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A short note on radiation by a moving classical particle in N = 4 supersymmetric Yang-Mills
theory is discussed in this paper.

1. Introduction

In papers [1–3], radiation by a point-like quark in N = 4 supersymmetric Yang-Mills theory
at strong coupling is investigated using the AdS/CFT correspondence in the supergravity
approximation [4–6]. In this paper, modifications of the published radiation pattern are
suggested, which are consistent with the results in [7]. This analysis is motivated by the
description of electrodynamic radiation in classical electrodynamics [8, 9].

The important result in the context of radiation by an accelerated charge e is given by
the Abraham-Lorentz four-vector force [8, 10, 11] in classical relativistic electrodynamics [12]
as

fμ =
2e2

3
(aνaνv

μ + ȧμ), (1.1)

where the particle velocity is ẋμ = vμ ≡ dxμ/dτ and the acceleration v̇μ = aμ ≡ dvμ/dτ with
the proper time τ for the particle [13] (the signature used here is (+ − −−)). It is important to
note the orthogonality of the force to the velocity as

vμf
μ = 0. (1.2)

This force vanishes for uniformly accelerated motion, fμ = 0 [8].
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2. Classical Radiation of Accelerated Electrons

In order to set the framework, it is helpful to discuss radiation in classical electrodynamics.
A usefull approach is found in the 1949 paper by Schwinger [9].

Assume sources, restricted to a finite domain, which emit radiation. The four-
momentum of the classical electromagnetic field is given in terms of the energy-momentum
tensor by integrating on a hyper-surface as follows:

Pν =
∮
Tμν dσμ. (2.1)

Gauß and Maxwell allow us to rewrite it as

Pν =
∫
∂μT

μν d4x =
∫
jμF

μν d4x, (2.2)

in terms of the current jμ = (ρ,�j) and the field-strength Fμν.
In the following it is important in order to determine the radiation force that the

radiation field tensor and the vector potential are introduced in terms of the retarded and
advanced fields [10, 11] as follows:

F
μν

rad =
1
2

(
F
μν
ret − F

μν

adv

)
. (2.3)

Replacing Fμν by F
μν

rad in (2.2) gives Pν
rad, which for point-like charges satisfies (compare to

(1.2))

vν

dPν
rad

dτ
∝ vμF

μν

radvν = 0. (2.4)

Using current conservation ∂μj
μ = 0 and introducing the vector potential

A
μ

rad =
1
2

(
A

μ
ret −A

μ

adv

)
≡
(
φ, �A
)
, (2.5)

one obtains the power

dP 0
rad

dt
=
∫[

�j · ∂
�A

∂t
− ρ

∂φ

∂t

]
d3x +

d

dt

∫
ρφ d3x. (2.6)

In [9, equation (I.17)], Schwinger discards the second term of this formula, which has the
form of a total time derivative.

The radiation vector potential [9] is expressed by

A
μ

rad(t, x) =
i

2π

∫
exp
[
iω
(
n · (x − x′

) − (t − t′
))]

jμ
(
t′, x′
)
d3x′dt′ωdω

dΩ
4π

. (2.7)
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A point-particle current is assumed as

jμ = e

(
1,v(t) =

dx
dt

)
δ(x − R(t)). (2.8)

The integrals in (2.6) are as follows:

∫
ρφ d3x = e2

∫
δ′(t′ − t + n · (R(t) − R

(
t′
)))

dt′dΩ = −e2
∫
dΩ
4π

n · a
ξ3

, (2.9)

with ξ = (1 − n · v), a = dv/dt, and from equation (I.41) of [9] one obtains

∫[
�j · ∂

�A

∂t
− ρ

∂φ

∂t

]
d3x = e2

∫
dΩ
4π

[
a2

ξ3
+ 2

n · av · a
ξ4

− (n · a)2
γ2ξ5

]

+
d

dt
e2
∫
dΩ
4π

[
−v · a

ξ3
+
n · a
γ2ξ4

]
,

(2.10)

with γ = 1/
√
1 − v2 and vμ = (γ, γv).

Finally, using the notion of emitted power and a Schott-type term (e.g., in the notation
of [14]), the result of the angular radiation pattern is

dP 0
rad

dt dΩ
≡ Prad(n, t) = Pemitt(n, t) + PSchott(n, t), (2.11)

where

Pemitt(n, t) =
e2

4π

[
a2

ξ3
+ 2

n · av · a
ξ4

− (n · a)2
γ2ξ5

]
,

PSchott(n, t) =
e2

4π
d

dt

[
−v · a + n · a

ξ3
+
n · a
γ2ξ4

]
.

