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The steps essentially involved in the evaluation of transport coefficients in linear response theory using Kubo formulas are to relate
the defining retarded correlation function to the corresponding time-ordered one and to evaluate the latter in the conventional
perturbation expansion. Here we evaluate the viscosities of a pion gas carrying out both the steps in the real-time formulation. We
also obtain the viscous coeflicients by solving the relativistic transport equation in the Chapman-Enskog approximation to leading
order. An in-medium 77 cross-section is used in which spectral modifications are introduced in the propagator of the exchanged

p.

1. Introduction

One of the most interesting results from experiments at the
Relativistic Heavy Ion Collider (RHIC) is the surprisingly
large magnitude of the elliptic flow of the emitted hadrons.
Viscous hydrodynamic simulations of heavy ion collisions
require a rather small value of #/s, # being the coefficient of
shear viscosity and s the entropy density, for the theoretical
interpretation of this large collective flow. The value being
close to 1/47, the quantum lower bound for this quantity [1],
matter produced in these collisions is believed to be almost a
perfect fluid [2].

This finding has led to widespread interest in the study
of nonequilibrium dynamics, especially in the microscopic
evaluation of the transport coefficients of both partonic as
well as hadronic forms of strongly interacting matter. In
the literature one comes across basically two approaches
that have been used to determine these quantities. One is
the kinetic theory method in which the nonequilibrium
distribution function which appears in the transport equation
is expanded in terms of the gradients of the flow velocity
field. The coefficients of this expansion which are related to
the transport coefficients are then perturbatively determined
using various approximation methods. The other approach is
based on response theory in which the nonequilibrium trans-
port coefficients are related by Kubo formulas to equilibrium
correlation functions. They are then perturbatively evaluated
using the techniques of thermal field theory. Alternatively, the

Kubo formulas can be directly evaluated on the lattice [3] or
in transport cascade simulations [4] to obtain the transport
coeflicients.

Thermal quantum field theory has been formulated in the
imaginary as well as real-time [5-9]. For time independent
quantities such as the partition function, the imaginary
time formulation is well suited and stands as the only
simple method of calculation. However, for time dependent
quantities like two-point correlation functions, the use of this
formulation requires a continuation to imaginary time and
possibly back to real-time at the end. On the other hand,
the real-time formulation provides a convenient framework
to calculate such quantities, without requiring any such
continuation at all.

A difficulty with the real-time formulation is, however,
that all two-point functions take the form of 2 x 2 matrices.
But this difficulty is only apparent. Such matrices are always
diagonalisable, and it is the 11 component of the diagonalised
matrix that play the role of the single function in the
imaginary time formulation. It is only in the calculation of
this 11 component to higher order in perturbation that the
matrix structure appears in a nontrivial way.

In the literature transport coefficients are evaluated using
the imaginary time formulation [10-12]. Such a coefficient is
defined by the retarded correlation function of the compo-
nents of the energy-momentum tensor. As the conventional
perturbation theory applies only to time-ordered correlation



functions, it is first necessary to relate the two types of
correlation functions using the Kéllen-Lehmann spectral rep-
resentation [13-16]. We find this relation directly in real-time
formulation. The time-ordered correlation function is then
calculated also in the covariant real-time perturbative frame-
work to finally obtain the viscosity coefficients of a pion gas.

We also calculate the viscous coefficients in a kinetic
theory framework by solving the transport equation in
the Chapman-Enskog approximation to the leading order.
This approach being computationally more efficient [12] has
been mostly used in the literature to obtain the viscous
coefficients. The mm cross-section is a crucial dynamical
input in these calculations. Scattering amplitudes evaluated
using chiral perturbation theory [17, 18] to lowest order have
been used in [19, 20], and unitarization improved estimates
of the amplitudes were used in [21] to evaluate the shear
viscosity. Phenomenological scattering cross-section using
experimental phase shifts has been used in [20, 22-24] in view
of the fact that the 77 cross-section estimated from lowest
order chiral perturbation theory is known to deviate from the
experimental data beyond centre of mass energy of 500 MeV
primarily due to the p pole which dominates the cross-
section in the energy region between 500-1000 MeV. All these
approaches have used a vacuum cross section. To construct an
in-medium cross-section we employ an effective Lagrangian
approach which incorporates p and ¢ meson exchange in
7 scattering. Medium effects are then introduced in the p
propagator through one-loop self-energy diagrams [25].

In Section 2 we derive the spectral representations for the
retarded and time-ordered correlation functions in the real-
time version of thermal field theory. We also review the for-
mulation of the nonequilibrium density operator and obtain
the expressions for the viscosities in terms of equilibrium
(retarded) two-point functions. The time-ordered function is
then calculated to lowest order with complete propagators in
the equilibrium theory. In Section 3 we briefly recapitulate
the expressions for the viscosities obtained by solving the
Uehling-Uhlenbeck transport equation in the kinetic theory
framework. We then evaluate the nm cross-section in the
medium briefly discussing the one-loop p self-energy due
to mh (h = m,w, hy,a,) loops evaluated in the real-time
formulation discussed previously. We end with a summary
in Section 4.

2. Viscous Coefficients in the Linear
Response Theory

2.1. Real-Time Formulation. In this section we review the
real-time formulation of equilibrium thermal field theory
leading to the spectral representations of bosonic two-point
functions [16]. This formulation begins with a comparison
between the time evolution operator e 127 of quantum
theory and the Boltzmann weight e P = ¢ H=#)
of statistical physics, where we introduce 7 as a complex
variable. Thus while for the time evolution operator, the times
t, and t, (t, > t;) are any two points on the real line,
the Boltzmann weight involves a path from 7 to 7 — if in
the complex time plane. Setting this 7 = —T, where T is
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F1GURE I: The contour C in the complex time plane used here for the
real-time formulation.

real, positive, and large, we can get the contour C shown in
Figure 1, lying within the region of analyticity in this plane
and accommodating real-time correlation functions [6, 8].

Let a general bosonic interacting field in the Heisenberg
representation be denoted by @, (x), whose subscript [ collects
the index (or indices) denoting the field component and
derivatives acting on it. Although we will call its two-point
function as propagator, ®;(x) can be an elementary field or a
composite local operator. (If ®;(x) denotes the pion field, it
will, of course, not have any index.)

The thermal expectation value of the product
CD,(x)CDlT, (x may be expressed as
1 -
() = BE,,
(@0} (+)) = e .

x (m|®, (x)|n) <n|(l>;r, (x'). m> ,

where (O) for any operator O denotes equilibrium ensemble
average:

Tr (e_ﬁHO)

, Z=Tr ef‘BH. )
Z

O) =

Note that we have two sums in (1), one to evaluate the trace
and the other to separate the field operators. They run over
a complete set of states, which we choose as eigenstates [)
of four-momentum P,. Using translational invariance of the
field operator:

O (x) = "D, (0) e, 3)
we get
l « e
<CD1 (x) CDIT, (x'» = Zze BEn gilhy—hy)-(x=x')
" )

x (m|®, (0)| n) <n|(DZr, (0)| m).

