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Spin and pseudospin symmetries of theDirac equation for aHulthén potential with a novel tensor interaction, that is, a combination
of the Coulomb and Yukawa potentials, are investigated using the Nikiforov-Uvarov method. The bound-state energy spectra and
the radial wave functions are approximately obtained in the case of spin and pseudospin symmetries. The tensor interactions and
the degeneracy-removing role are presented in details.

1. Introduction

The exact solutions of wave equations are still an interesting
problem in fundamental quantummechanics. Unfortunately,
there are only a few potentials for which the Schrödinger,
Dirac, Klein-Gordon, and Duffin-Kemmer-Petiau (DKP)
equations can be exactly solved. Several potential models
have been introduced to explore the relativistic and nonrela-
tivistic energy spectra and the corresponding wave functions
[1–5]. Jia et al. [6] have derived the bound-state solution of
the Klein-Gordon equation under unequal scalar and vector
kink-like potentials. By using the series expansion method,
the authors in [7] have obtained the analytical solutions of
the two-dimensional Schrödinger equation with the Morse
potential. Pseudospin symmetry solution of Dirac equation
for the modified Rosen-Morse potential is investigated in
[8]. The DKP equation under a scalar Coulomb interaction
is solved in [9] where the authors have used the ansatz
approach. Ginocchio et al. [10–14] established the relation-
ship between the pseudospin and the Dirac equation by
recognizing that pseudo-orbital angular momentum ̃

𝑙 = 𝑙 + 1

is nothing but the usual orbital angular momentum 𝑙 of the
lower component of the Dirac spinor. They went further to
show that, within the framework of the Dirac theory, the
spin symmetry occurs when the difference of the potential

between the repulsive Lorentz vector potential 𝑉(𝑟) and the
attractive Lorentz scalar potential 𝑆(𝑟) is a constant; that is,
Δ(𝑟) = 𝑉(𝑟)−𝑆(𝑟) = const.On the other hand, the pseudospin
symmetry arises when the sum of the potentials is a constant;
that is, Σ(𝑟) = 𝑉(𝑟) + 𝑆(𝑟) = const. Many researchers in
the field have investigated the symmetries in the presence
of various interactions. The list includes Manning-Rosen
[15], Eckart [16], Hyllerass [17], Deng-Fan [18], Mobious
square [19], Tietz [20], and Hyperbolical potentials [21].
The analysis of the symmetries has been done by using
various methods such as Nikiforov-Uvarov (NU) technique
[22], supersymmetric quantum mechanics (SUSYQM) [23],
and many others [24, and references therein]. Due to the
mathematical structure of the problem, the tensor interaction
is often considered as a Coulomb or Cornell interaction
[25]. Hassanabadi et al. were the first who introduced the
Yukawa tensor interaction [26] besides the Coulomb-like
term.

Here, we intend to report the solution of Dirac equation
for the Hulthén potential under the generalized Coulomb-
like and Yukawa-like potentials as tensor interactions. The
Hulthén potential is defined as [27, 28]

𝑉 (𝑟) = −𝑉

0

𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

, (1)
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Figure 1: 1/𝑟2 and its approximations for 𝛼 = 0.05 fm.

where𝑉
0
,𝛼 are two positive real parameters and represent the

strength and the screening range of the potential, respectively.

2. Dirac Equation with a Tensor Interaction

The Dirac equation under an attractive scalar potential 𝑆(𝑟),
a repulsive vector potential 𝑉(𝑟), and a tensor potential 𝑈(𝑟)
in the relativistic unit (ℎ = 𝑐 = 1) is [13, 14]

[𝛼⃗ ⋅
⃗

𝑝 + 𝛽 (𝑀 + 𝑆 (𝑟)) − 𝑖𝛽𝛼⃗ ⋅ 𝑟𝑈 (𝑟)] 𝜓 (𝑟)

= [𝐸 − 𝑉 (𝑟)] 𝜓 (𝑟) ,

(2)

where 𝐸 is the relativistic energy of the system, ⃗
𝑝 = −𝑖

⃗

∇

denotes the three-dimensional momentum operator, and 𝑀

stands for themass of the fermionic particle. 𝛼⃗,𝛽 are the 4 × 4

Dirac matrices given as

𝛼⃗ = (

0 𝜎⃗

𝑖

𝜎⃗

𝑖
0

) , 𝛽 = (

𝐼 0

0 −𝐼

) , (3)

where 𝐼 is 2×2 unitarymatrix and 𝜎⃗
𝑖
are the Pauli three-vector

matrices as follows:

𝜎

1
= (

0 1

1 0

) , 𝜎

2
= (

0 −𝑖

𝑖 0

) , 𝜎

3
= (

1 0

0 −1

) . (4)

The eigenvalues of the spin-orbit coupling operator are 𝜅 =

(𝑗 + (1/2)) > 0, 𝜅 = −(𝑗 + (1/2)) < 0 for unaligned 𝑗 =

𝑙−(1/2) and the aligned spin𝑗 = 𝑙+(1/2), respectively.The set

(𝐻,𝐾, 𝐽

2
, 𝐽

𝑧
) forms a complete set of conserved quantities.

Thus, we can write the spinors as

𝜓

𝑛𝜅
(𝑟) =

1

𝑟

(

𝐹

𝑛𝜅
(𝑟) 𝑌

𝑙

𝑗𝑚
(𝜃, 𝜑)

𝑖𝐺

𝑛𝜅 (
𝑟) 𝑌

𝑙̃

𝑗𝑚
(𝜃, 𝜑)

) , (5)

where 𝐹
𝑛𝜅
(𝑟), 𝐺

𝑛𝜅
(𝑟) represent the upper and lower compo-

nents of the Dirac spinors. 𝑌𝑙
𝑗𝑚
(𝜃, 𝜑), 𝑌𝑙̃

𝑗𝑚
(𝜃, 𝜑) are the spin

and pseudospin spherical harmonics and𝑚 is the projection
on the 𝑧-axis. With other known identities,

(𝜎⃗ ⋅

⃗

𝐴) (𝜎⃗ ⋅

⃗

𝐵) =

⃗

𝐴 ⋅

⃗

𝐵 + 𝑖𝜎⃗ ⋅ (

⃗

𝐴 ×

⃗

𝐵) ,

𝜎⃗ ⋅
⃗

𝑝 = 𝜎⃗ ⋅ 𝑟 (𝑟 ⋅
⃗

𝑝 + 𝑖

𝜎⃗ ⋅

⃗

𝐿

𝑟

)

(6)

as well as

(𝜎⃗ ⋅

⃗

𝐿) 𝑌

𝑙̃

𝑗𝑚
(𝜃, 𝜑) = (𝜅 − 1) 𝑌

𝑙̃

𝑗𝑚
(𝜃, 𝜑) ,

(𝜎⃗ ⋅

⃗

𝐿) 𝑌

𝑙

𝑗𝑚
(𝜃, 𝜑) = − (𝜅 + 1) 𝑌

𝑙

𝑗𝑚
(𝜃, 𝜑) ,

(𝜎⃗ ⋅ 𝑟) 𝑌

𝑙

𝑗𝑚
(𝜃, 𝜑) = −𝑌

𝑙̃

𝑗𝑚
(𝜃, 𝜑) ,

(𝜎⃗ ⋅ 𝑟) 𝑌

𝑙̃

𝑗𝑚
(𝜃, 𝜑) = −𝑌

𝑙

𝑗𝑚
(𝜃, 𝜑) ,

(7)

we find the following two coupled first-orderDirac equations:

(

𝑑

𝑑𝑟

+

𝜅

𝑟

− 𝑈 (𝑟))𝐹

𝑛𝜅 (
𝑟) = (𝑀 + 𝐸

𝑛𝜅
− Δ (𝑟)) 𝐺𝑛𝜅 (

𝑟) ,

(

𝑑

𝑑𝑟

−

𝜅

𝑟

+ 𝑈 (𝑟))𝐺

𝑛𝜅
(𝑟) = (𝑀 − 𝐸

𝑛𝜅
+ Σ (𝑟)) 𝐹

𝑛𝜅
(𝑟) ,

(8)

where
Δ (𝑟) = 𝑉 (𝑟) − 𝑆 (𝑟) ,

Σ (𝑟) = 𝑉 (𝑟) + 𝑆 (𝑟) .

