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We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using
the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we
calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which
shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about
the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy
of the relativistic non-conformal theory.

1. Introduction

For the last decade, the AdS/CFT correspondence [1–3] has
been one of the interesting subjects for understanding the
strongly interacting quantum field theory (QFT). Applying
the AdS/CFT correspondence to QCD or the condensed
matter system provided many interesting physical results like
the phase structures [4–7], the universal ratio between the
shear viscosity and entropy [8–14], holographic supercon-
ductor [15–29] and strange metallic behavior [30–32], and
so forth. Recently, after assuming the gauge/gravity duality it
was shown that the dual field theory of the Einstein-dilaton
gravity can be described by a relativistic nonconformal theory
[33]. In this model, due to the running dilaton, the DC
conductivity obtained by the Kubo formula [8, 9, 33] shows
the unexpected behavior, which may describe electrolyte or
some chemical compounds. The real physics is not usually
conformal except some critical phenomena like the phase
transition and the RG fixed points.Therefore, it is required to
generalize the AdS/CFT correspondence to the nonconfor-
mal case. Here, we simply call such a generalized correspon-
dence the gauge/gravity duality. Actually, it is not hopeful to
prove the gauge/gravity duality because even in theAdS space
there is no direct proof of the AdS/CFT correspondence.
Instead, we will try to find some pieces of evidences for the
gauge/gravity duality of a nonconformal theory.

In the Einstein-dilaton theory with a Liouville potential,
there exists a Schwarzschild-type black brane solution which

we call an Einstein-dilaton black brane (EdBB). Since its
asymptotic geometry is not the AdS space and the induced
metric on the boundary is given by theMinkowskimetric, the
gauge/gravity duality says that the dual theory should be a rel-
ativistic nonconformal theory. In order to understand more
physical properties, one can apply the holographic renormali-
zation to the Einstein-dilaton theory. In this paper after find-
ing an appropriate counterterm we show that the resulting
on-shell action and the boundary stress tensor are finite. Fur-
thermore, we check the self-consistency of the gauge/grav-
ity duality by showing that the thermodynamic quantities
derived from the boundary stress tensor coincide with the
results of the EdBB geometry.

Another interesting issue related to the self-consistency
is the hydrodynamics. In the linear response theory of the
QFT, the macroscopic properties can be determined by the
transport coefficients. Moreover, they can be represented by
the background thermal quantities. For example, consider a
thermal system with an energy density 𝜖 and pressure 𝑃.
Then, the momentum diffusion constant of this system is
given by (see [15–19] and references therein)

D
𝑠
=

𝜂
𝑠

𝜖 + 𝑃

, (1)

where 𝜂
𝑠
is the shear viscosity. Note that in this calculation

themicroscopic details of the system are not important. If the
EdBB is really dual to a relativistic nonconformal theory, the
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dual system should also satisfy this relation.Using the univer-
sality of the ratio between the shear viscosity and the entropy
density [11, 15–19]

𝜂
𝑠

𝑠

=

1

4𝜋

, (2)

as well as the thermodynamic results of the Einstein-dilaton
theory, the momentum diffusion constant becomes

D
𝑠
(∞) =

1

4𝜋𝑇
𝐻

. (3)

An alternative way to obtain the momentum diffusion con-
stant is to investigate the holographic hydrodynamics of
the metric fluctuations. For the self-consistency those two
results should be the same. We show by applying the mem-
brane paradigm [11] that the momentum diffusion constant
obtained by the holographic method really satisfies the above
relation.

In order to understand more physical features of the
relativistic nonconformal theory, we further investigate the
holographic binding energies probed by an𝐹1- and𝐷1-string.
From the boundary theory point of view, an 𝐹1- or 𝐷1-string
represents the bound state of a pair of particles (fundamental
excitations) or monopoles (solitons), respectively. In the AdS
space, there is no physical difference between 𝐹1- and 𝐷1-
strings due to the conformality or the trivial dilaton profile.
However, in the relativistic nonconformal theory amonopole
is distinguished from a particle because of the non-trivial
coupling constant. The holographic results show that the
binding energies of particles and monopoles are stronger in
the nonconformal theory than in the conformal one. We
also investigate the drag forces of a particle and monopole
in the nonconformal medium. For a relativistic particle
and monopole, the momentum exponentially decreases as
time evolves. The dissipation rate of the momentum is
proportional to temperature with a positive power depending
on the nonconformality. In the nonrelativistic case, the
momentum decays with an inverse power law for a particle
andwith a power law for amonopole, inwhich the dissipation
power is again determined by the nonconformality. Finally,
we investigate the holographic entanglement entropy of
the relativistic nonconformal theory. Recently, there was
an interesting conjecture that in a small subsystem the
entanglement temperature (or “effective temperature”) has a
universal feature proportional to the inverse of the size [34].
Such a universality of the entanglement temperature also
appears in the holographic relativistic nonconformal theory.

The rest of the paper is organized as follows. In Section 2,
we explain our conventions and summarize the black brane
thermodynamics. For checking the gauge/gravity duality of
the relativistic nonconformal theory, in Section 3, we red-
erive the same thermodynamics from the boundary energy-
momentum tensor constructed by the holographic renormal-
ization. Applying the membrane paradigm in Section 4, we
also show that the momentum diffusion constant obtained in
the EdBB gives rise to the consistent result with the EdBB
thermodynamics and satisfies the QFT relation (1). Based
on these self-consistencies of the gauge/gravity duality in

the relativistic nonconformal theory, we further investigate
the binding energies of particles and monopoles in Section 5
and the drag forces in Section 6. In Section 7, by calculating
the holographic entanglement entropy, we show that the uni-
versal feature of the entanglement temperature conjectured in
[34] is still valid even in the relativistic nonconformal theory.
Finally, we finish our work with some concluding remarks in
Section 8.

2. 𝐷-Dimensional Einstein-Dilaton
Black Brane

Let us consider a𝐷-dimensional Einstein-dilaton theorywith
a Liouville potential in a Lorentzian signature

𝑆
𝐸𝑑
=

1

16𝜋𝐺

∫

M

𝑑
𝐷

𝑥√−𝑔 [R − 2(𝜕𝜙)
2

− 2Λ𝑒
𝜂𝜙

] , (4)

where Λ is a negative constant. We simply call Λ a cosmo-
logical constant because it really becomes a cosmological
constant for 𝜂 = 0. In the above, 𝜂 is an arbitrary constant
representing the nonconformality of the dual theory. Taking
a logarithmic profile for the dilaton field

𝜙 (𝑟) = 𝜙
0
− 𝑘

0
log 𝑟, (5)

where 𝜙
0
and 𝑘

0
are two integration constants, an effective

cosmological constantΛ eff ≡ Λ𝑒
𝜂𝜙0 without loss of generality

can be set to be

Λ eff = −
4 (𝐷 − 2) [8 (𝐷 − 1) − (𝐷 − 2) 𝜂

2

]

[8 + (𝐷 − 2)𝜂
2
]
2

. (6)

Note that sinceΛ is negativeΛ eff should also be negative.This
fact implies that 𝜂 is below the Gubser bound, 𝜂2 < 8(𝐷 −

1)/(𝐷 − 2)) [35, 36]. Consequently, 𝜙(𝑟) is refined to

𝜙 (𝑟) = −𝑘
0
log 𝑟. (7)

In terms of the refined dilaton field and the effective cosmo-
logical constant, the Einstein equation and the equation of
motion for a dilaton become

R
𝜇] −

1

2

R𝑔
𝜇] + 𝑔𝜇]Λ eff 𝑒

𝜂𝜙

= 2𝜕
𝜇
𝜙𝜕]𝜙 − 𝑔𝜇](𝜕𝜙)

2

,

(8)

1

√−𝑔

𝜕
𝜇
(√−𝑔𝑔

𝜇]
𝜕]𝜙) =

1

2

Λ eff 𝜂𝑒
𝜂𝜙

. (9)

Together with the logarithmic dilaton profile, the EdBB
metric satisfying the above two equations is given by

𝑑𝑠
2

= −𝑟
2𝑎1
𝑓 (𝑟) 𝑑𝑡

2

+

𝑑𝑟
2

𝑟
2𝑎1𝑓 (𝑟)

+ 𝑟
2𝑎1
𝛿
𝑖𝑗
𝑑𝑥

𝑖

𝑑𝑥
𝑗

, (10)

with a black brane factor

𝑓 (𝑟) = 1 −

𝑟
𝑐

ℎ

𝑟
𝑐
, (11)
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where 𝑖 and 𝑗 represent the spatial directions of the boundary
space, and the other parameters are

𝑘
0
=

2 (𝐷 − 2) 𝜂

8 + (𝐷 − 2) 𝜂
2
,

𝑎
1
=

8

8 + (𝐷 − 2) 𝜂
2
,

𝑐 =

8 (𝐷 − 1) − (𝐷 − 2) 𝜂
2

8 + (𝐷 − 2) 𝜂
2

.

(12)

The asymptote of the EdBB metric reduces to

𝑑𝑠
2

=

1

𝑟
2𝑎1

𝑑𝑟
2

+ 𝑟
2𝑎1
(−𝑑𝑡

2

+ 𝛿
𝑖𝑗
𝑑𝑥

𝑖

𝑑𝑥
𝑗

) , (13)

where the Poincare symmetry 𝐼𝑆𝑂(1, 𝐷 − 2) of the boundary
hypersurface at a fixed 𝑟 is manifest.This fact implies that the
dual field theory should be described by a relativisticQFT. For
𝜂 = 0, the background geometry reduces to the asymptotic
AdS space with an effective cosmological constant Λ eff:

Λ eff = −
(𝐷 − 1) (𝐷 − 2)

2

, (14)

which is exactly that of a general 𝐷-dimensional AdS space
with a unit AdS radius𝑅 = 1. For 𝜂 ̸= 0, the asymptotic geom-
etry is not the AdS space anymore and instead reduces to the
hyperscaling violation form [37–48]. Therefore, one can eas-
ily see that the dual field theory is not conformal.