Its spatial Fourier transform is

J A3 xe @) <Cl>l (x) CI)ZT, (x')>

_ ey’

2 ¥ e PEn fE BN ) g ) ()

m,n

x (m|®; (0)| n) <n|d>lT, (0)| m>,
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where the times 7, 7' are on the contour C. We now insert
unity on the left of (5) in the form

1= JOO dkyd (E,, - E, + k). (6)

(We reserve k; for the variable conjugate to the real-time.)
Then it may be written as

stx kG <(Dl x) (lel (x')>
(7)

dk(l) —ik! (1—7") 5 o+ i
= J Ee 0 Mlll (kO’ k) 5

where the spectral function M™ is given by [k; = (k('), k)] as
follows:
4
M (K) = % 3 e Pngt (k,, — k, + k')
o (®)
x (m|®, (0)| n) <n |(DIT, (0)' m> .

In just the same way, we can work out the Fourier
transform of (d);, (x')(Dl(x)) as follows:

Jd3x k) <®;r, (x') o, (x)>
)

dké) —ikh(t—=t') A~ (1]
= J Ee Mll’ (kO’ k) 5

with a second spectral function M~ given by
4
My (k) = en). Y e ot (k, - k,, + k')
Z m,n (10)
X <m |d);, (O)' n> (n|®, (0)|m).

The two spectral functions are related by the KMS relation
(26, 27]

M, (k) = e My, (k), (1

in momentum space, which may be obtained simply by
interchanging the dummy indices m, n in one of M;; (k) and
using the energy conserving d-function.

We next introduce the difference of the two spectral
functions:

py (k) =

and solve this identity and the KMS relation (11) for Mli;, (k)
as follows:

My, (k) - My (k) (12)

My (k) = {1+ f (ko)} pur (k)
My, (k) = f (ko) pur ()

where f(k,) is the distribution-like function

(13)

1
f (ko) = o o< k,y < oo. (14)

3
In terms of the true distribution function
1
n([ko|) = AL (15)
it may be expressed as
f (ko) = f (ko) {0(ko) + 0 (~ko)} 16)

= ne (ky) = 0 (ko) .

With the previous ingredients, we can build the spectral
representations for the two types of thermal propagators. First
consider the time-ordered one:

—iDyy (x, x') = <TC<DZ (x) (DIT, (x')>
=0, (r-7)(®,(x) @} (x')) (17)
+0, (T’ - T) <®ZT, (x') D, (x)> .

Using (7), (9), and (13), we see that its spatial Fourier
transform is given by [6]

D”/ (T - T,,k) = IJ

—00

x ¢ ko) {95 (T - T') +f (k('))} :

As T — o0, the contour of Figure 1 simplifies, reducing
essentially to two parallel lines, one the real axis and the other
shifted by —if3/2, points which will be denoted, respectively,
by subscripts 1 and 2, so that 1, = ¢, 7, = t —if3/2 [8]. The
propagator then consists of four pieces, which may be put in
the form of a 2 x 2 matrix. The contour ordered 8’s may now
be converted to the usual time ordered ones. If 7, 7’ are both
on line 1 (the real axis), the 7 and ¢ orderings coincide, 0, (1, —
T{) =0@t—t").If they are on two different lines, the T ordering
is definite, 0,(t, — 75) = 0, 6.(z, — 7;) = 1. Finally if they are
both on line 2, the two orderings are opposite, 0,(t, — 7;) =
ot -1t).

Back to real-time, we can work out the usual temporal
Fourier transform of the components of the matrix to get

o dk() ,
EPIV (ko’ k) a8)

© dk!

Dy (ko k) = J pyal (koK) A (koo ko), (19)

where the elements of the matrix A are given by [16]

N 1 .
Ap=-Ay= m + me(k(’))‘S (k(’) - kO) ’ 20)

Ay = Ay = 2mie™2 f (k)8 (k) — ko).
Using relation (16), we may rewrite (20) in terms of » as
follows:

1

Ayy=-A, = ————
! . k6 — ko —ine (ko)

+ 2mrine (ky) 8 (ky — ko) »

Ay, =N, =21iVn(1 +n)e (kO)S(k(') - ko).

(1)



The matrix A and hence the propagator D;; can be
diagonalised to give

Dy 0
D, (k,k)=U["% _. U, 22
v =u(T D) @)

where D;; and U are given by

— o ! rk’,k
P (k"’k):j %k’ —plilc (—Oi e)(k)’
—00 0~ Ko —HE(Ky (23)
(T )
“\ Vn V1+n)’

Equation (22) shows that D can be obtained from any of the
elements of the matrix D, say D;,. Omitting the indices I,
we get

— — k
ReD = Re Dy, Im D = tanh <%) ImD,;;. (24)

Looking back at the spectral functions M, defined by
(8) and (10), we can express them as usual four-dimensional
Fourier transforms of ensemble average of the operator
products, so that p is the Fourier transform of that of the
commutator:

pu (ko) = [ d'3e 02 ([0 (). 00 ()] 25)

where the time components of y and y' are on the real axis
in the 7-plane. Taking the spectral function for the free scalar
field

po = 2me (ko) & (K> - m?), (26)

we see that D becomes the free propagator, D(k,, k) =
~1/(k* —m?).
We next consider the retarded thermal propagator:

Dﬁ, (x,x') =0, (T - T') <[CDl (x,7), Dy (x', T’)]> , (27)

where again 7, 7' are on the contour C (Figure 1). Noting
equations (7), (9), and (12) the three-dimensional Fourier
transform may immediately be written as

R P N (& dkg ik (r-7) ,
Dy (T—T,k) =0, (T—T)j —e P (ko,k).

—oo 27T
(28)

As before we isolate the different components with real-times
and take the Fourier transform with respect to real-time. Thus
for the 11 component we simply have

oo ! ' ]
(e .8), =0(o ) [ ot 61,
(29)
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whose temporal Fourier transform gives

o dk) pi (ko k
Dy (ko ), :J o b (k) (30)

oo 2 K —kg—in

This 11 component suffices for us, but we also display the
complete matrix as follows:

D} (ko k)

Dy (k) 0
Nt [0 w0+ "o k| b, )

n+1 n
(31)

Though we deal with matrices in real-time formulation, it is
the 11 component that is physical. Equations (23) and (30)
then show that we can continue the time-ordered two-point
function into the retarded one by simply changing the ie
prescription as follows:

Dﬁ'(ko +in, k)u = Bll’ (ko +ine (qo) — ko +in,k). (32)

The point to note here is that for the time-ordered propagator,
it is the diagonalised matrix and not the matrix itself, whose
11 component can be continued in a simple way.

