared linear relation, we obtain
the time evolution of vacuum state of the scalar field during slow-roll inflation. We find that there
exists a transition in the evolution of the quantum trajectory from well before horizon exit to well
after horizon exit, which provides a possible mechanism to solve the riddle of the smallness of the
cosmological constant.

1. Introduction

The scenario of inflationary cosmology successfully provides the paradigm for generating
the inhomogeneities which seed the structures of the universe we observe today [1]. In the
simplest inflationary model, these inhomogeneities arise from the quantum fluctuations in
a single scalar field about its vacuum state. The conventional choice of a vacuum during
inflation is the Bunch-Davies (BD) vacuum [2]. However, it is well known that the notion of
a vacuum state during inflation is ambiguous in quantum theory [3], and the choice of initial
quantum vacuum state affects the predictions of inflation [4, 5].

Recently Perez et al. [6] discussed how predictions for the cosmic microwave
background (CMB) could be affected by a hypothetical dynamical collapse of the wave
function. As a different possibility, the notion of quantum nonequilibrium [7, 8] was also
discussed in terms of the pilot-wave theory of de Broglie and Bohm [9–13] and was
later generalized to include all deterministic hidden-variables theories [14]. In the context
of inflationary cosmology, a deterministic hidden-variables theory allows the existence of
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vacuum states with nonstandard or nonequilibrium field fluctuations, resulting in statistical
predictions that deviate from those of quantum theory [15, 16].

Moreover, the inflationary scenario has a serious trans-Planckian problem, which
is whether the predictions of standard cosmology are insensitive to effects of the trans-
Planckian physics. Since there is no successful quantum gravity theory to handle the physics
around the Planck scale, one of the methods is to use the effective nonlinear dispersion
relations to mimic the effects of the trans-Planckian physics. For example, the Corley-
Jacobson (CJ) type dispersion relations were used to study the possible effects of the
trans-Planckian physics on cosmological perturbations [17–19]. Note also that the CJ type
dispersion relations can also be derived naturally from the recently proposed quantum
gravity model called Horava-Lifshitz (HL) gravity [20–22].

In our previous papers [23–26], we used the lattice Schrödinger picture to study the
free scalar field theory in de Sitter space, derived the wave functionals for the BD vacuum
state and its excited states, and found the corresponding de Broglie and Bohm quantum
trajectories. The purpose of this paper is to study further the possible effects of the trans-
Planckian physics on the quantum trajectories of scalar field in de Sitter space within the
framework of the pilot-wave theory of de Broglie and Bohm. Throughout this paper, we will
set � = c = 1.

2. Pilot-Wave Scalar Field in De Sitter Space

We consider the scalar field theory which has the Lagrangian density

L =
∣
∣g
∣
∣
1/2
{
1
2

[

gμν(x)φ(x),μφ(x),ν
]

− V (φ)
}

,

V
(

φ
)

=
m2φ2

2
+
ξRφ2

2
,

(2.1)

where φ is a real scalar field, V (φ) is the potential, m is the mass of the scalar quanta, R is
the Ricci scalar curvature, ξ is the coupling parameter, and g = det gμν, μ, ν = 0, 1, . . . , d. For a
spatially flat (1 + d)-dimensional Robertson-Walker spacetime with scale factor a(t), we have

ds2 = dt2 − a2(t)d2xi, i = 1, 2, . . . , d,

L = ad
{
1
2

[(

∂0φ
)2 − a−2(∂iφ

)2
]

− V (φ)
}

.
(2.2)

In the (1 + d)-dimensional de Sitter space, we have a(t) = exp(ht), where h ≡ ȧ/a is the
Hubble parameter which is a constant. Note that in three spatial dimensions d = 3, the
curvatureR = 12h2 is also a constant. Throughout this paper, we use this exact de Sitter space-
time background to describe the inflationary era, which is only a special case (n → ∞ limit)
of power-law inflation with a(t) = a0t

n. For mathematical simplicity, we consider the case of
d = 1 in the following. The extention to higher spatial dimension is straightforward without
changing the nature of our results.
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In the lattice formalism, we have the following changes:

φ(x, t) −→ φj(t),

∂0φ(x, t) −→
•
φj, j = 1, 2, . . . ,N,

∂1φ(x, t) −→
∣
∣φj(t) − φj−1(t)

∣
∣

ε
,

(2.3)

and the Lagrangian reads

L =
N∑

j=1

⎧

⎪⎨

⎪⎩

1
2

[ •∼
φj −12hφ̃j

]2

− 1
2

(

φ̃j − φ̃j−1
)2

a2ε2
− 1
2

(

m2 + ξR
)

φ̃2
j

⎫

⎪⎬

⎪⎭

, (2.4)

where φ̃j ≡ a1/2ε1/2φj , and ε = W/N; that is, W is the overall comoving spatial size of lattice.
From (2.4)we obtain the Hamiltonian

H =
N∑

j=1

⎧

⎪
⎨

⎪
⎩

1
2
p̃2j +

1
2
hp̃j φ̃j +

1
2

(

φ̃j − φ̃j−1
)2

a2ε2
+
1
2

(

m2 + ξR
)

φ̃2
j

⎫

⎪
⎬

⎪
⎭

, (2.5)

where p̃j is the conjugate momentum of φ̃j ,

p̃j =
∂

∂

•∼
φj

L =
•∼
φj −12hφ̃j . (2.6)