Before concluding this section, let us summarize thermo-
dynamics of the EdBB obtained frommetric (10). The Hawk-
ing temperature and the Bekenstein-Hawking entropy are

𝑇
𝐻
=

1

4𝜋

8 (𝐷 − 1) + (𝐷 − 2) 𝜂
2

8 + (𝐷 − 2) 𝜂
2

𝑟
(8−(𝐷−2)𝜂

2
)/(8+(𝐷−2)𝜂

2
)

ℎ
,

𝑆
𝐵𝐻

=

𝑉
𝐷−2

4𝐺

𝑟
8(𝐷−2)/(8+(𝐷−2)𝜂

2
)

ℎ
,

(15)

where 𝑉
𝐷−2

means the spatial volume of the boundary space.
Other thermodynamic quantities, the internal energy 𝐸 and
the free energy 𝐹, are given by

𝐸 =

𝑉
𝐷−2

8𝜋𝐺

4 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2

× 𝑟
(8(𝐷−1)−(𝐷−2)𝜂

2
)/(8+(𝐷−2)𝜂

2
)

ℎ
,

(16)

𝐹 ≡ 𝐸 − 𝑇𝑆
𝐵𝐻

= −

𝑉
𝐷−2

16𝜋𝐺

8 − (𝐷 − 2) 𝜂
2

8 + (𝐷 − 2) 𝜂
2

× 𝑟
(8(𝐷−1)−(𝐷−2)𝜂

2
)/(8+(𝐷−2)𝜂

2
)

ℎ
.

(17)

Using the pressure defined by 𝑃 = −𝜕𝐹/𝜕𝑉
𝐷−2

, the ther-
modynamic quantities of the EdBB satisfy the first law of
thermodynamics as well as the Gibbs-Duhem relation, 𝐸 +
𝑃𝑉

𝐷−2
= 𝑇𝑆

𝐵𝐻
. Following the gauge/gravity duality, these

thermodynamic quantities can also be reinterpreted as those
of the dual relativistic nonconformal theory.

3. Holographic Renormalization of
the Einstein-Dilaton Theory

In the AdS/CFT correspondence, the conformal symmetry
usually plays an important role to match spectra of gravity
with their dual operators. In the nonconformal case, although
such a relation is not clear, we can still investigate some ther-
modynamic properties of the dual field theory through the
gauge/gravity duality. If the on-shell gravity action is identi-
fied with the free energy of the dual field theory, we can easily
derive the thermodynamic properties. In this section, we will
show that the on-shell gravity action, after the appropriate
holographic renormalization, really provides the consistent
thermodynamics with the EdBB thermodynamics.

In order to describe a finite temperature system, it is more
convenient to take into account anEuclidean version.With an
Euclidean signature, the gravitational action of the Einstein-
dilaton theory can be rewritten as

𝑆
𝑔𝑟
= 𝑆

𝐸𝑑
+ 𝑆

𝐺𝐻
, (18)

with

𝑆
𝐸𝑑
= −

1

16𝜋𝐺

× ∫

M

𝑑
𝐷

𝑥√𝑔 [R − 2(𝜕𝜙)
2

− 2Λ eff𝑒
𝜂𝜙

] ,

𝑆
𝐺𝐻

=

1

8𝜋𝐺

∫

𝜕M

𝑑
𝐷−1

𝑥√𝛾 Θ,

(19)

where 𝑔
𝜇] or 𝛾𝑎𝑏 is the Euclidean metric in the bulk or the

induced boundary metric, respectively. For a well-defined
action variation, the Gibbons-Hawking term 𝑆

𝐺𝐻
is required.

An extrinsic curvature tensor Θ
𝜇] is defined by

Θ
𝜇] = −

1

2

(∇
𝜇
𝑛] + ∇]𝑛𝜇) , (20)

where ∇
𝜇
and 𝑛] mean a covariant derivative and an unit

normal vector, respectively. Since theGibbons-Hawking term
is a boundary term, it does not affect the equations ofmotion.

Before evaluating the on-shell gravity action, it is worth
noting that the on-shell gravity action usually suffers from
the divergence when the boundary is located at 𝑟 = ∞. To
remove such a UV divergence (in [46, 47], the nonconformal
field theory dual to a 𝑝-brane geometry in the dual frame has
been investigated), we should add appropriate counter terms
whichmake the on-shell gravity action become finite [49–51].
The correct counter term we found is

𝑆
𝑐𝑡
=

1

8𝜋𝐺

∫

𝜕M

𝑑
𝐷−1

𝑥√𝛾(

8 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2
𝑒
𝜂𝜙/2

) . (21)

For 𝜂 = 0 it reduces, after restoring the AdS radius 𝑅, to the
usual one for AdS

𝐷
space [49]

𝑆AdS =
1

8𝜋𝐺

∫

𝜕M

𝑑
𝐷−1

𝑥√𝛾

(𝐷 − 2)

𝑅

. (22)

In general, there exist additional counter terms proportional
to the boundary curvature scalar or tensors. However, since
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the boundary space of the EdBB geometry is flat with a
Poincare symmetry 𝑆𝑂(1,𝐷−2), the counter terms associated
with the curvature scalar or tensors automatically vanish.
Therefore, the resulting renormalized action can be described
by

𝑆 = 𝑆
𝐸𝑑
+ 𝑆

𝐺𝐻
+ 𝑆

𝑐𝑡
. (23)

Since the on-shell gravity action reduces to a boundary
term, it can be naturally interpreted as a boundary quantity.
Following the strategy of the AdS/CFT correspondence, it
should be proportional to the free energy of the dual theory
with providing the same thermodynamics derived in the
EdBB geometry. Now, let us check if the renormalized on-
shell gravity action really reproduces the results of the EdBB
in (16).

First, consider the Einstein-dilaton action. Using the
Einstein equation in (8), it simply reduces to

𝑆
𝐸𝑑
= −

1

16𝜋𝐺

∫

𝛽

0

𝑑𝜏∫𝑑
𝐷−2

𝑥

× ∫

𝑟0

𝑟ℎ

𝑑𝑟√𝑔

4

𝐷 − 2

Λ eff 𝑒
𝜂𝜙

,

(24)

where 𝜏 is an Euclidean time with a periodicity 𝛽 and
∫𝑑

𝐷−2

𝑥 = 𝑉
𝐷−2

is the spatial volume of the boundary space.
In the above, 𝑟

0
is introduced to denote the position of the

boundary which can be interpreted as a UV cutoff of the dual
theory. After inserting solutions (5) and (6) into (24) and
evaluating it, we finally reach to

𝑆
𝐸𝑑
=

𝛽𝑉
𝐷−2

16𝜋𝐺

16

8 + (𝐷 − 2) 𝜂
2
(𝑟
𝑐

0
− 𝑟

𝑐

ℎ
) , (25)

which diverges as 𝑟
0
→ ∞ because of 𝑐 > 1. Similarly, the

Gibbons-Hawking term and the counter term result in

𝑆
𝐺𝐵
= −

𝛽𝑉
𝐷−2

8𝜋𝐺

× (

8 (𝐷 − 1)

8 + (𝐷 − 2) 𝜂
2
−

8 (𝐷 − 1) + (𝐷 − 2) 𝜂
2

2 (8 + (𝐷 − 2) 𝜂
2
)

𝑟
𝑐

ℎ

𝑟
𝑐

0

) 𝑟
𝑐

0
,

𝑆
𝑐𝑡
=

𝛽𝑉
𝐷−2

16𝜋𝐺

8 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2

√1 −

𝑟
𝑐

ℎ

𝑟
𝑐

0

𝑟
𝑐

0
.

(26)

Summing all results, the exact renormalized action finally
becomes

𝑆 = −

𝛽𝑉
𝐷−2

16𝜋𝐺

[

16 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2
(1 − √1 −

𝑟
𝑐

ℎ

𝑟
𝑐

0

)𝑟
𝑐

0

−

8 (𝐷 − 3) + (𝐷 − 2) 𝜂
2

8 + (𝐷 − 2) 𝜂
2

𝑟
𝑐

ℎ
] .

(27)

For 𝑟
0
→ ∞, the renormalized on-shell action simply redu-

ces to

𝑆 = −

𝛽𝑉
𝐷−2

16𝜋𝐺

8 − (𝐷 − 2) 𝜂
2

8 + (𝐷 − 2) 𝜂
2
𝑟
𝑐

ℎ
. (28)

Like theAdS/CFT correspondence, the free energy of the dual
theory can be defined by𝐹 = 𝑆/𝛽which gives rise to the same
free energy in (17).

Now, let us evaluate the boundary energy-momentum
tensor. From the gravitational action in (18), the corre-
sponding boundary stress tensor defined by 𝑇

𝑎𝑏
= −(2/√𝛾)

(𝜕S/𝜕𝛾𝑎𝑏) reads

𝑇
(𝑏𝑑)

𝑎

𝑏
= −

1

8𝜋𝐺

∫𝑑
𝐷−2

𝑥√𝛾𝛾
𝑎𝑐

(Θ
𝑐𝑏
− 𝛾

𝑐𝑏
Θ) , (29)

and the contribution from the counter term is

𝑇
(𝑐𝑡)

𝑎

𝑏
=

𝑉
𝐷−2

8𝜋𝐺

8 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2
√𝛾𝑒

𝜂𝜙/2

𝛿
𝑎

𝑏
, (30)

where the indices 𝑎 and 𝑏 imply the directions of the bound-
ary space and time. So the renormalized stress tensor is given
by the sum of them

𝑇
𝑎

𝑏
= 𝑇

(𝑏𝑑)

𝑎

𝑏
+ 𝑇

(𝑐𝑡)

𝑎

𝑏
. (31)

The explicit form of the renormalized boundary energy reads

𝐸 = 𝑇
𝜏

𝜏

=

𝑉
𝐷−2

8𝜋𝐺

8 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2

× [√1 −

𝑟
𝑐

ℎ

𝑟
𝑐

0

− (1 −

𝑟
𝑐

ℎ

𝑟
𝑐

0

)] 𝑟
𝑐

0
,

(32)

and the pressure becomes

𝑃 = −

𝑇
𝑖

𝑖

𝑉
𝐷−2

=

1

8𝜋𝐺

[

8 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2
(1 − √1 −

𝑟
𝑐

ℎ

𝑟
𝑐

0

)

−

8 (𝐷 − 3) + (𝐷 − 2) 𝜂
2

2 (8 + (𝐷 − 2) 𝜂
2
)

𝑟
𝑐

ℎ

𝑟
𝑐

0

] 𝑟
𝑐

0
,

(33)

where the pressure is the same as−𝐹. If we put aUVcutof into
infinity 𝑟

0
= ∞, the energy and pressure are simply reduced

to

𝐸 =

𝑉
𝐷−2

8𝜋𝐺

4 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2
𝑟
𝑐

ℎ
,

𝑃 =

1

16𝜋𝐺

8 − (𝐷 − 2) 𝜂
2

8 + (𝐷 − 2) 𝜂
2
𝑟
𝑐

ℎ
.