2.2. Transport Coefficients. We now use the linear response
approach to arrive at expressions of the transport coeflicients
as integrals of retarded Green’s functions over space. We
follow the method proposed by Zubarev [28], which is
excellently reviewed in [10]. Here the system is supposed
to be in the hydrodynamical stage where the mean free
time of the constituent particles is much shorter than the
relaxation time of the whole system under consideration.
Thus local equilibrium will be attained quickly, while global
equilibrium will be approaching gradually. Since the system
is assumed to be not far from equilibrium, we may retain only
linear terms in space-time gradients of thermodynamical
parameters, like temperature and velocity fields. We assume
the energy-momentum of the system to be conserved as
follows:

0,T" (x,1) = 0. (33)

The nonequilibrium density matrix operator is constructed
in the Heisenberg picture, where it is independent of time as
follows:

dp
Lo, 34
= (34)

Following Zubarev, we construct the operator B(x,t) as
follows:

t
B(x,t)=¢ J dt, e VF (x, 1)) T, (%,1,),
0 (35)

(e—07),
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where F'(x,t) = p(x,t)u”(x,t). Here B(x,t) is a Lorentz
invariant quantity defining the local temperature, and u” (x, t)
is the four-velocity field of the fluid

u (x,t)u, (x,t) = 1. (36)

The construction (35), which smooths out the oscillating
terms, resembles the one used in the formal theory of
scattering [28, 29] and selects out the retarded solution.

The expression (35) is actually independent of ¢; the time
derivative is

d .
Bt = eF" (D Ty, (x.1)
(37)

t
- J dt, e IF (x,8)) Ty, (x,1,) .
—00

As T, and F” are finite, the right hand side of (37) goes to
zero as € — 0. Also integrating (35) by parts, we get

B(x,t) = F" (x,t) Ty, (X, 1)
C ot (wdTy, AP (38)
[ anee (F Tor & TO,,>.

We now consider the space integral of (38). Using the energy-
momentum conservation rule (33), we integrate the second
term in (38) by parts and neglect the surface integrals to get

J AxB(x,t) = J P xF (x,t) Ty, (x,1)

t
- J d’x J—oo dtlee(tl_t)Tw, (x,t;)0"F" (x,t,)

=A-B,
(39)

where we have abbreviated the first and second terms by
A and -B, respectively. Then the nonequilibrium statistical
density matrix is given by

p= e MBI Tre A8, (40)
The first term A in (39) characterises local equilibrium:
pp=e€?/Tre? (41)

where the second term B including the thermodynamical
force 0“F” describes deviation from equilibrium.
In order to expand p in a series in B we define the function

Q (T) — e*(l*T)AeT(waLB) (42)

such that the boundary conditions at 7 = 0 and 7 = 1
correspond to the equilibrium and nonequilibrium density
matrices as follows:

Qr=0=e¢=p, Qr=D=e™F=p (43)
We then differentiate Q(7) with respect to 7 to get

dQ (1) _ e—(l—r)A

gt Be"*Q (1) (44)

which can be integrated to give

QD =Q)+ [ dr'e BTG (). )

It can be solved iteratively. Keeping up to the first order term
(linear response) and setting T = 1, we get the required result

1
P =P [1 + J e_TABeTA] . (46)
0

Applying this formula to the energy-momentum tensor,
we get its response to the thermodynamical forces as [10]

(T 1) = (T,, (1)),
cfax [ e @
X (T (5,1, T,y (X)) OPF° (x',1),
where
(T, 1), T, (x,1'))
= Ll dr {(T,,(x ) ™ T, (', t)e™)  (48)

_<TW(X’ t))()(Tpa(X,’ t,)>o}

is the correlation function to be evaluated. As the correlation
is assumed to vanish as ' — —0o0, it can be put in terms of
the conventional retarded Green’s function. Omitting indices,
it is

(T (x, t)’T(X,’tl)) - % Jt dt’<T(x, t)’T(Xl’tl)>ret

(49)
with
(T 1), T, 1)) =8t~ ) ([T x0), T (x,1")]),.
(50)

We now use (47) to obtain the expectation value of
the viscous-shear stress part of the nonequilibrium energy
momentum tensor which is given by

T =% @ 4 7 4 (P’ + Put), (51)

where T# © = (e + p)utu’ — g""p is the equilibrium part,
" is the viscous-shear stress tensor, and P* is the heat
current. Also, with a view to separate scalar, vector and tensor
processes, the quantity T,,0°F? in (39) is expanded as

T,,0°F° = pr,,0°u’ + BP, (0" B + u - 0u”) — fpo L(t |
52

with p = p — ¢, ¢, being the sound velocity. Using now
the fact that the correlation function between operators of



different ranks vanishes in an isotropic medium, one can
write from (47)

<”/w (x, t)>
= (m,, (% t)>0 + Jd%’ Jt dt' et (53)

X (M (68), 50 (%)) B(x£) 9707 (x )

with <7TW(X, 1)), = 0. Following Hosoya et al. [10], we write
the correlation function as

1 2
(”W ”PU) BT [A#PAW + By~ gAwAPU]
(54)
X (70 mg)

where A, = g, — u,u,. Assuming now that changes in the
thermodynamic forces are small over the correlation length
of the two-point function, the factor f0°u” can be taken out
of the integral giving finally:

(" (x,1)) = 1 [Af;A; (0°u° +0°uP) - éAmpaapu" ,
(55)

where

1 (° (t,—t) h ’
}’I = E J dtlee ! J dt
=00

-0

X Jd3x' <naﬁ (X,1), 75 (x', t')>

ret

0 f
- | anen [ ari[axo(-r)

X <[rr“ﬁ (0,0), 7,5 (x',t')]>0; (x — 0,t — 0).
(56)

Again, starting with the pressure p(x, t) on the Lh.s of (47)
and following the steps as described previously, we obtain

<p (X’ t)) = <P (X, t)>0 - CapuP (X: t) > (57)

where the bulk viscosity ¢ is given in terms of a retarded
correlation function by

<:=JO dt, et I at' [ (F0.5(x.1),
—00 -0 (58)

Here p(x,t) = p(x,t)— csze(x, t) with e(x, t) the energy density
and 652 = (dp/oe),.

Recall that (- -- ), denotes equilibrium ensemble average.
From now on we will drop the subscript “0” on the correlation
functions.

2.3. Perturbative Evaluation. Clearly the spectral forms and
their interrelations derived in Section 2.1 hold also for the
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two-point function appearing in (56) for the shear viscosity.
We begin with four-dimensional Fourier transforms. To
calculate the 11 element of the retarded two-point function

H1121 (q) _ ijd4xeiq(x—x’)0 (t _ t!)

(g 0.7 ()]

we consider the corresponding time-ordered one

(59)

I, (q) =i J d'xel ) <T7Tocﬁ (x,t) (X,’ tl)> » (60)

which can be calculated perturbatively. The viscous stress
tensor can be extracted from the energy momentum tensor
using the formula

o 1 [
o () = <Af;A i 3t )Tp(, ), (6]
where T;w =- gwg+(8$ /0(0¥¢))-0,¢ in which ¢(x) denotes

the pion triplet. We take the lowest-order chiral Lagrangian
given by [18]

The time-ordered correlator, to leading order, is then given by
Wick contractions of pion fields in 71,z which is obtained as

o () = (8,7 - %A“/;A”“> 8,6(x)0,$(x).  (63)

In the so-called skeleton expansion, these contractions are
expressed in terms of complete propagators (see Figure 2) to
get

o dU
I, (q) = ’J wN (Lq) Dy, () Dy, (I-9q), (64)

where Dy, is given by (19) and N(J,q) is determined by the
derivatives acting on the pion fields as follows:

N(.g) =g, [PA-a7 +30-0-0F]. ()

where the pion isospin degeneracy factor g,, = 3.