Then we consider the discrete Fourier transforms

φ̃j =
N∑

l=1

exp
[−ijl2π/N]√

N
φl, φl =

N∑

j=1

exp
[

ijl2π/N
]

√
N

φ̃j,

p̃j =
N∑

l=1

exp
[

ijl2π/N
]

√
N

pl, pl =
N∑

j=1

exp
[−ijl2π/N]√

N
p̃j,

(2.7)

such that

{

φ̃j , p̃j
}

=
{

φ̃j+N, p̃j+N
}

,
{

φl, pl
}

=
{

φl+N, pl+N
}

,
{

φN−l, pN−l
}

=
{

φ−l, p−l
}

=
{

φl
∗, pl∗
}

.
(2.8)
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Here (φl, pl | l = 1, 2, . . . ,N/2) can be chosen as the independent variables which obey the
Poisson brackets {φl, pl} = {φ̃j , p̃j}. From (2.7)we can obtain the following identities:

N∑

j=1

p̃2j =
N∑

l=1

pl
∗pl,

N∑

j=1

p̃2j φ̃j =
N∑

l=1

plφl,

N∑

j=1

φ̃2
j =

N∑

l=1

φl
∗φl,

N∑

j=1

(

φ̃j − φ̃j−1
)2

=
N∑

l=1

4 sin2
(
lπ

N

)

φl
∗φl.

(2.9)

Furthermore, we define

ωl ≡ 2
ε
sin
(
lπ

N

)

,

φl = φ1l + iφ2l, pl = p1l + ip2l,
(2.10)

where pl is the conjugate momentum for φl, and the subscripts 1 and 2 denote the real and
imaginary parts, respectively. Therefore, the Hamiltonian (2.5) becomes in momentum space

H = 2
N/2∑

l=1

2∑

r=1

Hrl,

Hrl =
1
2
prl

2 +
1
2
hprlφrl +

1
2
a−2ωl

2φrl
2 +

1
2

(

m2 + ξR
)

φrl
2.

(2.11)

To quantize the theory above, we note also that each pair of operators
∧
φrl and

∧
prl must

satisfy the equal time commutation relations [
∧
φrl,

∧
prl] = i. These commutation relations are

realized by the representation

φrl −→ φrl, prl −→ − i∂

∂φrl
, (2.12)

that is, the functional Schrödinger representation, which is not so widely used as the Fock
representation. These operators act on wave functional ψ(φ), and the inner product is given
by 〈ψ1 | ψ2〉 =

∫

(
∏

rlDφrl)ψ1
∗(φ)ψ2(φ). With the field basis |φ〉, that is, |φ〉 are the eigenstates

of the operator
∧
φrl,

∧
φrl|φ〉 = φrl|φ〉, and then the wave functional ψ(φ, t) can be regarded as

the expansion coefficient 〈φ | ψ(t)〉 of the state |ψ(t)〉. The dynamics of the wave functional
is, therefore, determined by the functional Schrödinger equation

Hψ = i
∂

∂t
ψ, (2.13)

withH defined by (2.11). Writing ψ as the product form

ψ
[

φrl, t
]

=
N/2∏

l=1

2∏

r=1

ψrl
(

φrl, t
) ≡
∏

rl

ψrl
(

φrl, t
)

, (2.14)
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we obtain from (2.13) the following:

Hrlψrl = i
∂

∂t
ψrl, r = 1, 2. (2.15)

Rewriting (2.15) as the following form:

{

1
2

(

prl +
1
2
hφrl

)2

− 1
8
h2φrl

2 +
1
2
α−2ωl

2φrl
2 +

1
2

(

m2 + ξR
)

φrl
2

}

ψrl = i
∂

∂t
ψrl, (2.16)

and setting Prl = prl + 1/2hφrl = −i∂/∂φrl, so that [φrl, Prl] = [φrl, prl] = i, gives the time-
dependent Schrödinger equation

−1
2
∂2ψrl

∂φrl
2
+
1
2

[

a−2ωl
2 +
(

m2 + ξR
)

− 1
4
h2
]

φrl
2ψrl = i

∂ψrl
∂t

. (2.17)

To solve (2.17), we use the conformal time τ defined by dτ = dt/a

τ = −h−1 exp(−ht) = −h−1a−1, −∞ < τ < 0. (2.18)

Then, for each real mode φrl, the normalized instantaneous vacuum and its excited states are
found to be [24]

ψ(nrl)
(

φrl, τ
)

= Al(nrl)(τ)H(nrl)
(

ηrl(τ)
)

exp
(

−1
2
Bl(τ)a−1φrl

2
)

,

nrl = 0, 1, 2, . . . , ηrl(τ) ≡ g(τ)ωl
1/2a−1/2φrl.