(34)

These results show that the holographic renormalization of
the Einstein-dilaton theory reproduces the exact same EdBB
thermodynamics when the boundary is located at infinity.

At zero temperature (𝑟
ℎ
= 0), the free energy and the

internal energy of the dual theory become zero. In [33], it was
shown that for 𝜂2 ≥ 8/(𝐷 − 2) the EdBB and its dual theory
are thermodynamically unstable. In the parameter range
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Figure 1: The free energy depending on 𝑟
0
for 𝜂 = 0 (solid) and

𝜂 = 1 (dashed), where we set 8𝜋𝐺 = 1, 𝑟
ℎ
= 1, 𝐷 = 4, and 𝑉

2
= 1.

𝜂
2

< 8/(𝐷− 2), the free energy at finite temperature is always
negative. Therefore, if we do not insert an IR cutoff by hand,
there is no Hawking-Page transition and the EdBB geometry
is always preferable. This result is qualitatively the same as
the one obtained in [52], where a different renormalization
scheme, the so-called subtractionmethod, was used. Now, let
us consider the UV cutoff dependence of the free energy. If
we interpret the position of boundary as the energy scale of
the dual theory, we can see how the free energy depends on
the energy scale of the dual theory. In Figure 1, we draw the
free energy depending on 𝑟

0
for 𝜂 = 0 and 1, which shows that

the free energymonotonically decreases as the energy scale of
the dual theory decreases.

Following the definition of the equation of state parame-
ter, it becomes in the dual relativistic nonconformal system

𝑤 =

1

𝐷 − 2

−

𝜂
2

8

, (35)

where the second term represents the deviation from the
conformal one. This result also shows that the sound velocity
of the relativistic nonconformal medium

𝑐
𝑠
= √𝑤 (36)

is always smaller than that of the relativistic conformal one,
√1/(𝐷 − 2).

4. Membrane Paradigm

In the previous section, the thermodynamic properties of a
relativistic nonconformal system have been investigated by
using the holographic renormalization. In this section, we
will study the macroscopic properties, especially the hydro-
dynamic transport coefficients of the membrane paradigm
[11], and compare them with the results of the Kubo formula
[33, 52].

4.1. Charge Diffusion. In order to describe the charge dif-
fusion process in the relativistic nonconformal medium, we
need to introduce a Maxwell term describing 𝑈(1) gauge

field fluctuations on the EdBB. Due to the existence of the
nontrivial dilaton field, the Maxwell term can have a more
general gauge coupling depending on the radius 𝑟

𝑆 = −∫𝑑
𝐷

𝑥√−𝑔

1

4𝑔
2

𝐷
(𝑟)

𝐹
𝑀𝑁

𝐹
𝑀𝑁

, (37)

with

𝑔
2

𝐷
(𝑟) =

𝑒
𝛼𝜙(𝑟)

𝑔
2

0

, (38)

where 𝑔2
0
is a constant and a new parameter 𝛼 describes the

strength of the gauge coupling. Usually, the vector fluctua-
tions can be divided into two parts: if the fluctuation moves
in the𝑦-directionwith amomentum 𝑘, one is the longitudinal
modes, 𝐴

𝑡
and 𝐴

𝑦
, and the other is the transverse modes 𝐴

𝑥

(where𝑥means all transverse directions) in the𝐴
𝑟
= 0 gauge.

Since the charge diffusion process is related to the motion of
the longitudinalmodes, we concentrate only on the longitudi-
nal modes from now on. In the hydrodynamic limit (𝜔 ∼ 𝑘2,
𝜔 ≪ 𝑇

𝐻
, and 𝑘 ≪ 𝑇

𝐻
), the Fourier mode expansions of the

longitudinal modes become

𝐴
𝑡
(𝑟, 𝑡, 𝑦) = ∫

𝑑𝜔 𝑑𝑘

(2𝜋)
2
𝑒
−𝑖𝜔𝑡+𝑖𝑘𝑦

𝐴
𝑡
(𝑟, 𝜔, 𝑘) ,

𝐴
𝑦
(𝑟, 𝑡, 𝑦) = ∫

𝑑𝜔 𝑑𝑘

(2𝜋)
2
𝑒
−𝑖𝜔𝑡+𝑖𝑘𝑦

𝐴
𝑦
(𝑟, 𝜔, 𝑘) .

(39)

These longitudinal modes satisfy two dynamical equations,
the current conservation and the Bianchi identity. In terms of
current 𝑗𝜇, the governing equations are [11]

0 = −𝜕
𝑟
𝑗
𝑡

−

√−𝑔

𝑔
2

𝐷
(𝑟)

(−𝑔
𝑡𝑡

) 𝑔
𝑦𝑦

𝜕
𝑦
𝐹
𝑦𝑡
,

0 = −𝜕
𝑟
𝑗
𝑦

−

√−𝑔

𝑔
2

𝐷
(𝑟)

(−𝑔
𝑡𝑡

) 𝑔
𝑦𝑦

𝜕
𝑡
𝐹
𝑦𝑡
,

0 = 𝜕
𝑡
𝑗
𝑡

+ 𝜕
𝑦
𝑗
𝑦

,

0 = −

𝑔
𝑟𝑟
𝑔
𝑦𝑦
𝑔
2

𝐷
(𝑟)

√−𝑔

𝜕
𝑡
𝑗
𝑦

−

𝑔
𝑟𝑟
𝑔
𝑦𝑦
𝑔
2

𝐷
(𝑟)

√−𝑔

𝜕
𝑧
𝑗
𝑡

+ 𝜕
𝑟
𝐹
𝑦𝑡
.

(40)

Combining these equations, one can easily derive a flow equa-
tion for the longitudinal conductivity defined by 𝜎

𝐿
(𝑟, 𝑘

𝜇
) ≡

𝑗
𝑦

/𝐹
𝑦𝑡
,

𝜕
𝑟
𝜎
𝐿
= 𝑖𝜔√

𝑔
𝑟𝑟

(−𝑔
𝑡𝑡
)

[

𝜎
2

𝐿

Σ
𝐴
(𝑟)

(1 −

𝑘
2

𝜔
2

𝑔
𝑦𝑦

(−𝑔
𝑡𝑡
)

) − Σ
𝐴
(𝑟)] ,

(41)

with

Σ
𝐴
(𝑟) =

1

𝑔
2

𝐷
(𝑟)

√

−𝑔

(−𝑔
𝑡𝑡
) 𝑔

𝑟𝑟

𝑔
𝑦𝑦

. (42)
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In the zero frequency limit, we can see that the longitudi-
nal conductivity reduces to the DC conductivity and that it is
independent of the position of the membrane. Furthermore,
imposing the regularity of the conductivity at the horizon, the
DC conductivity leads to

𝜎
𝐷𝐶

=

1

𝑔
2

0

(

4𝜋[8 + (𝐷 − 2)𝜂
2

]

8(𝐷 − 1) − (𝐷 − 2)𝜂
2
)

(8(𝐷−4)−2(𝐷−2)𝜂𝛼)/(8−(𝐷−2)𝜂
2
)

× 𝑇
(8(𝐷−4)−2(𝐷−2)𝜂𝛼)/(8−(𝐷−2)𝜂

2
)

𝐻
,

(43)

which reproduces the Kubo formula’s results obtained in spe-
cific parameter values, 𝛼 = 0 and 𝛼 = −𝜂/2 [33]. From
the general DC conductivity in (43), we can see that the DC
conductivity of the relativistic nonconformal theory is always
positive and real because the range of 𝜂 should be constrained
to 𝜂2 < 8/(𝐷 − 2). Moreover, if 𝛼 > 4(𝐷 − 4)/(𝐷 − 2)𝜂 the
DC conductivity decreases with increasing temperature. Tak-
ing 𝛼 = (8(𝐷 − 1) − (𝐷 − 2)𝜂

2

)/2(𝐷 − 2)𝜂 for 𝐷 = 5

especially provides the resistivity proportional to temper-
ature, which is the macroscopic electric property of the
metal. If 𝛼 = 4(𝐷 − 4)/(𝐷 − 2)𝜂, the DC conductivity is
independent of temperature. For 𝛼 < 4(𝐷 − 4)/(𝐷 − 2)𝜂,
it increases with temperature, which is a typical feature of
the electrolytes or some chemical compounds. In general, the
macroscopic electric properties crucially depend on what the
charge carriers are. For example, the electric property of the
metal is mainly governed by themotion of electrons, whereas
the motion of ions is important to understand the electric
properties of the electrolytes or chemical compounds. As a
result, we can say that parameter 𝛼 provides the information
for the charge carrier in the dual field theory.

In the hydrodynamic limit (𝜔, 𝑘 ≪ 𝑇
𝐻
), the flow equation

of the longitudinal conductivity reduces to

𝜕
𝑟
𝜎
𝐿

𝜎
2

𝐿

= −𝑖

𝑘
2

𝜔

(−𝑔
𝑡𝑡
) 𝑔

𝑟𝑟

√−𝑔

𝑔
2

𝐷
(𝑟) . (44)

According to the holographic renormalization, the radial
position of themembrane 𝑟

𝑚
can be identifiedwith the energy

scale of the dual field theory. Using the fact that the DC
conductivity plays a role of the initial data for the conductivity
flow [11], integrating (44) from 𝑟

ℎ
to 𝑟

𝑚
gives rise to the

following longitudinal conductivity:

𝜎
𝐿
(𝑟
𝑚
) =

𝑖𝜔𝜎
𝐷𝐶

𝑖𝜔 −D
𝑒
(𝑟
𝑚
) 𝑘

2

, (45)

where the charge diffusion constantD
𝑒
(𝑟
𝑚
) depending on the

energy scale is given by

D
𝑒
(𝑟
𝑚
) = 𝜎

𝐷𝐶
∫

𝑟𝑚

𝑟ℎ

𝑑𝑟

(−𝑔
𝑡𝑡
) 𝑔

𝑟𝑟

√−𝑔

𝑔
2

𝐷
(𝑟)

=

(𝑟
−𝛿

ℎ
− 𝑟

−𝛿

𝑚
)

𝛿

𝑟
𝜒

ℎ
,

(46)
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Figure 2: The RG flow of the charge diffusion constant, where we
take 𝜂 = 1, 𝑇

𝐻
= 1, and 𝐷 = 4. It shows that the charged diffusion

constant increases monotonically with the energy scale denoted by
𝑟
𝑚
, and it becomes zero at the horizon 𝑟

ℎ
= 18.2521.

with

𝛿 =

8 (𝐷 − 3) − (𝐷 − 2) (𝜂 + 2𝛼) 𝜂

8 + (𝐷 − 2) 𝜂
2

,

𝜒 =

8 (𝐷 − 4) − 2 (𝐷 − 2) 𝛼𝜂

8 + (𝐷 − 2) 𝜂
2

.