To work out the [ integral in (64), it is more convenient
to use A ;; given by (20) than by (21). Closing the contour in
the upper or lower half [,-plane, we get

d’l
@n)’

dk) )
I, (q) = J N(lq) J 2_7_:/) (ko>l)

(66)

"

dk
x = 2p (ki 1= a) K (4o ko Ky )



Advances in High Energy Physics

I-q

FIGURE 2: The first term in the so-called skeleton expansion of the
two-point function. Heavy lines denote full propagators.

where

AR SR
- (ky— k) +in — qy— (kh—ky) —in’

The imaginary part of I1, arises from the factor K as follows:
({1 f (ko)) (k) + (ko) {1+ 7 (k1]
x8(q0 - (ky—ky))

— —meoth (B2 ) {7 (k) - £ ()}

~ (ky—ky)),

ImK =

X0 (qo
(68)

where its real part is given by the principal value integrals.

Having obtained the real and imaginary parts of I1;;(g),
we use relations similar to (24) to build the 11 element of the
diagonalised IT matrix:

- [ Do [ Bo(n) [ D2p(0-a)

Sk )}f(") f (k) {1+ £ (k5)}

— (ko = k) + ine (qo)

(69)

Finally TI can be continued to Hfl by a relation similar to (31)
as follows:

f [ &I
nu_j(z)N(l Q

dk ! n
< [ e (kit) Sp (k1) (70)

(k)b (ké’) ~f (ko) {1+ £ (o)}

g0 — (ko — ko) +in

dk"

Note that in (69), (70), we retain the f (k(')) f (kg’) terms in the
numerator to put it in a more convenient form. Change the
signs of k) and kg in the first and second term, respectively.

7
Noting relations like 1 + f(-k,) = —f(ky) and p(-k,) =
—-p(k,), we get
&’
Iy (q) = J N(,
11 (q) (27_[)3 ( q)
dky dky " (71)
X J Eﬁp(ko,l)p(ko)l_q)
< f (ko) £ (k)W (q0: ko + ko)
where
~ 1 ~ 1
Tk K v a (k) v D

Returning to the expression (56) for #, we now get the
three-dimensional spatial integral of the retarded correlation
function by setting q = 0 in (59) and Fourier inverting with
respect to g as follows:

i 50 (=) (2 (8.0),mp (1))

- ,[ dqq et Hﬁ (90-9=0).

(73)

This completes our use of the real-time formulation to get the
required result. The integrals appearing in the expression for
n have been evaluated in [10, 11], which we describe in the
following for completeness.

As shown in [10], the integral over t,, t', and qo in (56)
and (73) may be carried out trivially to give

i d

- L 4R .
n 10 dq, 11 (40) (74)

q0=0

The q, dependence of IIX, is contained entirely in W as
follows:

d

d—qOW(%)

q0=0

- 1 N ! (75)
. \2 . \2
(ko + kg —in)” (kg + kg —in)

= 2mid’ (ky +ky ).

Changing the integration variables in (71) from kJ, k}| to k, =
k(') + k(',' and k, = (1/2)(k(') - k(')'), we get

”:J<d3> ()J< 7y’

5 F (ko) (76)

(77)




It turns out that the integral over k, becomes undefined, if
we try to evaluate F(k,) with the free spectral function p, (k)
given by (26). As pointed out in [10], we have to take the
spectral function for the complete propagator that includes
the self-energy of the pion, leading to its finite width I in the
medium

1 1 1
ko 1) = = - ,
Pl = [(ko—if)z—w2 (ko+if)2—‘"2] (78)

_ .2 2
w=\I*+m.

Note that this form of the spectral function trivially follows
on replacing iy (where 7 — 0%) with il in the free spectral
function (26) which can be written as

1

po (ko 1) = - [(

1 1
ko - i17)2 —w? (ko + ir])2 - w?

i

] . (79)
Then F(k,,1) becomes

k2efko pr*

(e =" {(ky = ir)’ = w2} {(ky + i) -}
(80)

F=-8

having double poles at k, = 2min/p forn = +1,+2,... and
also at k, = tw=+il. The integral over k, may now be evaluated
by closing the contour in the upper/lower half plane to get

oo dk, __ 1B

where we retain only the leading (singular) term for small I'.

In this approximation (76) gives

00 6
q—ﬂj Al L @) {1+ 1) (82)

= —=n
3012 Jo w?T

Proceeding analogously as mentioned above, the lowest
order contribution to the bulk viscosity can be obtained as
(10]

n(w){l +n(w)}. (83)

g8 (= . PR3-’
_Jn J dl B ra—
wT

The width I'(l) at different temperatures is known [30]
from chiral perturbation theory. The quantity I' can also
be interpreted as the collision frequency, and the inverse of
which is the relaxation time 7. For collisions of the form
7() + (k) — w(l") + m(k') this is given by (see, e.g., [25])

r=7"0
K dk \s (s —4m2)
- .[ 2wy, 2w, (@) (84)

x (1)) (1 + () S jdaj—g,
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where do/dQ) is the 7w cross-section. Note that the lowest
order formulae for the shear and bulk viscosities obtained
previously in the linear response approach coincide with the
expressions which result from solving the transport equation
in the relaxation-time approximation.

3. Viscous Coefficients in the Kinetic
Theory Approach

The kinetic theory approach is suitable for studying transport
properties of dilute systems. Here one assumes that the
system is characterized by a distribution function which
gives the phase space probability density of the particles
making up the fluid. Except during collisions, these (on-
shell) particles are assumed to propagate classically with
well-defined position, momenta, and energy. It is possible to
obtain the nonequilibrium distribution function by solving
the transport equation in the hydrodynamic regime by
expanding the distribution function in a local equilibrium
part along with nonequilibrium corrections. This expansion
in terms of gradients of the velocity field is used to linearize
the transport equation. The coeflicients of expansion which
are related to the transport coeflicients satisfy linear integral
equations. The standard method of solution involves the use
of polynomial functions to reduce these integral equations to
algebraic ones.

3.1. Transport Coefficients at First Chapman-Enskog Order.
The evolution of the phase space distribution of the pions is
governed by the (transport) equation:

p"0.f (x,p) =C[f], (85)

where C[ f] is the collision integral. For binary elastic colli-
sions p +k — p' + k" which we consider, this is given by
(22]

clf] = jdrk dr dTyy

< [f(xp") f(xK) {1+ f(xp)}

(86)
x {1+ f ()} = f(xp) f(x.k)
{1+ f (up)Hi+ £ (KW,
where the interaction rate is as follows:
_ S d_o‘ 6 o4 VY
W—ZdQ(Zn)6(p+k P k), (87)

and dI, = d*q/(2m)’q,. The 1/2 factor comes from the
indistinguishability of the initial state pions.