(2.19)

HereH(nrl) is the nth-order Hermite polynomial, and the complex function Bl(τ), real function
g(τ), and complex function Al(nrl)(τ) are given by (2.20), (2.21), and (2.22), respectively

Bl(τ) =
2/π |τ |
∣
∣
∣Hν

(1)
∣
∣
∣

2
− iωl

2

(∣
∣
∣Hν

(1)
∣
∣
∣

2
)′

∣
∣
∣Hν

(1)
∣
∣
∣

2
, (2.20)

g(τ) =
(

2
πωl|τ |

)1/2 1
∣
∣
∣Hν

(1)
∣
∣
∣

, (2.21)

Al(nrl)(τ) = exp
[

−i1
2

∫

Bl(τ)dτ − inrlωl

∫

g2(τ)dτ + const
]

, (2.22)
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where Hν
(1)(ωl|τ |) is the Hankel function of the first kind and of order ν, with ν2 = 1/4 −

(m2 + ξR)/h2, and the prime in (2.20) denotes the derivative with respect to ωl|τ |. Note that
the wave functionals for each real mode φrl can also be rewritten in the following form [25]:

ψrl(nrl)
(

φrl, τ
)

= R(nrl)
(

φrl, τ
)

exp
[

iΘ(nrl)
(

φrl, τ
)]

, nrl = 0, 1, 2, . . . , (2.23)

with the amplitude

R(nrl)
(

φrl, τ
)

=

⎡

⎣

√

2h/π
√
π2nnrl!

∣
∣
∣Hν

(1)
∣
∣
∣

⎤

⎦

1/2

H(nrl)
(

ηrl
)

exp
(

−1
2
ηrl

2
)

,

ηrl =

√

2h/π
∣
∣
∣Hν

(1)
∣
∣
∣

φrl,

(2.24)

and the phase

Θ(nrl)
(

φrl, τ
)

= −hωl|τ |
2

(∣
∣
∣Hν

(1)
∣
∣
∣

)′

∣
∣
∣Hν

(1)
∣
∣
∣

φrl
2 −
(
1
2
+ nrl
)∫

2/π |τ |
∣
∣
∣Hν

(1)
∣
∣
∣

2
dτ. (2.25)

The complete state wave functionals can be written as ψ[n][φrl, t] =
∏

rlψ(nrl)(φrl, t), where
nrl = 0, 1, 2, . . . and [n] ≡ (ni, nj , . . .)whichmeans that it is possible for different field modes to
be in different excited states; that is, mode i is in the ni-excited state, mode j is in the nj excited
state, and so forth. For nrl = 0, the ground state wave functional corresponds to the standard
BD vacuum chosen conventionally in the literature. For the case of spatial dimension d = 3,
we have ν2 = 9/4 − (m2 + ξR)/h2 with R = 12h2, and the mode index l in ωl carries labels
(li, i = 1, 2, 3) which will be suppressed below.

To define the pilot-wave scalar field theory, we note from (2.13)–(2.17) that, in the case
of d = 3, the time-dependent Schrödinger equation for ψ is given by

i
∂ψ

∂t
=
∑

rl

{

−1
2

∂2

∂φrl
2
+
1
2

[

a−2ωl
2 +
(

m2 + ξR
)

− 9
4
h2
]

φrl
2

}

ψ, (2.26)

which implies the continuity equation

∂
∣
∣ψ
∣
∣
2

∂t
+
∑

rl

{
∂

∂φrl

[
∣
∣ψ
∣
∣
2 ∂Θ
∂φrl

]}

= 0 (2.27)

and the de Broglie velocities

dφrl
dt

=
∂Θ
∂φrl

, (2.28)
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where ψ = |ψ| exp[iΘ]. The wave functional ψrl(where ψrl = |ψrl| exp[iΘrl], and Θ =
∑

rlΘrl)
for a single mode φrl satisfies (2.17), which implies the continuity equation

∂
∣
∣ψrl
∣
∣
2

∂t
+

∂

∂φrl

(
∣
∣ψrl
∣
∣
2 ∂Θrl

∂φrl

)

= 0, (2.29)

and the de Broglie velocity field

dφrl
dt

=
∂Θrl

∂φrl
. (2.30)

Here ψ is interpreted as a physical field in field configuration space, guiding the evolution of
φrl.

Since the exact forms of the normalized instantaneous BD vacuum and its excited
states are given by (2.23), it is straightforward to find the corresponding quantum trajectories
of these eigenstates by solving (2.30) for each mode. Substituting the phase (2.25) into (2.30)
and using the conformal time τ yields the de Broglie velocity field for φrl

dφrl
dτ

= a
∂Θ(n)
(

φrl, τ
)

∂φrl
= −ωl

(∣
∣
∣Hν

(1)
∣
∣
∣

)′

∣
∣
∣Hν

(1)
∣
∣
∣

φrl. (2.31)

In the continuum limit (ωl → k), (2.31) reads

dφrk
dτ

= −k

(∣
∣
∣Hν

(1)(k|τ |)
∣
∣
∣

)′

∣
∣
∣Hν

(1)(k|τ |)
∣
∣
∣

φrk, (2.32)

which has the solution

φrk(z) = C
∣
∣
∣Hν

(1)(z)
∣
∣
∣, (2.33)

where z ≡ k|τ | = k/a/h is the ratio of physical wave number to the inverse of Hubble radius,
and integration constant C is chosen to be φrk(z0)/|Hν

(1)(z0)| with z0 being some reference
point. Note that the quantum trajectory (2.33) is independent of the quantum number nrl and
depends on the form of the potential V (φ) through ν [26].
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3. Evolution of Vacuum Wave Functional in
the Trans-Planckian Physics

To investigate the effect of the trans-Planckian physics, we consider the Corley-Jacobson type
dispersion relations

ω2
(
k

a

)

= k2
[

1 + bs
(

k

aM

)2s
]