(47)

For a positive 𝛿 (o𝑟 𝛼 < (8(𝐷 − 3) − (𝐷 − 2)𝜂
2

)/2(𝐷 − 2)𝜂),
the charge diffusion constant of the dual field theory is well-
defined in the limit of 𝑟

𝑚
→ ∞. Otherwise, it diverges

at the infinity. For a welldefined hydrodynamic transport
coefficients at the asymptotic boundary, we concentrate only
on the positive 𝛿 from now on. Then, the general charge
diffusion constant at the asymptotic boundary becomes

D
𝑒
(∞) =

1

4𝜋𝑇
𝐻

8 (𝐷 − 1) − (𝐷 − 2) 𝜂
2

8 (𝐷 − 3) − (𝐷 − 2) (𝜂 + 2𝛼) 𝜂

. (48)

In the 4-dimensional case, the charge diffusion constant at the
asymptotic boundary is consistent with the result of the Kubo
formula [33]. Formore understanding, we take a special value
of𝛼, for simplicity𝛼 = 0. Since 𝜂 is always smaller than 8/(𝐷−
2) due to the thermodynamic stability, the charge diffusion
constant increases with 𝜂. This fact implies that the charge
diffusion constant of the nonconformalmedium is larger than
that of the conformal one.Moreover, since the half-lifetime of
the quasi-normal mode in the diffusion process is inversely
proportional to the charge diffusion constant and the square
of the momentum, the above result also implies that the
quasi-normalmode decaysmore rapidly in the nonconformal
medium. Lastly, we can easily see from (46) that the charge
diffusion constant decreases monotonically as the energy of
the dual theory runs from UV to IR (see Figure 2).

4.2. Momentum Diffusion. As shown in [10, 11], the relevant
equations for gravitational shear modes ℎ𝑥

𝑡
and ℎ𝑥

𝑦
for 𝐷 = 4

can be mapped onto an electromagnetic problem by taking
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the analogy to the Kaluza-Klein reduction. If we set ℎ𝑥
𝑡
= 𝑎

𝑡

and ℎ𝑥
𝑦
= 𝑎

𝑦
, the action for the shear modes reduces to

𝑆 =

1

16𝜋

∫𝑑
𝐷

𝑥√−𝑔𝑔
𝑥𝑥
𝐹
𝛼𝛽
𝐹
𝛼𝛽

, (49)

where 𝛼 and 𝛽 imply the longitudinal direction 𝑡 or 𝑦. Note
that here 𝐷 ≥ 4; otherwise there is no shear mode. 𝐹

𝛼𝛽
is the

field strength of 𝑎
𝑡
and 𝑎

𝑦
, which in terms of metric fluctua-

tions is given by 𝐹
𝛼𝛽
= 𝜕

𝛼
ℎ
𝑥

𝛽
− 𝜕

𝛽
ℎ
𝑥

𝛼
and easily generalized to

the higher dimensional case. This action for shear modes is
exactly the standardMaxwell form with an effective coupling
𝑔
2

𝐺

1

𝑔
2

𝐺

=

1

16𝜋

𝑔
𝑥𝑥
. (50)

So we can immediately take over all results of the previous
section.

The counterpart of the DC conductivity denoted by 𝜎
𝐺

becomes

𝜎
𝐺
=

1

16𝜋

√

−𝑔

(−𝑔
𝑡𝑡
)𝑔

𝑟𝑟










𝑟ℎ

. (51)

Notice that the Bekenstein-Hawking entropy density 𝑠 can be
written as

𝑠 ≡

𝑆
𝐵𝐻

𝑉
𝐷−2

=

1

4

√

−𝑔

(−𝑔
𝑡𝑡
)𝑔

𝑟𝑟










𝑟ℎ

. (52)

From the celebrated universality in (2), one can easily see that
𝜎
𝐺
is nothing but the shear viscosity 𝜂

𝑠
and that the result is

the expected one in the Kubo formula [52].
Similarly, we can also easily evaluate the retarded Green

function of the shear modes in the general𝐷

𝐺
𝑥𝑦,𝑥𝑦

𝑅
=

𝜂
𝑠
𝜔
2

𝑖𝜔 − 𝐷
𝑠
(𝑟
𝑚
) 𝑘

2

, (53)

where the momentum diffusion constant D
𝑠
(𝑟
𝑚
), by taking

the analogy to the charge diffusion constant, is

D
𝑠
(𝑟
𝑚
) = 4𝑠 ∫

𝑟𝑚

𝑟ℎ

𝑑𝑟

(−𝑔
𝑡𝑡
) 𝑔

𝑟𝑟

√−𝑔 𝑔
𝑥𝑥

=

8 + (𝐷 − 2) 𝜂
2

8 (𝐷 − 1) − (𝐷 − 2) 𝜂
2
(

1

𝑟
𝛾

ℎ

−

1

𝑟
𝛾

𝑚

)

(54)

with

𝛾 =

8 − (𝐷 − 2) 𝜂
2

8 + (𝐷 − 2) 𝜂
2
. (55)

Below the crossover value 𝜂2 < 8/(𝐷 − 2) where the black
brane is thermodynamically stable, 𝛾 is always positive. If we
put the membrane at the infinity and rewrite the momentum
diffusion constant in terms of temperature, the momentum
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Figure 3: The RG flow of the momentum diffusion constant, where
we take 𝜂 = 1, 𝑇

𝐻
= 1, and 𝐷 = 4. Similarly to the charged

diffusion constant, the momentum diffusion constant also increases
monotonically with the energy scale 𝑟

𝑚
, and it becomes zero at the

horizon 𝑟
ℎ
= 18.2521.

diffusion constant has the form expected by the EdBB ther-
modynamics

D
𝑠
(∞) =

1

4𝜋𝑇
𝐻

, (56)

which shows the self-consistency of the gauge/gravity duality
in the relativistic nonconformal medium. In addition, this
result implies that the corresponding quasi-normal mode
decays rapidly at high temperature, whereas the momentum
diffusion constant does not depend on the nonconformality
unlike the charge diffusion constant. Finally, we plot the
momentumdiffusion constant depending on the energy scale
in Figure 3. It shows, similar to the charge diffusion con-
stant, themonotonically decreasing behavior with decreasing
energy.

5. Binding Energies of
Particles and Monopoles

In the holographic QCD, the binding energy of quark and
antiquark is described by a temporal Wilson loop, which in
the string theory corresponds to the trajectory of the open
string ends. In this section, we will investigate such a binding
energy in the relativistic nonconformalmedium. Before start-
ing the calculation, it is worth to note that there is no dif-
ference between a fundamental string (or 𝐹1-string) and
𝐷1-brane (or 𝐷1-string) in the AdS space if we ignore the
gravitational backreaction of the them. However, that is not
true in the EdBB geometry due to the nontrivial dilaton
profile. The metric usually felt by an open string is not in the
Einstein frame but rather in the string frame represented as
[53, 54]

𝑑𝑠
2

string = 𝑒
𝜙/2

𝑑𝑠
2

Einstein , (57)

which is the relation between frames of a 10-dimensional
string theory. We can also introduce a dual frame [45–47] in
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which the near horizon geometry of 𝑝-branes is described by
AdS

𝑝+2
× 𝑆

8−𝑝. Note that all these frames are related to each
other by appropriate conformal mappings, and the geometry
of p-brane in the string and Einstein frame can be gener-
ally expressed as the combination of a “warped AdS” and
“warped sphere” geometry where “warped” means a proper
multiplication of the dilaton field. In the Einstein frame, the
EdBB geometry in (10) describes the noncompact geometry
of a 10-dimensional string theory, and the other part, the
compact geometry, can be described by an appropriate
warped sphere. In investigations of the binding energy and
drag force in the next section, since the internal space does
not give any contribution, we can simply ignore it. Due to
the nontrivial dilaton field of the EdBB geometry, the binding
energies of particles and monopoles, which are represented
by the ends of an 𝐹1- and 𝐷1-string, are different in the
relativistic nonconformal theory. Therefore, the goal of this
section is to investigate quantitatively the binding energies of
particles and monopoles as well as to study the effect of the
nonconformality on them.

In order to investigate the binding energy of two fun-
damental particles, we take into account the Nambu-Goto
action of a fundamental string

𝑆
𝐹1
=

1

2𝜋𝛼

∫𝑑

2

𝜎√− det(𝐺
𝜇]

𝜕𝑥
𝜇

𝜕𝜎
𝛼

𝜕𝑥
]

𝜕𝜎
𝛽

), (58)

where𝐺
𝜇] is the space-time metric in the string frame. In the

static gauge with the metric in (10)

𝜏 = 𝑡, 𝜎 = 𝑥
1

= 𝑥,

𝑥
2

= ⋅ ⋅ ⋅ = 𝑥
𝐷−2

= 0, 𝑟 = 𝑟 (𝑥) ,

(59)

assuming that the end points of string are located at {𝑟, 𝑥} =
{∞, ±𝑙/2}, the string action simply reduces to

𝑆
𝐹1
=

𝛽

2𝜋𝛼

∫

𝑙/2

−𝑙/2

𝑑𝑥𝑒
𝜙/2
√ ̇𝑟

2
+ 𝑟

4𝑎1𝑓 (𝑟), (60)

where 𝛽 is the time interval and the dot means a derivative
with respect to 𝑥. Using the analogy to mechanics, the con-
served Hamiltonian after regarding 𝑥 as time is given by

𝐻 = −

𝑒
𝜙/2

2𝜋𝛼


𝑟
4𝑎1
𝑓 (𝑟)

√ ̇𝑟
2
+ 𝑟

4𝑎1𝑓 (𝑟)

. (61)

If 𝑟has a turning point orminimumvalue 𝑟
∗
satisfying ̇𝑟

∗
= 0,

the existence of such a turning point implies that the particle
and antiparticle are connected by a string which corresponds
to the bound state of particles.The absence of a turning point
says that an open string connecting two particles divides into
two straight strings describing free particles. First, we con-
centrate on the string configuration with a turning point at
which the above conserved Hamiltonian is still satisfied

𝐻 = −

𝑒
𝜙∗/2

2𝜋𝛼

𝑟
2𝑎1

∗
√𝑓 (𝑟

∗
), (62)

with 𝜙
∗
= 𝜙(𝑟

∗
).