(9)

Decoupling the components, we obtain the second-order
Schrödinger-like equation as

{

𝑑

2

𝑑𝑟

2
−

𝜅 (𝜅 + 1)

𝑟

2
+

2𝜅𝑈 (𝑟)

𝑟

−

𝑑𝑈 (𝑟)

𝑑𝑟

− 𝑈

2
(𝑟)

− (𝑀 + 𝐸

𝑛𝜅
− Δ (𝑟)) (𝑀 − 𝐸

𝑛𝜅
+ Σ (𝑟))

+ (

𝑑Δ (𝑟)

𝑑𝑟

(

𝑑

𝑑𝑟

+

𝜅

𝑟

− 𝑈 (𝑟))) (𝑀 + 𝐸

𝑛𝜅
− Δ (𝑟))

−1
}

× 𝐹

𝑛𝜅
(𝑟) = 0,

(10)

{

𝑑

2

𝑑𝑟

2
−

𝜅 (𝜅 − 1)

𝑟

2
+

2𝜅𝑈 (𝑟)

𝑟

+

𝑑𝑈 (𝑟)

𝑑𝑟

− 𝑈

2
(𝑟)

− (𝑀 + 𝐸

𝑛𝜅
− Δ (𝑟)) (𝑀 − 𝐸

𝑛𝜅
+ Σ (𝑟))

− (

𝑑Σ (𝑟)

𝑑𝑟

(

𝑑

𝑑𝑟

−

𝜅

𝑟

+ 𝑈 (𝑟))) (𝑀 − 𝐸

𝑛𝜅
+ Σ (𝑟))

−1
}

× 𝐺

𝑛𝜅 (
𝑟) = 0,

(11)

where 𝜅(𝜅 − 1) =

̃

𝑙(

̃

𝑙 + 1), 𝜅(𝜅 + 1) = 𝑙(𝑙 + 1).
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Table 1: Bound state for the pseudospin symmetry 𝛼 = 0.05 fm,𝑀 = 5 fm−1, 𝑉
0
= 4 fm−1, and 𝐶ps = −5 fm−1.

̃

ℓ 𝑛, 𝜅 < 0 (ℓ, 𝑗)

𝐸

ps
𝑛𝜅
(fm−1) = Ref. [27]
(𝑉

1
= 0, 𝐻 = 0)

𝐸

ps
𝑛𝜅
(fm−1)

(𝑉

1
= 0.5, 𝐻 = 0.5)

𝑛 − 1, 𝜅 > 0 (ℓ + 2, 𝑗 + 1)

𝐸

ps
𝑛𝜅
(fm−1) = Ref. [27]
(𝑉

1
= 0,𝐻 = 0)

𝐸

ps
𝑛𝜅
(fm−1)

(𝑉

1
= 0.5, 𝐻 = 0.5)

1 1, −1 1𝑆

1/2

−0.00862755,
−0.05738712

−0.00255933,
−0.02961889 0, 2 0𝑑

3/2

−0.00862755,
−0.05738712

−0.01389734,
−0.10389112

2 1, −2 1𝑃

3/2

−0.01538462,
−0.10000000

−0.00721029,
−0.06124936 0, 3 0𝑓

5/2

−0.01538462,
−0.10000000

−0.02260173,
−0.15622180

3 1, −3 1𝑑

5/2

−0.02413384,
−0.15233675

−0.01389734,
−0.10389112 0, 4 0𝑔

7/2

−0.02413384,
−0.15233675

−0.03335506,
−0.21664494

4 1, −4 1𝑓

7/2

−0.03492388,
−0.21278254

−0.02260173,
−0.15622180 0, 5 0ℎ

9/2

−0.03492388,
−0.21278254

−0.04621304,
−0.28340834

1 2, −1 2𝑆

1/2

−0.01538462,
−0.10000000

−0.00721029,
−0.06124936 1, 2 1𝑑

3/2

−0.01538462,
−0.10000000

−0.02260173,
−0.15622180

2 2, −2 2𝑃

3/2

−0.02413384,
−0.15233675

−0.01389734,
−0.10389112 1, 3 1𝑓

5/2

−0.02413384,
−0.15233675

−0.03335506,
−0.21664494

3 2, −3 2𝑑

5/2

−0.03492388,
−0.21278254

−0.02260173,
−0.15622180 1, 4 1𝑔

7/2

−0.03492388,
−0.21278254

−0.04621304,
−0.28340834

4 2, −4 2𝑓

7/2

−0.04781723,
−0.27957698

−0.03335506,
−0.21664494 1, 5 1ℎ

9/2

−0.04781723,
−0.27957698

−0.06125073,
−0.35469754

Table 2: Bound state for the spin symmetry 𝛼 = 0.05 fm,𝑀 = 5 fm−1, 𝑉
0
= 4 fm−1, and 𝐶s = 5 fm−1.