, (3.1)

whereM is a cut-off scale, s is an integer, and bs is an arbitrary coefficient [17–19]. Note that
the action for a scalar field with the modified dispersion relation (3.1) with s = 1 and b1 > 0
takes the form [27, 28]

S =
∫

d4x
√−g(Lφ + Lcor + Lu

)

, (3.2)

where Lφ is the standard Lagrangian of a minimally coupled scalar field

Lφ =
1
2
gμν∂μφ∂νφ − V (φ), (3.3)

Lcor corresponds to the nonlinear part of the dispersion relation

Lcor = − b1
M2

(

D2φ
)2
, (3.4)

and Lu describes the dynamics of a unit time-like vector field uμ which defines a preferred
rest frame

Lu = −λ(gμνuμuν − 1
) − d1FμνFμν, (3.5)

with

D2φ = ⊥αβ∇α∇βφ + uα∇αφ∇βu
β,

⊥μν ≡ −gμν + uμuν,
Fμν ≡ ∇μuν − ∇νuμ.

(3.6)

Here ∇μ is the covariant derivative associated with the metric gμν, the tensor ⊥μν gives
the metric on a slice of fixed time while D2 is proportional to the Laplacian operator
on the same surface, λ is the Lagrange multiplier, and the parameters b1 and d1 with
no dimensions and the dimensions of mass square, respectively, are constrained by the
astrophysical observations. For the modified dispersion relation (3.1) with s = 2 and b2 > 0,
(3.4) should be replaced with Lcor = (−b2/M4)(D21φ)(D22φ), where the operator D2n is
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defined as D2n ≡ Dμ1D
μ1 · · ·DμnD

μn . Then using z = k|τ | = k/ah, (2.26) becomes in the
continuum limit (ωl → k)

i
∂ψ

∂t
=
∑

rk

{

−1
2

∂2

∂φrk
2
+
1
2

[

z2
(

1 + σ2z2s
)

h2 − ν2h2
]

φrk
2

}

ψ, (3.7)

where σ2 ≡ bs(h/M)2s, and the ground state wave functional of (3.7) becomes

ψ(0) =
∏

rk

Ak(0)(τ) exp
(

−1
2
Bk(τ)a−1φrk

2
)

, (3.8)

where Bk(τ) satisfies

Bk
2(τ) − i

[

Bk
′(τ) +

Bk(τ)
τ

]

−
[

k2
(

1 + σ2z2s
)

− ν2

τ2

]

= 0, (3.9)

Bk
′(τ) ≡ dBk(τ)

dτ
,

Ak(0)(τ) = exp
[

−i1
2

∫

Bk(τ)dτ + const
]

.
(3.10)

In region I where kphys ≡ k/a > M, that is, z > M/h, the dispersion relations can be
approximated by ω2(k/a) ≈ k2σ2z2s, and (3.9) becomes

Bk
I2(τ) − i

[

Bk
I′(τ) +

Bk
I(τ)
τ

]

−
(

k2σ2z2s − ν2

τ2

)

= 0. (3.11)

To obtain the solution of (3.11), we define BkI(τ) ≡ −ifkI′/fkI , where fk
I′(τ) ≡ dfk

I(τ)/dτ ,
and transform (3.11) into

d2fk
I

dz2
+
1
z

dfk
I

dz
+

(

σ2z2s − ν2

z2

)

fk
I = 0. (3.12)

The general solution of (3.12) is

fk
I(z) = C1

I(z0)Hν
(1)
(

σ

1 + s
z1+s
)

+ C2
I(z0)Hν

(1)∗
(

σ

1 + s
z1+s
)

, (3.13)

where the Hankel function is of order ν = ν/1 + s with ν2 = 9/4 − (m2 + ξR)/h2, and the
k-dependent constants C1

I and C2
I are to be fixed by choosing suitable initial condition at

an arbitrary initial time τ0 for each of the modes and satisfying |C1
I|2 − |C2

I|2 = 1 from the
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Wronskian of fk
I and fk

I∗. We can choose C1
I = 1 and C2

I = 0 for the initial Bunch-Davies
vacuum state and obtain that

Bk
I(τ) =

2/π |τ |
∣
∣
∣Hν

(1)
∣
∣
∣

2 (1 + s) − i
ωl

2

(∣
∣
∣Hν

(1)
∣
∣
∣

2
)′

∣
∣
∣Hν

(1)
∣
∣
∣

2
σzs, (3.14)

where the prime in (3.14) denotes the derivative with respect to (σ/(1 + s))z1+s. The
corresponding wave functional is

ψ(0)
I =
∏

rk

Ak(0)
I(τ) exp

(

−1
2
Bk

I(τ)a−1φrk
I2
)

,

Ak(0)
I(τ) = exp

[

−i1
2

∫

Bk
I(τ)dτ + const

]

.