After introducing a rescaled coordinate 𝑟 = 𝑟/𝑟
∗
, com-

paring the above two Hamiltonians gives rise to information
for the interdistance between particles in terms of the turning
point

𝑙 =

2√𝑓 (1)

𝑟
2𝑎1−1

∗

∫

∞

1

𝑑𝑟

1

𝑟
2𝑎1√𝑓 (𝑟)√𝑒

̃
𝜙
𝑟
4𝑎1𝑓 (𝑟) − 𝑓 (1)

, (63)

where 𝑓(𝑟) = 1 − 𝑟
𝑐

ℎ
/𝑟

𝑐, 𝑓(1) = 1 − 𝑟
𝑐

ℎ
, and ̃

𝜙 = 𝜙(𝑟). In
addition, an unrenormalized energy of a pair of particles
becomes

𝐸 ≡

𝑆
𝐹1

𝛽

=

𝑟
1−𝑘0/2

∗

𝜋𝛼

∫

∞

1

𝑑𝑟

𝑒

̃
𝜙

𝑟
2𝑎1
√𝑓 (𝑟)

√𝑒
̃
𝜙
𝑟
4𝑎1𝑓 (𝑟) − 𝑓 (1)

. (64)

In the asymptotic region (𝑟 → ∞), the unrenormalized
energy has the following approximate form:

𝐸 ≈

𝑟
1−𝑘0/2

∗

𝜋𝛼


𝑟
1−𝑘0/2

1 − 𝑘
0
/2

. (65)

Since 1 − 𝑘
0
/2 > 0 for 𝜂2 < 8/(𝐷 − 2), the unrenormalized

energy diverges when 𝑟 → ∞. In order to define the binding
energy well, we need to renormalize it by adding an appro-
priate counter term. In the holographic QCD, this kind of
divergence appears due to the infinite masses of two quarks
described by straight strings. Therefore, we can remove the
above divergence by subtracting the infinite particle masses.
To do so, we parameterize two straight strings as

𝜏 = 𝑡, 𝜎 = 𝑟, 𝑥
1

= ±

𝑙

2

. (66)

Then, the energy of two straight strings is given by

𝐸
𝑐𝑡
=

𝑟
1−𝑘0/2

∗

𝜋𝛼

∫

∞

𝑟ℎ

𝑑𝑟𝑒

̃
𝜙/2

, (67)

which corresponds to the mass of two particles and can
exactly cancel the divergence of the unrenormalized energy.
The renormalized energy of a pair of particles becomes

𝑉 ≡ 𝐸 − 𝐸
𝑐𝑡

=

𝑟
1−𝑘0/2

∗

𝜋𝛼

(∫

∞

1

𝑑𝑟

𝑒

̃
𝜙

𝑟
2𝑎1
√𝑓 (𝑟)

√𝑒
̃
𝜙
𝑟
4𝑎1𝑓 (𝑟) − 𝑓 (1)

− ∫

∞

𝑟ℎ

𝑑𝑟𝑒

̃
𝜙/2

),

(68)

which corresponds to the well-defined binding energy bet-
ween the particle and antiparticle.

Now, let us consider the low temperature case (𝑟
ℎ
=

𝑟
ℎ
/𝑟
∗
≪ 1), inwhich the interdistance and the binding energy

of a pair of particles have the following expansion forms:

𝑙 =

1

𝑟
2𝑎1−1

∗

(𝐴
0
+ 𝐴

1

𝑟
𝑐

ℎ

𝑟
𝑐

∗

+ ⋅ ⋅ ⋅ ) , (69)

𝑉 = 𝐵
0
𝑟
1−𝑘0/2

∗
+ 𝐵

1
𝑟
1−𝑘0/2−𝑐

∗
+ 𝐵

2
𝑟
1−𝑘0/2

ℎ
+ ⋅ ⋅ ⋅ , (70)
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where ellipsis means higher order corrections and

𝐴
0
=

2√𝜋

2𝑎
1
− 1

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

,

𝐴
1
=

2√𝜋

4𝑎
1
− 𝑘

0

[

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

+

2 − 2𝑐 − 𝑘
0

2 (4𝑎
1
− 𝑘

0
)

×

Γ (1/2 + (2𝑎
1
− 1 + 𝑐) / (4𝑎

1
− 𝑘

0
))

Γ (1 + (2𝑎
1
− 1 + 𝑐) / (4𝑎

1
− 𝑘

0
))

] ,

𝐵
0
= −

2

(2 − 𝑘
0
)√𝜋𝛼



×

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

,

𝐵
1
=

1

(4𝑎
1
− 𝑘

0
)√𝜋𝛼



× [

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
− 𝑘

0
))

−

Γ (1/2 + (2𝑎
1
− 1 + 𝑐) / (4𝑎

1
− 𝑘

0
))

Γ ((2𝑎
1
− 1 + 𝑐) / (4𝑎

1
− 𝑘

0
))

] ,

𝐵
2
=

1

𝜋𝛼

(1 − 𝑘

0
/2)

.

(71)

In the zero temperature limit (𝑟
ℎ
→ 0), the binding

energy shows aCoulomb-like potential with a power depend-
ing on the nonconformality

𝑉 =

𝐴
𝛾

0
𝐵
0

𝑙
𝛾

, (72)

with

𝛾 =

8 − (𝐷 − 2) 𝜂 + (𝐷 − 2) 𝜂
2

8 − (𝐷 − 2) 𝜂
2

. (73)

For the conformal theory (𝜂 = 0) dual to the AdS space, the
binding energy is given by the Coulomb potential propor-
tional to 𝑙−1, as expected by the conformality. For 0 < 𝜂 <

1/2, 𝛾 is positive and smaller than 1. This implies that when
comparedwith the conformal case themagnitude of the bind-
ing energy in the nonconformal medium slowly decreases as
the interdistance of the two particles increases. Interestingly,
the Coulomb potential inversely proportional to the inter-
distance again appears at 𝜂 = 1/2. Finally, for 1/2 < 𝜂 <

2√2/(𝐷−2) the binding energy is steeper than the one of the
conformal case.

In order to investigate the thermal correction at low tem-
perature, we need to rewrite 𝑟

∗
in terms of 𝑙 and 𝑟

ℎ
. To do so,

let us set

𝑟
∗
= (

𝐴
0

𝑙

)

1/(2𝑎1−1)

(1 + 𝛿) , (74)

where 𝛿 corresponds to the first thermal correction and is a
function of 𝑙 and 𝑟

ℎ
. Since (74) should satisfy (69) at least at

the first order of correction, 𝛿must be

𝛿 =

1

2𝑎
1
− 1

𝐴
−(2𝑎1−1+𝑐)/(2𝑎1−1)

0

× 𝐴
1
𝑙
𝑐/(2𝑎1−1)

𝑟
𝑐

ℎ
.

(75)

Inserting this result together with (74) into (70) gives rise to

𝑉 =

𝐴
𝛾

0
𝐵
0

𝑙
𝛾

[1 + 𝐾 𝑙
𝑐/(2𝑎1−1)

𝑟
𝑐

ℎ
] , (76)

where𝐾 is given by

𝐾 =

2 − 𝑘
0

2 (2𝑎
1
− 1)

𝐴
−(2𝑎1−1+𝑐)/(2𝑎1−1)

0
𝐴
1

+

𝐵
1

𝐵
0

𝐴
−𝑐/(2𝑎1−1)

0
,

(77)

and 𝑟𝑐
ℎ
is related to temperature

𝑟
𝑐

ℎ
= (

4𝜋 {8 + (𝐷 − 2)𝜂
2

}

8(𝐷 − 1) + (𝐷 − 2)𝜂
2
)

(8(𝐷−1)−(𝐷−2)𝜂
2
)/(8−(𝐷−2)𝜂

2
)

× 𝑇
(8(𝐷−1)−(𝐷−2)𝜂

2
)/8−(𝐷−2)𝜂

2

.

(78)

As a result, the first thermal correction to the binding energy
is proportional to

𝑉
𝑇
∼ 𝑙

(𝐷−2)(8+𝜂−2𝜂
2
)/(8−(𝐷−2)𝜂

2
)

× 𝑇
(8(𝐷−1)−(𝐷−2)𝜂

2
)/(8−(𝐷−2)𝜂

2
)

.

(79)

This result shows that the thermal correction to the binding
energy nontrivially depends on the interdistance and temper-
ature with the power determined by the nonconformality and
dimension. Especially, for the conformal case 𝜂 = 0 the first
thermal correction is proportional to

𝑉
𝑇
∼ 𝑙

𝐷−2

𝑇
𝐷−1

. (80)

At finite temperature, the binding energy of particles is
calculated numerically in Figure 4. This result shows that the
magnitude of the binding energy increases with increasing
nonconformality 𝜂.