For small deviation from local equilibrium, we write, in
the first Chapman-Enskog approximation,

£ p)=fO(xp)+6f (x.p),

(88)
Of (x,p) = fO(xp) [1+ O (%, p)] ¢ (x. )
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where the equilibrium distribution function (in the new
notation) is given by

O (x, p) = [ P14 ()1 () T() _ 1]*1, (89)

with T'(x), uﬂ(x), and p,(x) representing the local tempera-
ture, flow velocity, and pion chemical potential, respectively.
Putting (88) in (85), the deviation function ¢(x, p) is seen to
satisfy

P31 (x,p) =

where the linearized collision term
2[6] = £ (x, p) J dr, dry drio £ (x,k)
s 19 (s )1 £ ()

x[¢(x.p) + 9 (x.0) - ¢ (x.p') — ¢ (. k)| W.
(o1)

-Z[¢], (90)

Using the form of £ (x, p) as given in (89) on the left side
of (90) and eliminating time derivatives with the help of
equilibrium thermodynamic laws, we arrive at [31]

[Qayuv + p, A (p-u~—h) (TﬁlayT - Duv)
=(pup) @] £ (14 1) = -T2 (9],
where D = u#0,,V, = A,,0", A, = g, — u,u, and ()

indicates a space-like symmetric and traceless combination.
In this equation,

(92)

1 4
Q= —gmi+ (p-u)2 {5 —y'} +p-u{(y” - l)h—y'”T},
(93)
where
P (S8 - (SSy)” +427' SIS/ (S})” + 2788
(89/81)* = (89/8L)” + 32718981 /(S1)” + 227182/SL — 272

-2
" z

=1+
(82/81)% — (S9/S)? + 32718981 /(S1)” + 227150/S) — 272

no_ S(z)/si + 52713;/8; - SgS;/(S;)Z

(82/81)% = (S2/81)” + 32718981 /(SL)” + 22180/8L — 22
(94)

with z = m_ /T and h = mnS;/S;. The functions S;,(z)
are integrals over Bose functions [31] and are defined as
$%(z) = Yo, T oK .(kz), K,(x) denoting the modified
Bessel function of order n. The left hand side of (90) is thus
expressed in terms of thermodynamic forces with different
tensorial ranks. In order to be a solution of this equation
¢ must also be a linear combination of the corresponding
thermodynamic forces. It is typical to take ¢ as

¢ =Ad-u+B, V" (T'9,T - Du,) - C,, (3"u”)  (95)

which on substitution into (92) and comparing coeflicients of
the (independent) thermodynamic forces on both sides yields
the set of equations:

(0)
Qf<0> (p) M

{1 f(‘” ()}

Z[A] =
(96)

Z[Cu] == {pur) £ (p)

ignoring the equation for B, which is related to thermal
conductivity. These integral equations are to be solved to get
the coefficients A and C,,,. It now remains to link these to
the viscous coeflicients ¢ and #. This is achieved by means of
the dissipative part of the energy-momentum tensor resulting
from the use of the nonequilibrium distribution function (88)
in

- Idrp PO F(p) =T ¢ AT, (97)

where

AT = Jdrp FO (14 FO) Cop (0P (@)
(98)
. Jdrp FO (14 £9) Qar"a,u”.

Again, for a small deviation ¢(x, p), close to equilibrium, so
that only first-order derivatives contribute, and the dissipative
tensor can be generally expressed in the form [32, 33]

AT = 25 (0"u") — (A" 0, u’. (99)

Comparing, we obtain the expressions of shear and bulk
viscosity as follows:

1= 15 | 45,Cu (o)) 1O (D) {1+ £ ()},
(100)

£~ - [ar, @ar® (o) {1+ 1 ()}

The coefficients A and C,,, are perturbatively obtained from
(96) by expanding in terms of orthogonal polynomials which
reduces the integral equations to algebraic ones. After a
tedious calculation using the Laguerre polynomial of 1/2
integral order, the first approximation to the shear and bulk
viscosity comes out as

_Tn

10 ¢
° (101)
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where

S3 (2)
Yo=— S; (Z),

g
[

~ 16 {11 @) +1,(2) + %13 (z)} ,

S(Z) 35; " S; n 1
H S+ -= 1- =+ -
(s; 2 ) (g
4 s s?
—(——y') 24152703 +227 ¢ |,
3 s! s}

ay, = 2z213 (=).

(102)
The integrals I (z) are given by
Z4
I,(2) = —— (2l T)
[S; (2)]
X J dycosh’ysinh’y
0
y r d0sin0L 9% (4, 0) rﬂ d¢
0 2dQ v 0
x J dy sinh® y J df sin O
0 0
eZz coshy cosh y
M, (6,0),
oD@ D@ -1 O
(103)

where p,, is the chemical potential of pions. The exponents in
the Bose functions are given by

E = z (cosh y cosh y — sinh y sinh y cos 6) — %,

F=z (costhoshX — sinh y sinh y cos 9') - ‘M—Y’f, (104)

G = E + 2z sinh ysinh y cos 0,

H=F+ ZZsinhlpsinhXCOSG',
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and the functions M, (0, ®) represent

M, 0,0)=1- cos’®,

M, (0,0) = 05’0 + cos’0' — 2 cosB cos @' cos O, (105)

M, (0,0) = [c0326 - cosze']z.

The relative angle 0’ is defined by cos®' = cosfcos® —
sin 0 sin © cos ¢.

Note that the differential cross-section which appears in
the denominator is the dynamical input in the expressions for
n and . It is this quantity that we turn to in the next section.

3.2. The i Cross-Section with Medium Effects. The strong
interaction dynamics of the pions enters the collision inte-
grals through the cross-section. In Figure 3, we show the
cross-section as a function of the centre of mass energy of
scattering. The different curves are explained in the following.
The filled squares referred to as experiment is a widely used
resonance saturation parametrization [23, 34] of isoscalar and
isovector phase shifts obtained from various empirical data
involving the 77t system. The isospin averaged differential
cross-section is given by

d 4 71 5 1
o (s) = — —sinzég + —sin26(2) + = 9sin28icosz(9 ,
o ¢, L9 9 3
(106)
where
E—
88 =z +arctan< ma)’
2 I,/2
E-m
6{ =y arctan £, (107)
2 FP/Z
0.12
8 =P
m

U

The widths are given by I, = 206p and I, =

0.095p((p/m,)/(1+ (p/m,)*)’ with m, = 5.8m, and m, =
5.53m,,.