(3.15)

In region II where kphys ≡ k/a < M, that is, z < M/h, the dispersion relations recover
the standard linear relations ω2 ∼= k2, and (3.9) becomes

Bk
II2(τ) − i

[

Bk
II′(τ) +

Bk
II(τ)
τ

]

−
(

k2 − ν2

τ2

)

= 0. (3.16)

Again, the solution of (3.16) can be obtained by defining BkII(τ) ≡ −ifk II′/fk II and transform-
ing (3.16) into

d2fk
II

dz2
+
1
z

dfk
II

dz
+

(

1 − ν2

z2

)

fk
II = 0. (3.17)

The general solution of (3.17) is

fk
II(z) = C1

II(z0)Hν
(1)(z) + C2

II(z0)Hν
(1)∗(z), (3.18)

where C1
II and C2

II satisfy |C1
II|2 − |C2

II|2 = 1 from the Wronskian of fk
II and fk

II∗. Therefore,
we have

Bk
II(τ) =

2/π |τ |
(∣
∣
∣C1

II
∣
∣
∣

2
+
∣
∣
∣C2

II
∣
∣
∣

2
)∣
∣
∣Hν

(1)
∣
∣
∣

2
+ 2Re
[

C1
IIC2

II∗
(

Hν
(1)
)2
]

− ik
2

{(∣
∣
∣C1

II
∣
∣
∣

2
+
∣
∣
∣C2

II
∣
∣
∣

2
)∣
∣
∣Hν

(1)
∣
∣
∣

2
+ 2Re
[

C1
IIC2

II∗
(

Hν
(1)
)2
]}′

(∣
∣
∣C1

II
∣
∣
∣

2
+
∣
∣
∣C2

II
∣
∣
∣

2
)∣
∣
∣Hν

(1)
∣
∣
∣

2
+ 2Re
[

C1
IIC2

II∗
(

Hν
(1)
)2
] ,

(3.19)
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where the prime in (3.19) denotes the derivative with respect to z. Note that (3.19) can be
simply obtained from (2.20) by replacing |Hν

(1)| in (2.20) according to [25]

∣
∣
∣Hν

(1)
∣
∣
∣ −→
{(

|C1|2 + |C2|2
)∣
∣
∣Hν

(1)
∣
∣
∣

2
+ 2Re
[

C1C2
∗
(

Hν
(1)
)2
]}1/2

. (3.20)

The corresponding wave functional is

ψ(0)
II =
∏

rk

Ak(0)
II(τ) exp

(

−1
2
Bk

II(τ)a−1φrk
II2
)

,

Ak(0)
II(τ) = exp

[

−i1
2

∫

Bk
II(τ)dτ + const

]

.

(3.21)

Let τc be the time when the modified dispersion relations take the standard linear form. Then
σ2zc

2s = 1, where zc = k|τc| = (1/bs
1/2s)(M/h) � 1 for bs � 1. The constants C1

II and C2
II can

be obtained by the following matching conditions at τc for the two wave functionals (3.15)
and (3.21):

ψ(0)
I
∣
∣
∣
ZC

= ψ(0)
II
∣
∣
∣
∣
ZC

, (3.22)

dψ(0)
I

dz

∣
∣
∣
∣
∣
ZC

=
dψ(0)

II

dz

∣
∣
∣
∣
∣
ZC

, (3.23)

which can also be rewritten, respectively, as

Re
(

Bk
I
)∣
∣
∣
ZC

= Re
(

Bk
II
)∣
∣
∣
ZC

, (3.24)

dRe
(

Bk
I
)

dz

∣
∣
∣
∣
∣
∣
∣
ZC

=
dRe
(

Bk
II
)

dz

∣
∣
∣
∣
∣
∣
∣
ZC

, (3.25)

by using BkI = Bk II, φrk
I = φrk

II, Ak(0)
I = Ak(0)

II when z = zc.
To find C1

II and C2
II, we focus on the case of massless minimally coupled (ν = 3/2)

scalar field in the slowroll inflation and take the CJ type dispersion relation (3.1) with s = 2
and b2 > 0 which corresponds to the ultraviolet limit of HL gravity. For this case ν = 1/2, we
have |H1/2

(1)((σ/3)z3)| = (6/πσz3)1/2 with σ = zc−2. Then from (3.14), (3.19), and (3.24), we
obtain that

1 =
∣
∣
∣C1

II
∣
∣
∣

2
+
∣
∣
∣C2

II
∣
∣
∣

2
+ 2
∣
∣
∣C1

II
∣
∣
∣

∣
∣
∣C2

II
∣
∣
∣ cos(2zc − θ), (3.26)
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where we have used C1
IIC2

II∗ = |C1
II||C2

II| exp(−iθ), σ = zc
−2, and zc � 1. (Note that since

|C1
II|2 − |C2

II|2 = 1 is one real condition on the two complex numbers C1
II and C2

II, we can
choose C1

II = |C1
II| and C2

II = |C2
II| exp(iθ), where θ is the relative phase between C1

II and
C2

II and can be considered as a state parameter.) Therefore from (3.26) and |C1
II|2 − |C2

II|2 = 1
we have

∣
∣
∣C1

II
∣
∣
∣ = csc(2zc − θ),

∣
∣
∣C2

II
∣
∣
∣ = −cot(2zc − θ), (3.27)

where sin(2zc − θ) > 0, cos(2zc − θ) < 0. Substituting (3.14) and (3.19) into (3.25) and keeping
terms up to order 1/zc on the right-hand side of (3.25), we obtain the following:

2
zc

=
∣
∣
∣C1

II
∣
∣
∣

∣
∣
∣C2

II
∣
∣
∣ cos(2zc − θ) 8

zc
+ 4
∣
∣
∣C1

II
∣
∣
∣

∣
∣
∣C2

II
∣
∣
∣ sin(2zc − θ). (3.28)

Using (3.27) in (3.28) gives

cot(2zc − θ) = − 1
2zc

or cot(2zc − θ) = −zc
2

+
1
2zc

. (3.29)