It is also possible to think of the binding energy for a pair
of monopole and antimonopole by considering a 𝐷1-string
instead of an 𝐹1-string. In the dual theory, the end of 𝐷1-
string corresponds to amonopole, or anti-monopole whereas
the end of a fundamental string describes a fundamental
particle. In the AdS background, since there is no nontrivial
dilaton profile, the binding energy of a pair of monopole and
anti-monopole is the same as the one for particles. However,
there exists a nontrivial dilaton field in the dual geometry of
the relativistic nonconformal theory, so the binding energy
is different from the 𝐹1-string result. In order to investigate
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Figure 4:At given temperature𝑇 = 1 the binding energy of particles
for 𝜂 = 0 (solid), which is the same as the one of monopoles. The
dashed or dotted one represents the binding energies of particles or
monopoles for 𝜂 = 1, respectively, where we set 𝜋𝛼 = 1 and𝐷 = 4.

the binding energy of a pair of monopole and anti-monopole,
we should consider a Nambu-Goto action of a 𝐷1-string in
the string frame, which contains an extra dilaton field con-
tribution

𝑆
𝐷1
=

1

2𝜋𝛼

∫𝑑

2

𝜎𝑒
−𝜙
√− det(𝐺

𝜇]

𝜕𝑥
𝜇

𝜕𝜎
𝛼

𝜕𝑥
]

𝜕𝜎
𝛽

)

=

𝛽

2𝜋𝛼

∫

𝑙/2

−𝑙/2

𝑑𝑥𝑒
−𝜙/2

√ ̇𝑟
2
+ 𝑟

4𝑎1𝑓 (𝑟),

(81)

where the same parameterization (59) is used. In terms of the
dimensionless coordinate 𝑟, the interdistance of two mono-
poles can be rewritten as

𝑙 =

2√𝑓 (1)

𝑟
2𝑎1−1

∗

∫

∞

1

𝑑𝑟

1

𝑟
2𝑎1√𝑓 (𝑟)√𝑒

−
̃
𝜙
𝑟
4𝑎1𝑓 (𝑟) − 𝑓 (1)

, (82)

where 𝑓(𝑟) = 1−𝑟𝑐
ℎ
/𝑟

𝑐 and ̃𝜙 = 𝜙(𝑟), and the unrenormalized
energy is

𝐸 =

𝑟
1+𝑘0/2

∗

𝜋𝛼

∫

∞

1

𝑑𝑟

𝑒
−
̃
𝜙

𝑟
2𝑎1
√𝑓 (𝑟)

√𝑒
−
̃
𝜙
𝑟
4𝑎1𝑓 (𝑟) − 𝑓 (1)

. (83)

Similar to the 𝐹1-string the divergence of the above unrenor-
malized energy can be renormalized by the following counter
term, which corresponds to infinitelymassive twomonopoles
described by two straight𝐷1-strings:

𝐸
𝑐𝑡
=

𝑟
1+𝑘0/2

∗

𝜋𝛼

∫

∞

𝑟ℎ

𝑑𝑟𝑒
−
̃
𝜙/2

, (84)

where the same parameterization in (66) is used. Then, the
resulting renormalized binding energy of a pair of monopole
and anti-monopole reduces to

𝑉 =

𝑟
1+𝑘0/2

∗

𝜋𝛼


×(∫

∞

1

𝑑𝑟

𝑒
−
̃
𝜙

𝑟
2𝑎1
√𝑓 (𝑟)

√𝑒
−
̃
𝜙
𝑟
4𝑎1𝑓 (𝑟) − 𝑓 (1)

− ∫

∞

𝑟ℎ

𝑑𝑟𝑒
−
̃
𝜙/2

).

(85)

At low temperature (𝑟
ℎ
= 𝑟

ℎ
/𝑟
∗
≪ 1), the interdistance

and energy of a pair of monopoles have the following expan-
sion forms:

𝑙 =

1

𝑟
2𝑎1−1

∗

(𝐶
0
+ 𝐶

1

𝑟
𝑐

ℎ

𝑟
𝑐

∗

+ ⋅ ⋅ ⋅ ) ,

𝑉 = 𝐷
0
𝑟
1+𝑘0/2

∗
+ 𝐷

1
𝑟
1+𝑘0/2−𝑐

∗
𝑟
𝑐

ℎ

+ 𝐷
2
𝑟
1+𝑘0/2

ℎ
+ ⋅ ⋅ ⋅ ,

(86)

where

𝐶
0
=

2√𝜋

2𝑎
1
− 1

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

,

𝐶
1
=

2√𝜋

4𝑎
1
+ 𝑘

0

× [

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

+

2 − 2𝑐 + 𝑘
0

2 (4𝑎
1
+ 𝑘

0
)

×

Γ (1/2 + (2𝑎
1
− 1 + 𝑐) / (4𝑎

1
+ 𝑘

0
))

Γ (1 + (2𝑎
1
− 1 + 𝑐) / (4𝑎

1
+ 𝑘

0
))

] ,

𝐷
0
= −

2

(2 + 𝑘
0
)√𝜋𝛼



×

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

,

𝐷
1
=

1

(4𝑎
1
+ 𝑘

0
)√𝜋𝛼



× [

Γ (1/2 + (2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

Γ ((2𝑎
1
− 1) / (4𝑎

1
+ 𝑘

0
))

−

Γ (1/2 + (2𝑎
1
− 1 + 𝑐) / (4𝑎

1
+ 𝑘

0
))

Γ ((2𝑎
1
− 1 + 𝑐) / (4𝑎

1
+ 𝑘

0
))

] ,

𝐷
2
=

1

𝜋𝛼

(1 + 𝑘

0
/2)

.

(87)
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Similar to (74), 𝑟
∗
can be rewritten in terms of 𝑙 and 𝑟

ℎ
as

𝑟
∗
= (

𝐶
0

𝑙

)

1/(2𝑎1−1)

× (1 +

1

2𝑎
1
− 1

𝐶
−(2𝑎1−1+𝑐)/(2𝑎1−1)

0
𝐶
1
𝑙
𝑐/(2𝑎1−1)

𝑟
𝑐

ℎ
) .

(88)

Inserting this result into the binding energy, we finally obtain

𝑉 =

𝐴
𝜒

0
𝐵
0

𝑙
𝜒

[1 + 𝐿 𝑙
𝑐/(2𝑎1−1)

𝑟
𝑐

ℎ
] , (89)

where 𝜒 and 𝐿 are given by

𝜒 =

8 + (𝐷 − 2) 𝜂 + (𝐷 − 2) 𝜂
2

8 − (𝐷 − 2) 𝜂
2

,

𝐿 =

2 + 𝑘
0

2 (2𝑎
1
− 1)

𝐶
−(2𝑎1−1+𝑐)/(2𝑎1−1)

0
𝐶
1

+

𝐷
1

𝐷
0

𝐶
−𝑐/(2𝑎1−1)

0
.

(90)

As a result, the first thermal correction is proportional to

𝑉
𝑇
∼ (𝑙𝑇)

(8(𝐷−1)−(𝐷−2)𝜂
2
)/(8−(𝐷−2)𝜂

2
)

. (91)

Unlike the binding energy of particles, the first thermal cor-
rection of monopoles has the same dependence on the inter-
distance and temperature. Similar to the particle case, the
magnitude of the binding energy of monopoles at finite tem-
perature increases as the nonconformality increases. From
Figure 4, we see that a bound state of particles andmonopoles
in the conformal field theory can be dissociated more easily
than in the nonconformal field theory. In addition, in the dual
nonconformal field theory of the EdBB geometry, the dissoci-
ation length of a particle bound state is shorter than that of a
monopole bound state due to the different coupling strength.
This fact implies that a particle bound state, compared to a
monopole bound state, can be easily dissociated to two free
particles.

6. Drag Force

In this section, wewill investigate the drag force of an external
particle and a monopole in the nonconformal medium. As
mentioned before, the action describing the motion of an 𝐹1-
or 𝐷1-string is defined in the string frame [55]. In the Ein-
stein-dilaton theory, due to the nontrivial dilaton profile the
Nambu-Goto action has an additional contribution from the
dilaton field unlike the AdS case. In the static gauge

𝜏 = 𝑡, 𝜎 = 𝑟, 𝑥
1
= V𝑡 + 𝑥 (𝑟) , (92)

the Nambu-Goto action reduces to

𝑆 =

1

2𝜋𝛼

∫𝑑

2

𝜎𝑒
𝜁𝜙/2

√1 −

V2

𝑓

+ 𝑟
4𝑎1𝑓𝑥

2
, (93)

where the prime means that the derivative with respect to
𝑟 and 𝜁 is +1 or −1 for an 𝐹1- or 𝐷1-string, respectively, (In
[56, 57], the drag force in the general hyperscaling violation
background was investigated with 𝜁 = 0). The conserved
quantity, when regarding 𝑟 as a time, is represented as

Π
𝑥
= 𝑒

𝜁𝜙/2
𝑟
4𝑎1
𝑓𝑥



√1 − V2/𝑓 + 𝑟4𝑎1𝑓𝑥2
, (94)

where we set 2𝜋𝛼 = 1. Rewriting 𝑥 as a function ofΠ
𝑥
gives

rise to

𝑥


=

Π
𝑥

𝑟
4𝑎1𝑓

√

𝑓 − V2

𝑒
𝜁𝜙
𝑓 − Π

2

𝑥
/𝑟

4𝑎1

. (95)

For a well-defined 𝑥, the inside of the square root should
be always positive. However, there exists a point 𝑟

𝑠
at which

𝑓(𝑟
𝑠
) = V2 is saturated, so the denominator should also

change its sign at that point. In terms of 𝑟
ℎ
, 𝑟

𝑠
becomes

𝑟
𝑠
=

𝑟
ℎ

(1 − V2)
1/𝑐

, (96)

and the conserved momentum is expressed by

Π
𝑥
=

V

(1 − V2)
𝛿/𝑐

𝑟
𝛿/2

ℎ
, (97)

where 𝛿 = 4𝑎
1
− 𝜁𝑘

0
.