To get a handle on the dynamics, we now evaluate the 77
cross-section involving p and o meson exchange processes
using the interaction Lagrangian as follows:

1
& =g, 7t x 0,7 + Egamgﬁ - fto, (108)

where g, = 6.05 and g, = 2.5. In the matrix elements
corresponding to s-channel p and o exchange diagrams
which appear for total isospin I = 1 and 0, respectively, we
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T = 160 MeV N |

0.4 0.5 0.6 0.7 0.8 0.9 1
Ecm. (GeV)
= Expt -—-— Medium (7r-7)
--- Vacuum —— Medium (multipion)

FIGURE 3: The 7m7r cross-section as a function of centre of mass
energy. The dotted line indicates the cross-section obtained using
(109) which agrees well with the experimental values (106) shown
by filled squares. The dashed and solid lines depict the in-medium
cross-section for 7w and wh (h = 7, w, hy, a,) loops, respectively, in
the p self-energy evaluated at T' = 160 MeV.

introduce a decay width in the corresponding propagator. We
get [25]

3 1 1
Moy = gom’ +
1=0 = 9o s—mi+im, I, t-m: u-m?
2| s—u s—t
+2g [ ]
Pt _ 2 )
t m; u-mg
1 1
2 2
%I_IZg“m"[t—mz_u—mz]
o o

t-m; u-mg

N 2[ u--=s + t—s :|
p 2 )
t my, u-—mg

(109)

The differential cross-section is then obtained from do/dQ =
|2|? /6475 s, where the isospin averaged amplitude is given by
| 1? = (1/9) X.(21 + 1|4 .

The integrated cross-section, after ignoring the I =
2 contribution is shown by the dotted line (indicated by
“vacuum”) in Figure 3 and is seen to agree reasonably well
with the experimental cross-section up to a centre of mass
energy of about 1 GeV beyond which the theoretical estimate
gives higher values. We hence use the experimental cross-
section beyond this energy.

1

h

FIGURE 4: 7th self-energy diagrams where h stands for 71, w, h,, and
@, mesons.

After this normalisation to data, we now turn to the in-
medium cross-section by introducing the effective propa-
gator for the p in the previous expressions for the matrix
elements. This is obtained in terms of the self-energy by
solving the Dyson equation and is given by

D,, = D) + D{)NI' D, (110)

where Dfﬂ,) is the vacuum propagator for the p meson and o
is the self-energy function obtained from one-loop diagrams
shown in Figure 4. The standard procedure [35] to solve this
equation in the medium is to decompose the self-energy into
transverse and longitudinal components. For the case at hand
the difference between these components is found to be small
and is hence ignored. We work with the polarization averaged
self-energy function defined as

1 T 2L
IIT=—-(2IT +g°I1"), 111
3 ( q'm) (111)
where

1 q2
HT:——(H“+—H)
—2 100 |»
2\ * g

(112)

L 1 T

1" = _—21'[00, Iy, = u'u HW,.
q
The in-medium propagator is then written as
2
5 “Guv + quv/q

D (a0:9) = 5 (113)

- m? — ReTl(qy,q) +iImTI (g, )

The scattering, decay, and regeneration processes which cause
a gain or loss of p mesons in the medium are responsible
for the imaginary part of its self-energy. The real part on the
other hand modifies the position of the pole of the spectral
function.

As discussed in Section 2.1, in the real-time formulation
of thermal field theory the self-energy assumes a 2 x 2 matrix
structure of which the 11 component is given by

M, (q) = ij Ak N (@R)DE DY (k) (14)
W (27_[)4 wy \"I> b4 h >

where D'! is the 11 component of the scalar propagator given
by D''(k) = A(k) + 2mif @ (k)d(k* — m?). It turns out that
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the self-energy function mentioned above can be obtained in
terms of the 11 component through the relations [35, 36]

11
Rell,, = Rell,,,

Pa
ImII,, =e (qo) tanh <70 Im H;,

(115)
Tensor structures associated with the two vertices and the
vector propagator are included in N, and are available in [37]
where the interactions were taken from chiral perturbation
theory. It is easy to perform the integral over k, using suitable
contours to obtain

) Pk
1 (q0.9) = JWW

y [(1 + O (@) ) N + fO () N
Go — W, — wy, + ine ()
. —f O (w,) Nt + £ (w,) Nt
Qo — W, + wy, + ine (qp)
. O (w,) N&” = £ (w,) N
o + w,, — wy, + ine (qp)
+-f(°’ (0 ) Ny = (14 f© (wh))NiW]

o + W, + wy, + ine (qo)

(116)

where f(o)(w) = 1/(e“ /T _ 1) is the Bose distribution
function with arguments w, = \k*+m? and w, =

\(q-k)* + m;. Note that this expression is a generalized

form for the in-medium self-energy obtained by Weldon
[38]. The subscript i(= 1,...,4) on N*” in (116) corresponds
to its values for k, = w,, —w, g, — w,, and q, + wy,
respectively. It is easy to read off the real and imaginary parts
from (116). The angular integration can be carried out using
the §-functions in each of the four terms in the imaginary
part which define the kinematically allowed regions in g,
and q where scattering, decay, and regeneration processes
occur in the medium leading to the loss or gain of p mesons
[37]. The vector mesons w, h;, and a; which appear in the
loop have negative G-parity and have substantial 377 and prr
decay widths [39]. The (polarization averaged) self-energies
containing these unstable particles in the loop graphs have
thus been folded with their spectral functions as follows:

( ) 1 (my,+21,)°
(g, my,) = —J )
Ny, J(my-2r1)
1 1
X =1 (g, M
- m[Mz—m,21+iMl"h(M) (- M)
17)
with N}, = ((m":hfjrr:)l dM?(1/m) Im[1/(M? = 2. +iMT,(M))].

The contributions from the loops with heavy mesons may
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T (GeV)
-—-— Vacuum
--- Med (7-7 loop )
—— Med (multipion)

FIGURE 5: The shear viscosity as a function of temperature in the
Chapman-Enskog approximation. The dash-dotted line indicates
use of the vacuum cross-section, and the dashed and solid lines
correspond to in-medium cross-section for the 77w and multipion
cases respectively.

then be considered as a multipion contribution to the p self-
energy.

The in-medium cross-section is now obtained by using
the full p-propagator (113) in place of the usual vacuum
propagator D,(g,) in the scattering amplitudes. The long dashed
line in Figure 3 shows a suppression of the peak when only
the 7t loop is considered. This effect is magnified when the
7th loops (solid line indicated by multipion) are taken into
account and is also accompanied by a small shift in the peak
position. Extension to the case of finite baryon density can be
done using the spectral function computed in [40] where an
extensive list of baryon (and antibaryon) loops are considered
along with the mesons. A similar modification of the nm
cross-section for a hot and dense system was seen also in [41].

We plot 7 versus T' in Figure 5 obtained in the Chapman-
Enskog approximation showing the effect of the in-medium p
propagation in the pion gas [25]. We observe ~10% change at
T = 150 MeV due to medium effects compared to the vacuum
when all the loops in the p self-energy are considered. The
effect reduces with temperature to less than 5% at 100 MeV.