(2.12)

Indeed, there are two terms contributing to the radiation power. Schwinger [9] claims that
only the first one Pemitt(n, t), the one denoting the emission, should be retained. It has the
characteristics of an irreversible energy transfer. The second one in the form of a total time
derivative is reversible in nature.

Following Jackson [15], to obtain the radiated energy density of a charged particle, one
starts from the large distance −1/R contribution of the Liénard-Wiechert electric field as

Erad =
e

R

n ∧ [(n − v) ∧ a]

(1 − n · v)3

=
e

R

[
− a

(1 − n · v)2
+
(n · a)(n − v)

(1 − n · v)3
]
,

(2.13)
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to obtain from

Evector =
1
8π

(
E2 + B2

)
, (2.14)

with |Brad| = |Erad|

Evector =
e2

4πR2

[
a2

(1 − n · v)4
+ 2

(v · a)(n · a)
(1 − n · v)5

− (n · a)2
γ2(1 − n · v)6

]
. (2.15)

There is agreement between

R2(1 − n · v)Evector = Pemitt(n, t). (2.16)

Integrating the angular dependence (see, e.g., the useful integrals in Appendix A in [2]), one
obtains

γ
dP 0

rad

dt
=

dP 0
rad

dτ
=

2e2

3
γ4
[
a2 + γ2(v · a)2

]
γ − 2e2

3
d

dτ

[
γ4(v · a)

]
, (2.17)

which, with aμ = (γ4v · a, γ2a + γ4(v · a)v), can be written as

dP 0
rad

dτ
= −f0 = −2e

2

3

[
aμaμv

0 + ȧ0
]
, (2.18)

that is, the zero component of the (negative) relativistic Abraham-Lorentz vector force (1.1)
[8, 10, 12, 14], as

fμ = f
μ

emitt + f
μ

Schott =
2e2

3

⎡
⎣
(

d2x

dτ2

)2
dxμ

dτ
+
d3xμ

dτ3

⎤
⎦ . (2.19)

The first term represents an irretrievable loss of energy, and the second, the Schott
contribution, is a total time differential, which contributes nothing to an integral by dτ , when
the initial value of aμ is returned at the end [12].

In summary, as Schwinger stated already in 1949, only the spectrum for the irreversible
transfer Pemitt(n, t) is the relevant one for discussing the emitted radiation and, therefore,
should be retained. It is consistent with the derivation via the radiative electric field (2.13) as
given in [15].

3. Classical N = 4 SYM Radiation

In order to calculate the radiation power, one has to add to the vector part a contribution due
to a massless scalar field χ [1, 2] and the replacement e2 → e2eff = λ/8π . This leads to

∂μT
μν

scalar = jχ∂
νχ, (3.1)
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with the current

jχ = ρχ = eeff
√
1 − v2δ(x − R(t)). (3.2)

This scalar contribution leads to

Pscalar(n, t) =
e2eff
4π

[
γ2(v · a)2

ξ3
− 2

(v · a)(n · a)
ξ4

+
(n · a)2
γ2ξ5

]

+
e2eff
4π

d

dt

[
v · a
ξ3

− n · a
γ2ξ4

]
,

(3.3)

(see also [1, 2]). Adding the vector parts (2.12) from the previous section, the weak coupling
angular spectrum is given by

Prad(n, t) =
λ

32π2

a2 + γ2(v · a)2
ξ3

− λ

32π2

d

dt

[
n · a
ξ3

]
. (3.4)

The term for Pemitt(n, t) may also be expressed as

Pemitt(n, t) =
λ

32π2

γ2
[
a2 − (v ∧ a)2

]

(1 − n · v)3
. (3.5)

Performing the angular integration gives

∫
γPrad(n, t)dΩ =

λ

8π
γ4
[
a2 + γ2(v · a)

]
γ − λ

8π
d

dτ

[
γ4(v · a)

]
. (3.6)

Up to the coupling, this expression agrees with the one from classical electrodynamics, given
by (2.17). The N = 4 SYM Abraham-Lorentz force [16, 17] in the weak coupling limit reads

f
μ

SYM,weak =
λ

8π
[aνaνv

μ + ȧμ], (3.7)

allowing the same interpretation as in the classical electrodynamics given above. fμ

SYM,weak
satisfies the constraint (1.2).
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4. Radiation in N = 4 SYM at Strong Coupling

Based on the work by [1], Hatta et al. [2] performed a detailed and transparent calculation
of the radiation pattern by a heavy quark in N = 4 SYM at strong coupling, to be followed
rather closely. The result consists of two parts for the energy density, to be identified as

Pemitt(n, t) =

√
λ

8π2

γ2
[
a2 − (v ∧ a)2

]

(1 − n · v)3
, (4.1)

and a term in the form of a total time derivative

Ptt(n, t) =

√
λ

24π2

d

dt

[
v · a
ξ3

− n · a
γ2ξ4

]
, (4.2)

which is, up to the couplings, the same given by (2.10) in the classical electrodynamics [9].
In the notation of [2], Pemitt(n, t) = R2ξE(1)

rad(t, r) and Ptt(n, t) = R2ξE(2)
rad(t, r). It is noted

in [2] that integrating the sum of these two terms with respect to dΩ does not give a proper
Abraham-Lorentz force [16, 17], and the constraint (1.2) is not satisfied, as it is the case in the
weak coupling limit, when compared with (3.7).