The momentum flow along the string is represented by
[55]

Δ𝑃
1
= ∫𝑑𝑡√−𝑔𝑃

𝑟

𝑥
1 =

𝑑𝑝
1

𝑑𝑡

Δ𝑡, (98)

where the worldsheet current 𝑃𝛼
𝜇
carried by a string with a

nontrivial dilaton field is given by

𝑃
𝛼

𝜇
= −𝑒

𝜁𝜙/2

𝐺
𝜇]𝜕

𝛼

𝑥
]
. (99)

Then, the drag force 𝑑𝑝
1
/𝑑𝑡 reads

𝑑𝑝
1

𝑑𝑡

= −√−𝑔𝑒
𝜁𝜙/2

𝐺
𝑥
1]𝑔

𝑟𝛼

𝜕
𝛼
𝑥
]
, (100)

where 𝐺
𝑥
1] is the metric of the target space time and 𝑔𝑟𝛼 is

the inverse of the induced worldsheet metric. Using (96) and
(97), the drag force becomes

𝑑𝑝
1

𝑑𝑡

= −

𝑟
𝛿/2

ℎ
V

(1 − V2)
𝛿/2𝑐

, (101)

where the integral (98) is evaluated at the asymptotic bound-
ary. This result guarantees that the momentum decreases as
time evolves. In particular, for the AdS

5
space, where, 𝜂 = 𝜁 =

0 it reproduces the result of [55]. Rewriting the above result
in terms of physical quantities leads to

𝑑𝑝
1

𝑑𝑡

= −𝐹 (𝑇
𝐻
)

𝑝
1
(𝑚

2

+ 𝑝
2

1
)

(𝛿−𝑐)/2𝑐

𝑚
𝛿/𝑐

,
(102)
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with

𝐹 (𝑇
𝐻
)

= (

4𝜋(8 + (𝐷 − 2)𝜂
2

)

8(𝐷 − 1) + (𝐷 − 2)𝜂
2
)

(16−(𝐷−2)𝜁𝜂)/(8−(𝐷−2)𝜂
2
)

× 𝑇
(16−(𝐷−2)𝜁𝜂)/(8−(𝐷−2)𝜂

2
)

𝐻
,

(103)

where𝑚 and 𝑝
1
are themass and themomentum of a particle

or monopole depending on the value of 𝜁.
In the nonrelativisitic limit (𝑚 ≫ 𝑝

1
), the momentum

decreases exponentially

𝑝
1
(𝑡) = 𝑝

1
(𝑡
0
) 𝑒

−(𝐹(𝑇𝐻)/𝑚)𝑡

, (104)

where 𝑝
1
(𝑡
0
) is the momentum at 𝑡 = 𝑡

0
.The above result also

shows that the drag force of a monopole (𝜁 = −1) increases
more rapidly than the one of the particle (𝜁 = +1) as tem-
perature increases. In the relativistic case (𝑚 ≪ 𝑝

1
), the

momentum decreases with power law behavior as time
evolves

𝑝
1
(𝑡) = [𝑝

(𝑐−𝛿)/𝑐

0
−

𝑐 − 𝛿

𝑐

𝐹(𝑇
𝐻
)

𝑚
𝛿/𝑐

𝑡]

𝑐/(𝑐−𝛿)

, (105)

where 𝑝
0
expresses the momentum at 𝑡

1
= 0. For more

understanding, if 𝑐/(𝑐 − 𝛿) is rewritten in terms of intrinsic
parameters as

𝑐

𝑐 − 𝛿

=

8 (𝐷 − 1) − (𝐷 − 2) 𝜂
2

8 (𝐷 − 5) + 2 (𝐷 − 2) 𝜁𝜂 − (𝐷 − 2) 𝜂
2
. (106)

it reduces to

𝑐

𝑐 − 𝛿

=

24 − 2𝜂
2

−8 + 4𝜁𝜂 − 2𝜂
2

for 𝐷 = 4,

𝑐

𝑐 − 𝛿

=

32 − 3𝜂
2

−6𝜁𝜂 + 3𝜂
2

for 𝐷 = 5.

(107)

Assuming that 𝜂 is positive, the thermodynamically stable
parameter range of 𝜂 for 𝐷 = 4 is given by 0 ≤ 𝜂 < 2. In
this parameter range, 𝑐/(𝑐 − 𝛿) is always negative regardless
of 𝜁. Therefore, the momenta of a particle and a monopole
decrease as the inverse power of time

𝑝
1
(𝑡) =

1

[1/𝑝
𝛾

0
+ (𝐹(𝑇

𝐻
)/𝛾𝑚

𝛿/𝑐
)𝑡]

𝛾
, (108)

where 𝛾 = 𝑐/(𝛿 − 𝑐) > 0. In the thermodynamically stable
parameter range for 𝐷 = 5, 𝑐/(𝑐 − 𝛿) is always negative for a
particle and positive for a monopole. So the momentum of a
monopole gives rise to

𝑝
1
(𝑡) = [𝑝

(𝑐−𝛿)/𝑐

0
−

𝑐 − 𝛿

𝑐

𝐹(𝑇
𝐻
)

𝑚
𝛿/𝑐

𝑡]

𝑐/(𝑐−𝛿)

, (109)

while a particle shows the inverse power lawbehavior in (108).
In all cases, the momentum decreases more rapidly at high

temperature. In sum, the drag force calculation shows that the
momentum of a particle and monopole is suppressed expo-
nentially for the nonrelativistic case and in a power law for the
relativistic case. In the dual nonconformal theory of the EdBB
geometry, the suppression powers of a particle andmonopole
are different and crucially depend on the nonconformality
while there is no difference in the conformal field theory dual
to the AdS geometry.

7. Holographic Entanglement Entropy

Recently, there was an interesting conjecture that in a small
subsystem the entanglement temperature has a universal
feature proportional to the inverse of size 𝑙 [34]

𝑇
𝑒𝑛
∼

1

𝑙

. (110)

In this section, we will check such a universal feature in the
relativistic nonconformal theory. Before doing that, we first
check whether the EdBB can provide a consistent dual geom-
etry or not following [41]. To do so, it is more convenient to
rewrite the metric as the hyperscaling violation form. After
introducing

𝑟 → (2𝑎
1
− 1)

1/(1−𝑎1)

𝑢
−1/(2𝑎1−1)

,

{𝑡, 𝑥
𝑖

} → (2𝑎
1
− 1)

−𝑎1/(1−𝑎1 )

{𝑡, 𝑥
𝑖

} ,

(111)

the metric becomes

𝑑𝑠
2

= 𝑢
−2(𝐷−2−𝜃)/(𝐷−2)

× (−𝑓 (𝑢) 𝑑𝑡
2

+

𝑑𝑢
2

𝑓 (𝑢)

+ 𝛿
𝑖𝑗
𝑑𝑥

𝑖

𝑑𝑥
𝑗

) ,

(112)

where the black brane factor 𝑓(𝑢) is

𝑓 (𝑢) = 1 − (

𝑢

𝑢
ℎ

)

𝑐/(2𝑎1−1)

. (113)

Here, the hyperscaling violation exponent 𝜃 is given by

𝜃 = −

(𝐷 − 2)
2

𝜂
2

8 − (𝐷 − 2) 𝜂
2
. (114)

Now, let us concentrate on the symmetry of the asymptotic
geometry. Since the boundary is located at 𝑢 = 0 in the new
coordinate, the asymptotic metric reduces to

𝑑𝑠
2

= 𝑢
−2(𝐷−2−𝜃)/(𝐷−2)

× (−𝑑𝑡
2

+ 𝑑𝑢
2

+ 𝛿
𝑖𝑗
𝑑𝑥

𝑖

𝑑𝑥
𝑗

) .

(115)

Under the following scaling transformation

𝑡 → 𝜆𝑡, 𝑢 → 𝜆𝑢, 𝑥
𝑖

→ 𝜆𝑥
𝑖

, (116)

the metric transforms as 𝑑𝑠2 → 𝜆
2𝜃/(𝐷−2)

𝑑𝑠
2, in which the

nonzero value of 𝜃 indicates the breaking of the conformal
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symmetry of the dual field theory.Nevertheless, the rotational
and translational symmetries of the boundary space represent
that the dual theory is still relativistic. As a result, the dual
theory of the EdBB geometry maps on to a relativistic non-
conformal field theory. In this case, the null energy condition
reads

𝜃 [(𝐷 − 2) − 𝜃] ≤ 0. (117)

For a consistent gravity dual, 𝜃 should satisfy this null energy
condition [41]. Since 𝜃 in (114) satisfies the null energy con-
dition for all ranges of 𝜂

𝜃 ≤ 0 for 𝜂2 < 8

(𝐷 − 2)

,

𝜃 ≥ 𝐷 − 2 for 𝜂2 > 8

(𝐷 − 2)

,

(118)

the EdBB geometry (115) is a consistent gravity dual of a rela-
tivistic nonconformal field theory. Although the entire ranges
of 𝜂 provide a consistent gravity dual, only the range 𝜂2 <

8/(𝐷 − 2) is thermodynamically stable.
Now, let us study the holographic entanglement entropy

of such a relativistic nonconformal theory by using a 𝐷 − 2-
dimensional strip [58, 59]. A strip in the EdBB background
can be parameterized by

−

𝑙

2

≤ 𝑥
1

≤

𝑙

2

,

0 ≤ 𝑥
𝑖

≤ 𝐿 (𝑖 = 2, 3, . . . , 𝐷 − 2) ,

(119)

where 𝐿 corresponds to the interval of 𝑥𝑖 and we assume that
𝑙 ≪ 𝐿. Since the strip is extended in the radial direction 𝑢, its
profile can be represented as a function of 𝑥1, 𝑢 = 𝑢(𝑥1), with
the following boundary conditions:

𝜖 = 𝑢(−

𝑙

2

) = 𝑢(

𝑙

2

) , (120)

where 𝜖 is an appropriate UV cutoff of the radial coordinate.
The area of the strip then becomes

𝐴 = 2𝐿
𝐷−3

∫

𝑙/2

0

𝑑𝑥
1

𝑢
−(𝐷−2−𝜃)

√
𝑢
2

𝑓 (𝑢)

+ 1, (121)

where the prime implies a derivative with respect to 𝑥1. If 𝑥1
is regarded as time, the conserved energy density is given by

𝐻 = −

2

𝑢
𝐷−2−𝜃

√𝑢
2
/𝑓 (𝑢) + 1

. (122)

Now, let us assume that the strip configuration has a max-
imum value, 𝑢max, which corresponds to the turning point
or tip of the U-shape configuration in the 𝑥1-𝑢 plane. At the
turning point, since𝑢 vanishes, the conserved energy density
reduces to

𝐻 = −

2

𝑢
𝐷−2−𝜃

max
. (123)

Comparing two conserved energy densities we can represent
distance 𝑙 and area 𝐴 of strip in terms of 𝑢max

𝑙 = 2𝑢max ∫
1

𝜖

�̃�
𝐷−2−𝜃

𝑑�̃�

√𝑓 (�̃�)√1 − �̃�
2(𝐷−2−𝜃)

,

𝐴 = −

2𝐿
𝐷−3

𝑢
𝐷−3−𝜃

max
∫

1

𝜖

𝑑�̃�

�̃�
𝐷−2−𝜃

√𝑓 (�̃�)√1 − �̃�
2(𝐷−2−𝜃)

,

(124)

where the new coordinate �̃� is defined as �̃� = 𝑢/𝑢max and the
black brane factor is in terms of �̃�

𝑓 (�̃�) = 1 − (

�̃�

�̃�
ℎ

)

𝑐/(2𝑎1−1)

, (125)

with �̃�
ℎ
= 𝑢

ℎ
/𝑢max. It should be noted that the above U-shape

configuration is only possible when 𝑢max is smaller than 𝑢
ℎ
; in

other words, �̃�
ℎ
> 1. If not, the turning point of the strip goes

inside of the black brane horizon. In this case, the resulting
string configuration is described by two disconnected planes
outside of the black brane horizon.