We noted in Section 2 that the lowest order result for 7 in
the response theory framework coincides with that obtained
in the relaxation time approximation which is in fact the
simplest way to linearize the transport equation. Here one
assumes that f(x, p) goes over to the equilibrium distribution
FO(x, p) as a result of collisions, and this takes place over
a relaxation time 7(p) which is the inverse of the collision
frequency defined in (84). The right hand side of (85) is then
given by —E,[f(x, p) - f©(x, p)]/7(p) which subsequently
leads to the expressions (82) and (83) for the shear and
bulk viscosities [42]. In Figure 6 we show the temperature
dependence of # in the relaxation time approximation. The
values in this case are lower than that obtained in the
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T (GeV)

--- Vacuum
== Med (7-7r loop )
—— Med (multipion)

FIGURE 6: The shear viscosity as a function of temperature in the
relaxation time approximation. The dash-dotted and solid lines
correspond to the use of in-medium cross-sections in (84) for 7
and multipion loops, respectively. The dashed line represents the
vacuum case.

0.01 T T T T T
0.009 |
%
L
)
g 0.008
=
X
o
0.007 |- oy = (T .
0.006 1 1 1 1 1
0.1 0.11 0.12 0.13 0.14 0.15 0.16
T (GeV)
~~~~~~ Vacuum
-—= 77T
—— Multipion

FIGURE 7: The bulk viscosity as a function of temperature for a
chemically frozen pion gas. The dashed and solid lines correspond
to the use of in-medium cross-sections in (84) for 77r and multipion
loops, respectively. The dotted line represents the vacuum case.

Chapman-Enskog method, though the effect of the medium
is larger. In addition to the fact that the expressions for
the viscosities are quite different in two approaches, the
difference in the numerical values obtained in the two cases
also depends significantly on the energy dependence of the
7T7T cross-section [43].
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In Figure 7 we show the numerical results for the bulk vis-
cosity of a pion gas as function of T'. It is seen from an analysis
of the left hand side of the transport equation that, while the
shear viscosity depends on elastic processes, bulk viscosity is
sensitive to number changing processes. However, in heavy
ion collision experiments matter is known to undergo early
chemical freezeout. Number changing (inelastic) processes
having much larger relaxation times go out of equilibrium at
this point and a temperature dependent chemical potential
results for each species so as to conserve the number cor-
responding to the measured particle ratios. We hence use a
temperature dependent pion chemical potential taken from
[44] in this case. It is interesting to observe that { decreases
with T in contrast to # which increases. The trend followed
by ( is similar to the findings of [45]. Additional discussions
concerning the temperature dependence of viscosities for a
chemically frozen pion gas are available in [31].

4. Summary and Conclusion

To summarize, we have calculated the shear viscosity coef-
ficient of a pion gas in the real-time version of thermal
field theory. It is simpler to the imaginary version in that
we do not have to continue to imaginary time at any stage
of the calculation. As an element in the theory of linear
response, a transport coefficient is defined in terms of a
retarded thermal two-point function of the components of
the energy-momentum tensor. We derive Kéllen-Lehmann
representation for any (bosonic) two-point function of both
time-ordered and retarded types to get the relation between
them. Once this relation is obtained, we can calculate the
retarded function in the Feynman-Dyson framework of the
perturbation theory.

Clearly the method is not restricted to transport coef-
ficients. Any linear response leads to a retarded two-point
function, which can be calculated in this way. Also quadratic
response formulae have been derived in the real-time formu-
lation [46].

We have also evaluated the viscous coefficients in the
kinetic theory approach to leading order in the Chapman-
Enskog expansion. Here we have incorporated an in-medium
7 cross-section and found a significant effect in the temper-
ature dependence of the shear viscosity.

The viscous coeflicients and their temperature depen-
dence could affect the quantitative estimates of signals of
heavy ion collisions particularly where hydrodynamic sim-
ulations are involved. For example, it has been argued in [47]
that corrections to the freeze-out distribution due to bulk
viscosity can be significant. As a result the hydrodynamic
description of the p; spectra and elliptic flow of hadrons
could be improved by including a realistic temperature
dependence of the viscous coeflicients. Such an evaluation
essentially requires the consideration of a multicomponent
gas preferably containing nucleonic degrees of freedom, so
that extensions to finite baryon chemical potential can be
made. Work in this direction is in progress.



14

Acknowledgments

The author gratefully acknowledges the contribution from
his collaborators S. Mallik, S. Ghosh, and S. Mitra to various
topics presented here.

References

(1] P. Kovtun, D. T. Son, and A. O. Starinets, “Viscosity in strongly
interacting quantum field theories from black hole physics;”
Physical Review Letters, vol. 94, no. 11, Article ID 111601, 4 pages,
2005.

[2] L. P. Csernai, J. I. Kapusta, and L. D. McLerran, “Strongly
interacting low-viscosity matter created in relativistic nuclear
collisions,” Physical Review Letters, vol. 97, no. 15, Article ID
152303, 4 pages, 2006.

[3] H.B. Meyer, “Transport properties of the quark-gluon plasma,”
The European Physical Journal A, vol. 47, p. 86, 2011.

[4] N. Demir and S. A. Bass, “Shear-viscosity to entropy-density
ratio of a relativistic hadron gas,” Physical Review Letters, vol.
102, no. 17, Article ID 172302, 4 pages, 2009.

[5] T. Matsubara, “A new approach to quantum-statistical mechan-
ics,” Progress of Theoretical Physics, vol. 14, pp. 351-378, 1955.

[6] R. Mills, Propagators for Many Particle Systems, Gordon and
Breach, New York, NY, USA, 1969.

[7] H. Matsumoto, Y. Nakano, and H. Umezawa, “An equivalence
class of quantum field theories at finite temperature,” Journal of
Mathematical Physics, vol. 25, no. 10, pp. 3076-3085, 1984.

[8] A.J. Niemiand G. W. Semenoff, “Finite-temperature quantum
field theory in Minkowski space,” Annals of Physics, vol. 152, no.
1, pp. 105-129, 1984.

[9] R. L. Kobes and G. W. Semenoff, “Discontinuities of green
functions in field theory at finite temperature and density;’
Nuclear Physics B, vol. 260, no. 3-4, pp. 714-746, 1985.