Here we choose cot(2zc − θ) = −1/2zc, so that |C2
II| is small for zc � 1 to avoid an

unacceptably large backreaction on the background geometry. Therefore, we have for zc � 1

∣
∣
∣C2

II
∣
∣
∣
∼= 1

2zc
,

∣
∣
∣C1

II
∣
∣
∣ =

√

1 +
∣
∣
∣C2

II
∣
∣
∣

2 ∼= 1 +
1

8zc2
∼= 1, (3.30)

or

sin(2zc − θ) ∼= 1, cos(2zc − θ) ∼= − 1
2zc

. (3.31)

4. Bohm Quantum Trajectories in the Trans-Planckian Physics

Note that in defining the pilot-wave scalar field theory in Section 2, we used de Broglie’s first-
order dynamics of 1927, which is defined by (2.26) and (2.30). To consider the effect of the
trans-Planckian physics, we replace (2.26)with (3.7). In fact, we can also make use of Bohm’s
second-order dynamics of 1952, which is defined by (3.7) and the following equation in the
continuum limit (ωl → k):

d2φrk

dt2
= − ∂

∂φrk
(V +Q), (4.1)

where the classical potential V is given by

V =
∑

rk

1
2

[

z2
(

1 + σ2z2s
)

h2 − ν2h2
]

φrk
2, (4.2)
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and the so-called “quantum potential” Q is given by

Q = −
∑

rk

1
2
∣
∣ψ(0)
∣
∣

∂2
∣
∣ψ(0)
∣
∣

∂φrk
2
, (4.3)

where ψ(0) is given by (3.8)–(3.10), and |ψ(0)| is given by (2.24) for nrl = 0. It has been pointed
out in previous work [26] that Bohm’s second-order dynamics in general leads to more
possible quantum trajectories than de Broglie’s first-order dynamics does, because Bohm
regarded (4.1) as the law of motion, with the de Broglie guidance equation (2.32) added as a
constraint on the initial momenta. This distinction between Bohm’s second-order dynamics
and de Broglie’s first-order dynamics was also emphasized recently by Valentini [29].

In region I where ω2(k/a) ≈ k2σ2z2s and z > M/h, the classical potential V in (4.2)
becomes

V =
∑

rk

1
2

(

σ2z2+2sh2 − ν2h2
)

φrk
I2, (4.4)

and from (4.3), (3.8), (3.10), and (3.14), the quantum potential Q becomes

Q =
∑

rk

⎛

⎜
⎝−1

2
(2h/π)2
∣
∣
∣Hν

(1)
∣
∣
∣

4
(1 + s)2φrk

I2 +
1
2

2h/π
∣
∣
∣Hν

(1)
∣
∣
∣

2 (1 + s)

⎞

⎟
⎠. (4.5)

Substituting (4.4) and (4.5) into (4.1) and using dτ = dt/a and z = k|τ | = k/ah gives

z2
d2φrk

I

dz2
+ z

dφrk
I

dz
+
[

σ2z2+2s − ν2 − 4
π2

∣
∣
∣Hν

(1)
∣
∣
∣

−4
(1 + 2s)2

]

φrk
I = 0. (4.6)

On the other hand, in region II where ω2(k/a) ≈ k2and z < M/h, the classical potential V in
(4.1) and the corresponding quantum potential Q become, respectively,

V =
∑

rk

1
2

(

z2h2 − ν2h2
)

φrk
II2,

Q =
∑

rk

⎛

⎜
⎝−1

2
(2h/π)2
∣
∣
∣Hν

(1)
∣
∣
∣
md

4
φrk

II2 +
1
2

2h/π
∣
∣
∣Hν

(1)
∣
∣
∣
md

2

⎞

⎟
⎠,

(4.7)

where |Hν
(1)|md means |Hν

(1)|modified according to (3.20). Then the quantum trajectory φrk
II

satisfies

z2
d2φrk

II

dz2
+ z

dφrk
II

dz
+
[

z2 − ν2 − 4
π2

∣
∣
∣Hν

(1)
∣
∣
∣
md

−4]
φrk

II = 0. (4.8)
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In particular, for the case of massless minimally coupled (ν = 3/2) scalar field and
Corley-Jacobson dispersion relation (3.1) with s = 2, (4.6) becomes

z2
d2φrk

I

dz2
+ z

dφrk
I

dz
− 9
4
φrk

I = 0, (4.9)

because in this case the first term in the square brackets of (4.6) is exactly cancelled by the last
term. The general solution of (4.9) is

φrk
I(z) = C1

I
z−3/2 + C2

I
z3/2, (4.10)

where C1
I
and C2

I
are constants to be fixed by choosing suitable initial conditions at an

arbitrary initial time τ0 for the quantum trajectory φrk
I. Here we can choose C1

I
/= 0 and

C2
I
= 0 so that the first term C1

I
z−3/2 of φrk

I corresponds to (2.33) with |H1/2
(1)((σ/3)z3)| =

(6/πσz3)1/2. On the other hand, in the region II |H3/2
(1)|md becomes

∣
∣
∣H3/2

(1)
∣
∣
∣
md

=
∣
∣
∣H3/2

(1)
∣
∣
∣

{
∣
∣
∣C1

II
∣
∣
∣

2
+
∣
∣
∣C2

II
∣
∣
∣

2
+ 2
∣
∣
∣C1

II
∣
∣
∣

∣
∣
∣C2

II
∣
∣
∣

×
[

cos(2z − θ)z
2 − 1
z2 + 1

− sin(2z − θ) 2z
1 + z2

]}

.