At zero temperature, �̃�
ℎ
→ ∞ and 𝑓(�̃�) → 1, respec-

tively. So distance 𝑙 and the area of the strip 𝐴 simply reduce
to

𝑙 = 𝑔
0
𝑢max, (126)

𝐴 =

̃
ℎ
0

𝑢
𝐷−3−𝜃

max
, (127)

with

𝑔
0
=

2√𝜋Γ ((𝐷 − 1 − 𝜃) /2 (𝐷 − 2 − 𝜃))

Γ (1/2 (𝐷 − 2 − 𝜃))

, (128)

̃
ℎ
0
= −

2𝐿
𝐷−3

(𝐷 − 3 − 𝜃)

1

𝜖
𝐷−3−𝜃

+ ℎ
0
, (129)

ℎ
0
=

2𝐿
𝐷−3

(𝐷 − 3 − 𝜃)

×

√𝜋Γ ((𝐷 − 1 − 𝜃) /2 (𝐷 − 2 − 𝜃))

Γ (1/2 (𝐷 − 2 − 𝜃))

,

(130)

where the first term in (129) represents a UV divergence as
𝜖 → 0. Ignoring the UV divergence, the zero temperature
entanglement entropy reduces to

𝑆
𝑒𝑛

=

𝐿
𝐷−3

[8 − (𝐷 − 2) 𝜂
2

]

2𝐺 [8 (𝐷 − 3) + (𝐷 − 2) 𝜂
2
]

× (

2

𝑙

)

(8(𝐷−3)+(𝐷−2)𝜂
2
)/(8−(𝐷−2)𝜂

2
)

× [

√𝜋Γ ((8 (𝐷−1)−(𝐷−2) 𝜂
2

)/16 (𝐷−2))

Γ ((8 − (𝐷 − 2)𝜂
2
)/16(𝐷 − 2))

]

8(𝐷−2)/(8−(𝐷−2)𝜂
2
)

.

(131)
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If the size of the subsystem is small (�̃�
ℎ
≫ 1), after remov-

ing the UV divergence, the distance and area of strip can be
expanded into

𝑙 = 𝑢max [𝑔0 + 𝑔1(
𝑢max
𝑢
ℎ

)

𝜁

] + ⋅ ⋅ ⋅ , (132)

𝐴 =

1

𝑢
𝜉

max
[ℎ

0
+ ℎ

1
(

𝑢max
𝑢
ℎ

)

𝜁

] + ⋅ ⋅ ⋅ , (133)

where

𝜁 =

8 (𝐷 − 1) − (𝐷 − 2) 𝜂
2

8 − (𝐷 − 2) 𝜂
2

,

𝜉 =

8 (𝐷 − 3) + (𝐷 − 2) 𝜂
2

8 − (𝐷 − 2) 𝜂
2

,

𝑔
1

=

√𝜋 [8 − (𝐷 − 2) 𝜂
2

] Γ ((8 (2𝐷 − 3) − (𝐷 − 2) 𝜂
2

) /8 (𝐷 − 2))

2 [8 (𝐷−1)−(𝐷−2) 𝜂
2
] Γ ((4 (3𝐷−4) − (𝐷−2) 𝜂

2
) /8 (𝐷−2))

,

(134)

ℎ
1
= −

𝐿
𝐷−3

√𝜋Γ ((8 (𝐷 − 1) − (𝐷 − 2) 𝜂
2

) /8 (𝐷 − 2))

2Γ ((4𝐷 − (𝐷 − 2) 𝜂
2
) /8 (𝐷 − 2))

. (135)

In order to describe the entanglement entropy in terms of the
system size, we need to rewrite 𝑢max in terms of 𝑙 and 𝑢

ℎ
. To

do so, we first set 𝑢max to

𝑢max =
𝑙

𝑔
0

(1 + 𝛿) , (136)

where 𝛿 is a small function of 𝑙 and 𝑢
ℎ
. Then, the first term

satisfies the zero temperature result in (126), whereas the
second corresponds to the leading thermal correction. In
order to satisfy (132) at least at order of 𝑢−𝜁

ℎ
, 𝛿 should be

𝛿 = −

𝑔
1

𝑔
𝜁+1

0

𝑙
𝜁

𝑢
𝜁

ℎ

. (137)

When substituting this result into (133), the area of strip
becomes up to order of 𝑢−𝜁

ℎ

𝐴 =

𝑔
𝜉

0
ℎ
0

𝑙
𝜉

(1 +𝑀

𝑙
𝜁

𝑢
𝜁

ℎ

) , (138)

where𝑀 is given by

𝑀 =

𝜉𝑔
1

𝑔
𝜁+1

0

+

ℎ
1

ℎ
0
𝑔
𝜁

0

. (139)

Using the following relation together with (136)

𝑢
ℎ
=

8 (𝐷 − 1) + (𝐷 − 2) 𝜂
2

4𝜋 (8 + (𝐷 − 2) 𝜂
2
)

× (

8 − (𝐷 − 2)𝜂
2

8 + (𝐷 − 2)𝜂
2
)

(8−(𝐷−2)𝜂
2
)/(𝐷−2)𝜂

2

1

𝑇
𝐻

,

(140)

the entanglement entropy in the small size limit leads to

𝑆
𝑒𝑛
≡

𝐴

4𝐺

=

𝑔
𝜉

0
ℎ
0

4𝐺

(𝑙
−𝜉

+

𝑀

𝑁
𝑐
𝑙
𝜁−𝜉

𝑇
𝜁

𝐻
) ,

(141)

where the first term represents the entanglement entropy at
zero temperature and the second is the leading thermal cor-
rection. In other words, the leading temperature-dependent
entanglement entropy is proportional to

Δ𝑆
𝑒𝑛
∼ 𝑙

2

𝑇
(8(𝐷−1)−(𝐷−2)𝜂

2
)/(8−(𝐷−2)𝜂

2
)

𝐻
, (142)

which corresponds to the entropy increase caused by the
excited states. Using the fact that the boundary energy density
in (34) is proportional to 𝑟𝑐

ℎ
only, we can easily evaluate the

total energy of strip when the strip distant 𝑙 in (119) is very
small

Δ𝐸 = ∫𝑑
𝐷−2

𝑥

1

8𝜋𝐺

4 (𝐷 − 2)

8 + (𝐷 − 2) 𝜂
2
𝑟
𝑐

ℎ

∼ 𝑙𝑇
(8(𝐷−1)−(𝐷−2)𝜂

2
)/(8−(𝐷−2)𝜂

2
)

𝐻
.

(143)

These results show that the leading temperature-dependent
entanglement entropy and the energy of the excited states
depend nontrivially on the Hawking temperature 𝑇, which
is the temperature of the thermal equilibrium. However, the
ratio of them is independent of the Hawking temperature

Δ𝑆
𝑒𝑛

Δ𝐸

∼ 𝑙, (144)

which shows the universal feature conjectured in [34]. Intro-
ducing an entanglement temperature inversely proportional
to distance 𝑙, the first law of thermodynamics is satisfied even
in the relativistic nonconformal theory.

8. Discussion

In the 𝐷-dimensional Einstein-dilaton theory with a Liou-
ville potential, a Schwarzschild-type black brane solution is
allowed and its asymptotic geometry has the 𝐼𝑆𝑂(1, 𝐷 − 2)

symmetry group. Following the gauge/gravity duality, this
isometry group can be reinterpreted as the Poincare group of
the dual theory defined on the boundary. In this case, because
there is no scaling symmetry the dual theory becomes a
relativistic nonconformal theory. In this paper, we have inves-
tigated the thermodynamic properties of the relativistic non-
conformal theory by using the holographic renormalization.
After introducing a correct counter term, we have evaluated
the finite boundary stress tensor and showed that the ther-
modynamics derived from it coincides with that of the EdBB
geometry. Furthermore we showed, after identifying the
radial coordinate with the energy scale of the dual theory,
that the free energy of the relativistic nonconformal theory
monotonically decrease along the change of the energy from
UV to IR.

For checking the self-consistency of the gauge/gravity
duality in the Einstein-dilaton theory, we studied the hydro-
dynamics of the dual theory by using the membrane
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paradigm. The resulting transport coefficients coincide with
those obtained by the Kubo formula. Furthermore, the
thermodynamic quantity, 𝜖+𝑃, read off from themomentum
diffusion constant is also consistent with the QFT result. The
charge and momentum diffusion constants monotonically
decreases as the energy of the dual theory decreases.

Although the microscopic theory dual to the EdBB and
the exact map between the bulk fluctuations and their dual
operators are still unclear for the non-AdS geometry, our
work shows the possibility to generalize the AdS/CFT corre-
spondence to the non-AdS space. Based on such self-consist-
encies of the thermodynamic andmacroscopic properties, we
further investigate some physical properties of the relativistic
nonconformal theory, the binding energies of particles and
monopoles, and the drag forces of them. Due to the non-
trivial coupling constant described by the dilaton, the particle
and monopole have different physical properties in the non-
conformal medium, whereas they are indistinguishable in
the conformal theory. For example, for 𝜂 = 1 the binding
energy of monopoles is stronger than that of particles. When
the motion of the particle and monopole is nonrelativistic
in the 4-dimensional relativistic nonconformal medium, the
momentum of a particle dissipates with a power law while a
monopole has the dissipation with an inverse power law. For
a nonrelativistic particle and monopole, the momentum dis-
sipates exponentially. In all cases, the dissipation rate is given
by a function of the nonconformality. We lastly showed that
the universal feature of the entanglement temperature also
appears in the relativistic nonconformal theory.

The gauge/gravity duality in the non-AdS space is one of
the important issues, so it remains interesting to investigate
themicroscopic aspects of it and to apply it to the real physical
systems. We hope to report more results in the future works.
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