A possible source of this deficiency may be found that only retarded contributions for
the radiation are taken into account, instead of following the prescription given, for example,
by (2.3) and (2.5) in the previous sections.

There is no need to repeat the derivations given in [2], but instead relying on the
expressions of the energy density in the gauge theory, that is, on the Minkowski boundary
given therein.

First consider the following quantity:

EA =

√
λ

4π2

∫
dtq δ

(Wq

)( A1

γ2Ξ2
+

∂

∂tq

A0

γΞ2

)
, (4.3)

with the following definitions:

Wq ≡ −(t − tq
)2 + ∣∣r − rq

∣∣2, Ξ ≡ (t − tq
) − υq ·

(
r − rq

)
=

1
2

dWq

dtq
. (4.4)

In [2], the integral is evaluated by the retarded condition: tr = tr(t, r)which denotes the value
of tq for which Wq(tq) = 0, with

t − tr =
∣∣r − rq(tr)

∣∣ = R. (4.5)

Writing δ(Wq) = δ(tq − tr)/2|Ξ|, the result in the large R-limit taken from [2] is

Eret
A =

√
λ

8π2R2|ξ|

⎛
⎜⎝γ4

[
a2 − (v ∧ a)2

]
(2 − ξ)

ξ2

⎞
⎟⎠ +

√
λ

8π2R2|ξ|
∂

∂tr

(
n · a + γ2(v · a)(2 − ξ)

ξ2

)
.

(4.6)
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As a conjecture, let us consider

Erad
A =

1
2

(
Eret
A − Eadv

A

)
, (4.7)

by performing the integral for Erad
A starting from (4.3), but using the advanced condition with

t − tr = −∣∣r − rq(tr)
∣∣ = −R. (4.8)

This amounts to the substitutions, when on top n → −n, which do not affect the force as

Ξ −→ −R(1 − n · v), (4.9)

that is,

ξ −→ −ξ, (4.10)

whereas ∂/|ξ|∂tr remains unchanged.
From (4.6), one obtains

Eadv
A =

√
λ

8π2R2|ξ|

⎛
⎜⎝γ4

[
a2 − (v ∧ a)2

]
(2 + ξ)

ξ2

⎞
⎟⎠ +

√
λ

8π2R2|ξ|
∂

∂tr

(
−n · a + γ2(v · a)(2 + ξ)

ξ2

)
,

Erad
A = −

√
λ

8π2

γ4
[
a2 − (v ∧ a)2

]
R2ξ2

+

√
λ

8π2R2ξ

∂

∂tr

[
n · a
ξ2

− γ2v · a
ξ

]
.

(4.11)

In an analogous way, the contribution Erad
B is evaluated, starting from

Eret
B = −

√
λ

8π2R2|ξ|

⎛
⎜⎝γ4

[
a2 − (v ∧ a)2

](−(1/γ2) + 2ξ − ξ2
)

ξ3

⎞
⎟⎠

−
√
λ

8π2R2|ξ|
∂

∂tr

(
n · a(ξ − 1)

ξ3
+
γ2v · a(2 − ξ)

ξ2
+

1
|ξ|

∂

∂tr

[
1

6γ2ξ2
+
1
ξ

])
.

(4.12)
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After the substitution (4.10), Eadv
B and then Erad

B are obtained as

Erad
B = −

√
λ

8π2R2

⎛
⎜⎝γ4

[
a2 − (v ∧ a)2

](−(1/γ2) − ξ2
)

ξ4

⎞
⎟⎠

−
√
λ

8π2R2ξ

∂

∂tr

(
n · a
ξ2

− γ2v · a
ξ

+
1
|ξ|

∂

∂tr

1
ξ

)
.

(4.13)

Finally, adding Erad
A and Erad

B , the angular radiation power in the strong coupling limit is
obtained as follows:

P rad
strong(n, t) = Pemitt(n, t) + PSchott(n, t)

=

√
λ

8π2

γ2
[
a2 − (v ∧ a)2

]
ξ3

−
√
λ

8π2

d

dt

[
n · a
ξ3

]
.