(4.11)

For z → zc � 1 (4.11) reduces to |H3/2
(1)| by using (3.26), and the quantum trajectory φrk

II

satisfies

z2
d2φrk

II

dz2
+ z

dφrk
II

dz
+
[

z2 − 9
4
− 4
π2

∣
∣
∣H3/2

(1)
∣
∣
∣

−4]
φrk

II = 0. (4.12)

The most general asymptotic series solution of (4.12) is [26]

φrk
II(z) = C1

II
z−1/2
(

1 +
1
2
z−2 − 1

8
z−4 + · · ·

)

+ C2
II
z1/2
(

1 +
3
2
z−2 +

1
24
z−4 + · · ·

)

. (4.13)

For z → zc � 1, the solution (4.13) reduces to

φrk
II(z) ≈ C1

II
z−1/2 + C2

II
z1/2. (4.14)
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Substituting (4.10) and (4.14) into the following matching conditions at zc for the two
quantum trajectories φrk

I and φrk
II:

φrk
I
∣
∣
∣
ZC

= φrk
II
∣
∣
∣
ZC

,

dφrk
I

dz

∣
∣
∣
∣
∣
ZC

=
dφrk

II

dz

∣
∣
∣
∣
∣
ZC

,
(4.15)

we obtain

C1
II
= 2C1

I 1
zc
, C2

II
= −C1

I 1
zc2

. (4.16)

From (4.14) and (4.16)we see that as z decreases from zc to 1,C1
II
z−1/2 becomes the dominant

term, that is,

φrk
II(z) ≈ C1

II
z−1/2. (4.17)

On the other hand, for z� 1 (well after horizon exit), (4.11) also reduces to |H3/2
(1)| by using

(3.30) and zc � 1, and the most general power series solution of (4.12) is [26]

φrk
II(z) = ĈII

1 z
−3/2
(

1 +
1
2
z2 − 1

8
z4 + · · ·

)

+ ĈII
2 z

3/2

×
(

1 − 1
10
z2 +

1
280

z4 + · · ·
)

.

(4.18)

Note that for z� 1, the last term in the square brackets of (4.12) is negligible when compared
with the first term, and (4.12) becomes a Bessel equation with the solution

φrk(z) = CN3/2(z), (4.19)

whereN3/2(z) is the Neumann function which has the following expression:

N3/2(z) −→ −Γ(3/2)
π

(
2
z

)3/2

, z� 1, (4.20)

and C is a constant. Note also that, for z � 1, (4.19) is equivalent to (2.33). Therefore, for
z� 1, the solution (4.18) reduces to

φrk
II(z) ≈ ĈII

1 z
−3/2, (4.21)
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which corresponds to (4.19) and (4.20). Requiring φrk
II to be continuous at z = 1 (for the

justification of this patching condition, see the discussion (iv) in Section 5), we have from
(4.17), (4.21), and (4.16)

ĈII
1 = C1

II
=

2
zc
C1

I
. (4.22)

Since in the case of d = 3, φrk contains a factor a3/2 which is proportional to z−3/2, we can
define a new field variable urk ≡ a−3/2φrk and use a = (k/h)z−1 to rewrite (4.10) and (4.21) as

urk
I =
(
k

h

)−3/2
C1

I
, urk

II =
2
zc

(
k

h

)−3/2
C1

I
. (4.23)

Thus, we see from (4.23) that for fixed k and zc � 1, as z decreases from z � 1 to z � 1,
the scalar field evolves from one constant to another much smaller constant; that is, there is a
transition in the time evolution of the quantum trajectory of the scalar field.

5. Conclusion and Discussion

In this paper we have considered a generically coupled free real scalar field in de Sitter space
in the lattice Schrödinger picture within the framework of the pilot-wave theory of de Broglie
and Bohm. In particular, we have investigated the possible effects of the trans-Planckian
physics on the quantum trajectories of the vacuum state of scalar field.

For the massless minimally coupled scalar field and the Corley-Jacobson type
dispersion relation with sextic correction to the standard-squared linear relation, we have
found that as z decreases from z � 1 (well before horizon exit) to z � 1 (well after horizon
exit), there is a transition in the time evolution of the quantum trajectory of the scalar field.

For the massive nonminimally coupled scalar field (ν2 = 9/4 − (m2 + ξR)/h2)which is
relevant to the nonminimally coupled chaotic inflation with quadratic potential V = m2φ2/2,
the coupling to the curvature ξRφ2/2 leads to the additional mass-squaredm2 = 12ξh2 in the
case of d = 3. Notice that m2 � h2 and |ξ| � 1 are required for slowroll [30, 31]. Thus, in
general, we have ν ∼= 3/2, and expect that for the massive nonminimally coupled scalar field
and the Corley-Jacobson-type dispersion relation with sextic correction, the evolution of the
quantum trajectory of the scalar field also exhibits similar transitional behavior from z � 1
to z� 1.