[10] A. Hosoya, M. Sakagami, and M. Takao, “Nonequilibrium
thermo field dynamics in field theory: transport coefficients,”
Annals of Physics, vol. 154, p. 229, 1982.

[11] R.Lang, N. Kaiser, and W. Weise, “Shear viscosity of a hot pion
gas,” The European Physical Journal A, vol. 48, article 109, 2012.

[12] S.Jeon, “Computing spectral densities in finite temperature field
theory,” Physical Review D, vol. 47, no. 10, pp. 4586-4607, 1993.

[13] G. K. Killen, “On the definition of the renormalization con-
stants in quantum electrodynamics,” Helvetica Physica Acta, vol.
25, p. 417,1952.

[14] H. Lehmann, “Uber Eigenschaften von Ausbreitungsfunktio-
nen und Renormierungskonstanten quantisierter Felder,” II
Nuovo Cimento, vol. 11, no. 4, pp. 342-357, 1954.

[15] A.L.Fetterand]. D. Walecka, Quantum Theory of Many-Particle
Dystems, Dover Publications, New York, NY, USA, 2003.

[16] S.Mallik and S. Sarkar, “Real-time propagators at finite temper-
ature and chemical potential,” The European Physical Journal C,
vol. 61, no. 3, pp. 489-494, 2009.

[17] S. Weinberg, “Phenomenological lagrangians,” Physica A, vol.
96, no. 1-2, pp. 327-340, 1979.

[18] J. Gasser and H. Leutwyler, “Chiral perturbation theory to one
loop,” Annals of Physics, vol. 158, no. 1, pp. 142-210, 1984.

[19] A. Dobado and S. N. Santalla, “Pion gas viscosity at low
temperature and density; Physical Review D, vol. 65, no. 9,
Article ID 096011, 13 pages, 2002.

Advances in High Energy Physics

[20] J. W. Chen, Y. H. Li, Y. E Liu, and E. Nakano, “QCD viscosity to
entropy density ratio in the hadronic phase,” Physical Review D,
vol. 76, no. 11, Article ID 114011, 8 pages, 2007.

[21] A.DobadoandE J. Llanes-Estrada, “Viscosity of meson matter,”
Physical Review D, vol. 69, no. 11, Article ID 116004, 2004.

[22] D. Davesne, “Transport coeflicients of a hot pion gas,” Physical
Review C, vol. 53, no. 6, pp. 3069-3084, 1996.

[23] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, “Non-
equilibrium properties of hadronic mixtures,” Physics Report,
vol. 227, no. 6, pp- 321-366, 1993.

[24] K. Itakura, O. Morimatsu, and H. Otomo, “Shear viscosity of a
hadronic gas mixture,” Physical Review D, vol. 77, no. 1, Article
ID 014014, 19 pages, 2008.

[25] S.Mitra, S. Ghosh, and S. Sarkar, “Effect of a spectral modifica-
tion of the p meson on the shear viscosity of a pion gas,” Physical
Review C, vol. 85, no. 6, Article ID 064917, 8 pages, 2012.

[26] R. Kubo, “Statistical-mechanical theory of irreversible pro-
cesses. I. General theory and simple applications to magnetic
and conduction problems,” Journal of the Physical Society of
Japan, vol. 12, pp. 570-586, 1957.

[27] P. C. Martin and J. Schwinger, “Theory of many-particle
systems. I, Physical Review, vol. 115, no. 6, pp. 1342-1373, 1959.

[28] D. N. Zubarev, Nonequilibrium Statistical Thermodynamics,
Plenum, New York, NY, USA, 1974.

[29] M. Gell-Mann and M. L. Golberger, “The formal theory of
scattering,” Physical Review, vol. 91, no. 2, pp. 398-408, 1953.

[30] J. L. Goity and H. Leutwyler, “On the mean free path of pions in
hot matter,” Physics Letters B, vol. 228, no. 4, pp. 517-522, 1989.

[31] S. Mitra and S. Sarkar, “Medium effects on the viscosities of a
pion gas,” Physical Review D, vol. 87, no. 9, Article ID 094026, 12
pages, 2013.

[32] P. Chakraborty and J. I. Kapusta, “Quasiparticle theory of shear
and bulk viscosities of hadronic matter;” Physical Review C, vol.
83, no. 1, Article ID 014906, 17 pages, 2011.

[33] P. H. Polak, W. A. van Leeuwen, and S. R. de Groot, “On
relativistic kinetic gas theory. X. Transport coefficients in the
intermediate relativistic regime. Values for special models;,
Physica, vol. 66, no. 3, pp. 455-473,1973.

[34] G. Bertsch, M. Gong, L. McLerran, P. V. Ruuskanen, and E.
Sarkkinen, “Cascade simulation of ultrarelativistic collisions,”
Physical Review D, vol. 37, no. 5, pp. 1202-1209, 1988.

[35] M. Le Bellac, Thermal Field Theory, Cambridge Monographs
on Mathematical Physics, Cambridge University Press, Cam-
bridge, Mass, USA, 1996.

[36] S. Sarkar, B. K. Patra, V. J. Menon, and S. Mallik, “Spectral
representation at finite temperature,” Indian Journal of Physics,
vol. 76A, pp. 385-391, 2002.

[37] S.Ghosh, S. Sarkar, and S. Mallik, “Analytic structure of p meson
propagator at finite temperature,” The European Physical Journal
C, vol. 70, no. 1-2, pp- 251-262, 2010.

[38] H. A. Weldon, “Simple rules for discontinuities in finite-
temperature field theory,” Physical Review D, vol. 28, no. 8, pp.
2007-2015, 1983.

[39] K. Nakamura, K. Hagiwara, K. Hikasa et al., “Review of particle
physics,” Journal of Physics G, vol. 37, Article ID 075021, 2010.

[40] S. Ghosh and S. Sarkar, “p self-energy at finite temperature and
density in the real-time formalism,” Nuclear Physics A, vol. 870-
871, pp. 94-111, 2011.

[41] H. W. Barz, G. Bertsch, P. Danielewicz, and H. Schulz, “Pion-
pion cross section in a dense and hot pionic gas,” Physics Letters
B, vol. 275, no. 1-2, pp. 19-23,1992.



Advances in High Energy Physics

[42] S. Gavin, “Transport coeflicients in ultra-relativistic heavy-ion
collisions,” Nuclear Physics A, vol. 435, no. 3-4, pp. 826-843,
1985.

[43] A. Wiranata and M. Prakash, “Shear viscosities from the
Chapman-Enskog and the relaxation time approaches,” Physical
Review C, vol. 85, no. 5, Article ID 054908, 14 pages, 2012.

[44] T. Hirano and K. Tsuda, “Collective flow and two-pion cor-
relations from a relativistic hydrodynamic model with early
chemical freeze-out,” Physical Review C, vol. 66, no. 5, Article
ID 054905, 14 pages, 2002.

[45] E. Lu and G. D. Moore, “Bulk viscosity of a pion gas,” Physical
Review C, vol. 83, no. 4, Article ID 044901, 7 pages, 2011.

[46] M. E. Carrington, H. Defu, and R. Kobes, “Nonlinear response
from transport theory and quantum field theory at finite
temperature,” Physical Review D, vol. 64, no. 2, Article ID
025001, 15 pages, 2001.

[47] K. Dusling and T. Schafer, “Bulk viscosity, particle spectra, and
flow in heavy-ion collisions,” Physical Review C, vol. 85, no. 4,
Article ID 044909, 19 pages, 2012.

15



Journal of Journal of The SCientiﬁC Journal of

Advances in

Gravity e Photonics World Journal SOft Matter sed Matter Physics

Journal of

Aerodynamics

Journal of

Fluids

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Optics

International Journal of

Statistical Mechanics

Journal
L 3

AThe

Journal of
Computational
Methods in Physics

4 Journal of
International Journal of Journal of - Atomic and
Superconductivity Biophysics Molecular Physics

Journal of Journal of

Solid State Physics Astrophysics