(4.14)

The total time derivative term PSchott(n, t) differs from Ptt(n, t) in (4.2).
Up to the dependence on the coupling λ, the same angular radiative spectrum is found

in the weak as well as in the strong coupling limit of the N = 4 supersymmetric Yang-Mills
theory, that is, λ/4 →

√
λ. As in electrodynamics [9], it is suggestive that for strong coupling

as well only the emission spectrum Pemitt(n, t) = (
√
λ/8π2)(γ2[a2−(v ∧ a)2]/ξ3) is the relevant

one for radiation, that is, for the irreversible energy transfer [7].
Furthermore the force [16, 17] is

f
μ

SYM, strong =

√
λ

2π
[aνaνv

μ + ȧμ]. (4.15)

Up to the coupling dependence, the Abraham-Lorentz forces in classical electrodynamics as
well as in the Yang-Mills theory have the same dependence on the acceleration aμ and the
velocity vμ, when comparing (1.1), (3.7), and (4.15). All do satisfy the constraint (1.2).

As in electrodynamics [8, 18] the forces fμ

SYM,weak and f
μ

SYM, strong vanish in weak and
strong coupling N = 4 SYM, respectively, for uniformly accelerated motion [2, 19], for

example, along the x direction, xμ = ((1/g) sinh(gτ), (1/g) cosh(gτ) =
√
t2 + (1/g2), 0, 0),

that is, aμa
μ = −vμȧ

μ = −g2, although radiation is emitted.
In the spirit of [20], a phenomenological derivation of P rad

strong (4.14) could be done as
follows: retain only Pemitt(n, t) of (4.1) as derived in [2], calculate after the angular integration
the force f

μ

emitt = (
√
λ/2π)aνa

νvμ. Enforce the orthogonality (1.2) to vμ, together with
f
μ

SYM, strong = 0 for uniformly accelerated motion, by adding the Schott-type term (
√
λ/2π)ȧμ.

This one is consistently obtained after integrating PSchott(n, t) which is assumed to be of the
same form in strong as well as in weak coupling (compare with (3.4)).
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In [3], the time averaged energy density of an oscillating quark with small linear
oscillations is derived, vq(t) = εΩ cosΩT, aq = −εΩ2 sinΩt and ε � 1. It is asymptotically
isotropic and, after correcting the numerical coefficient by a factor 6, given by

∫+∞

−∞
dt 〈T00(t, �x)〉 =

ε2Ω4
√
λ

16π2R2

∫+∞

−∞
dt, (4.16)

which is consistent with the result by Mikhailov [7], namely, for

Pemitt =

√
λ

2π
a2
q(t). (4.17)

5. Conclusion

The essence of this paper is based on the structure of the Abraham-Lorentz force fμ (1.1),
which holds even for strong coupling, with the properties of the orthogonality to the velocity
and its vanishing for uniformly accelerated motion. It is surprising that the force, up to its
strength, is the same in relativistic electrodynamics as well as in weak and strong coupling
N = 4 SYM, although the underlying angular distributions P(n, t) are different.

For the N = 4 SYM model in the strong coupling limit, the special case of
synchrotron radiation with frequency ω0 is considered in [1]. An independent derivation
of the synchrotron radiation in this model is given in [21].

In this case, with v · a = 0, a2 = v2ω2
0 the energy density (4.14) reads as

P rad
strong(n, t) =

√
λω2

0

8π2ξ4

[
3 −
(
4 + γ−2

)
ξ − 3v2 sin2Θ + 2ξ2

]
, (5.1)

which differs from the one using Ptt of (4.2) (compare with equation (3.71) in [1] and with
equation (6.5) in [2]).

A quantity of interest considered in [1] is the time-averaged angular distribution of
power, given by

dPemitt(n)
dΩ

=
ω0

2π

∫2π/ω0

0
dt

√
λ

8π2

a2

(1 − n · v)3
, (5.2)

with 1 − n · v = 1 − v sinΘ sin(φ −ω0t).
For this periodic motion for synchrotron radiation, the contributions of the total time

derivatives PSchott as well as Ptt vanish in the time-averaged distribution. In any case, when
emitted radiation is considered, total time derivative terms should not be retained. They do
not represent irreversible loss of energy in contrast to Pemitt [9, 12].

Integration in (5.2) leads to

dPemitt(n)
dΩ

=

√
λ

8π2
a2γ5

1 +
(
v2/2

)
sin2Θ(

γ2cos2Θ + sin2Θ
)5/2 , (5.3)
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which agrees with the resulting equation (3.72) derived in [1]. The total power emitted,

Pemitt =

√
λ

2π

[
γ2vω0

]2
, (5.4)

is the same as the result obtained in [1, 2, 7].
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