Finally we conclude this paper with the following discussions.
(i) Since a constant scalar field is similar to a cosmological constant Λ, the transition

could be interpreted as a transition of the Universe from a largeΛ to a smallΛ, thus providing
a possible mechanism to solve the riddle of the smallness of Λ in the framework of the
Bohmian approach to quantum theory of inflationary cosmology. Note that the vacuum
energy density due to quantum states with k < kmax is ρvac ∼= kmax

4 ∼ MPl
4, and ρvac =

MPl
2Λ/8π (here MPl = 1.22 × 1019 Gev is the Planck mass). For the simplest potential

driving inflation V (φ) = m2φ2/2, from (4.23) and ρvac = V (φ = const), we expect that as
z decreases from zc to 0, the cosmological constant Λ decreases from 8πMPl

2 to 16πm2zc
−2.

Here, we have zc = k|τc| = (1/b2
1/4)(MPl/h), MPl is the Planck cutoff scale, h ∼ 1015 Gev

is the Hubble constant during inflation, and m = 1.8 × 1013 Gev which can be obtained
from COBE normalization (see [1], page 212). Since current observations indicate that
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ρvac
0 ∼ 10−47 Gev4 and Λ0 ∼ 10−83 Gev2, we find that the value of the parameter b2 is

very small, b2 ∼ 10−206. Therefore the smallness of the cosmological constant is intimately
connected with the infinitesimal violation of Lorentz invariance at the level of sextic
correction to the standard squared linear dispersion relation.

Since zc � 1, the transitional time is in the very early stage of inflation. We note
that the quantum potential Q plays an important role in the evolution of the quantum
trajectory of scalar field. From (4.1) and (4.12), we also see that for z � 1 and the

mode φrk
II the quantum force (4h2/π2)|H3/2

(1)|−4φrk II arising from the quantum potential
Q through −∂Q/∂φrk II approximately cancels the classical force −(z2h2 − 9/4h2

)

φrk
II arising

from the classical potential V through −∂V/∂φrk II, while for z � 1 the quantum force
becomes negligible with respect to the classical force. Therefore, as z decreases from zc
to 0, there is a quantum-to-classical transition. In this regard, the result is the same as
that of the recent relevant work in which the quantum-to-classical transition of primordial
cosmological perturbations is obtained in the context of the de Broglie-Bohm theory
[32].

(ii) In a Lorentz noninvariant theory with the action (3.2), the modified dispersion
relation (3.1) breaks the local Lorentz invariance explicitly while it preserves rotational and
translational invariance. The phenomenological bounds on the parameters of the theory come
from the observations of ultra-high-energy cosmic rays [33]. Using effective field theory
with higher-dimensional Lorentz violating operators, which results in the modified field
theory with a dispersion relation, it was shown that for various standard model particles
the numerical value of the bound on the parameter b1 in (3.1) is b1 < 5 × 10−5 with the
Planck cut-off scale M ∼= MPl. On the other hand, the bound on the parameter b2 in (3.1) is
currently not available observationally, but its numerical value of the bound is expected to
be so small as we have shown in the previous discussion when the cut-off scale is near to the
Planck scale.

(iii) In the last paragraph of Section 2, we note that the quantum trajectory (2.33) is
independent of the quantum number nrl. This is due to the fact that the Hermite polynomials
in energy eigenstates (2.19) or (2.23) are real. If we consider the state which is some
superposition of energy eigenstates such as a wave packet or squeezed state, then we would
obtain trajectories that generally depend on the quantum number nrl. Moreover, note that in
general the trajectories for each mode are not independent of each other. However, since
we are dealing with particularly simple state which factories, these issues do not arise
here.

(iv) Regarding the patching condition after (4.21), note that, in the region II, |H3/2
(1)|md

in (4.11) reduces to |H3/2
(1)| as z decreases continuously from zc to 0 (not only for z � 1or

z � 1 or z ∼= 1) due to (3.30) and zc � 1. Therefore, the quantum trajectory φrk
II(z) satisfies

(4.12)

z2
d2φrk

II

dz2
+ z

dφrk
II

dz
+
[

z2 − 9
4
− 4
π2

∣
∣
∣H3/2

(1)
∣
∣
∣

−4]
φrk

II = 0, (5.1)

where |H3/2
(1)(z)| = z−3/2

√
1 + z2 for 0 ≤ z ≤ zc. Note also that the solution of (2.32).



18 Advances in High Energy Physics

φrk(z) = C|H3/2
(1)(z)| is also one solution of (4.12), which is just the same as that

appearing in (4.13) and (4.18). This is because the first asymptotic series solution of (4.13)
can be rewritten as

C1
II
z−1/2
(

1 +
1
2
z−2 − 1

8
z−4 + · · ·

)

= C1
II
z−1/2
√

1 +
(
1
z

)2

= C1
II
z−3/2
√

1 + z2, (5.2)

while the first power series solution of (4.18) can be rewritten as

ĈII
1 z

−3/2
(

1 +
1
2
z2 − 1

8
z4 + · · ·

)

= ĈII
1 z

−3/2
√

1 + z2. (5.3)

Therefore, we have ĈII
1 = C1

II
.

(v) The pilot-wavemodel treated in this paper is intrinsically nonlocal because of Bell’s
theorem and not Lorentz invariant because of the formulation with respect to a preferred
frame of reference. However, in quantum equilibrium, the pilot-wave models will reproduce
the standard quantum theoretical predictions. In fact, there are some attempts to formulate
Lorentz covariant pilot-wave models [34].
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