ℓ 𝑛, 𝜅 < 0 (ℓ, 𝑗)

𝐸

s
𝑛𝜅
(fm−1) = Ref. [27]
(𝑉

1
= 0,𝐻 = 0)

𝐸

s
𝑛𝜅
(fm−1)

(𝑉

1
= 0.5, 𝐻 = 0.5)

𝑛, 𝜅 > 0 (ℓ, 𝑗)

𝐸

s
𝑛𝜅
(fm−1) = Ref. [27]
(𝑉

1
= 0,𝐻 = 0)

𝐸

s
𝑛𝜅
(fm−1)

(𝑉

1
= 0.5, 𝐻 = 0.5)

1 0, −2 0𝑃

3/2

0.06784763,
0.00145930

0.01709159,
0.00036476 0, 1 0𝑃

1/2

0.06784763,
0.00145930

0.15074992,
0.00328431

2 0, −3 0𝑑

5/2

0.15074992,
0.00328431

0.06784763,
0.00145929 0, 2 0𝑑

3/2

0.15074992,
0.00328431

0.26338976,
0.00584101

3 0, −4 0𝑓

7/2

0.26338976,
0.00584101

0.15074992,
0.00328431 0, 3 0𝑓

5/2

0.26338976,
0.00584101

0.40263365,
0.00913106

4 0,−5 0𝑔

9/2

0.40263365,
0.00913106

0.26338976,
0.00584101 0, 4 0𝑔

7/2

0.40263365,
0.00913106

0.56482502,
0.01315663

1 1, −2 1𝑃

3/2

0.15074992,
0.00328431

0.06784763,
0.00145929 1, 1 1𝑃

1/2

0.15074992,
0.00328431

0.26338976,
0.00584101

2 1, −3 1𝑑

5/2

0.26338976,
0.00584101

0.15074992,
0.00328431 1, 2 1𝑑

3/2

0.26338976,
0.00584101

0.40263365,
0.00913106

3 1, −4 1𝑓

7/2

0.40263365,
0.00913106

0.26338976,
0.00584101 1, 3 1𝑓

5/2

0.40263365,
0.00913106

0.56482502,
0.01315663

4 1, −5 1𝑔

9/1

0.56482502,
0.01315663

0.40263365,
0.00913106 1, 4 1𝑔

7/2

0.56482502,
0.01315663

0.74599944,
0.01792038

3. Pseudospin Symmetry Limit

The pseudospin symmetry limit occurs in Dirac equation
when 𝑑Σ(𝑟)/𝑑𝑟 = 0 or Σ(𝑟) = 𝐶ps = const. In this limit,
we take Δ(𝑟) as the Hulthén potential:

Δ (𝑟) = −𝑉

0
(

𝑒

−2𝛼𝑟

1 − 𝑒

−2𝛼𝑟
) . (12)

In addition, we propose a novel generalized tensor interaction
of the form

𝑈 (𝑟) = 𝑈

𝐶
(𝑟) + 𝑈

𝑌
(𝑟) , (13)

where 𝑈
𝐶
(𝑟) and 𝑈

𝑌
(𝑟) are the Coulomb-like and Yukawa-

like potentials defined as

𝑈

𝐶
(𝑟) = −

𝐻

𝑟

,

𝑈

𝑌
(𝑟) = −𝑉

1

𝑒

−𝛼𝑟

𝑟

(14)

with

𝐻 =

𝑧

𝑎
𝑧

𝑏
𝑒

2

4𝜋𝜀

0

, (15)

where 𝑅

𝑒
is the Coulomb radius and 𝑧

𝑎
and 𝑧

𝑏
denote the

charges of the projectile a and the target nuclei 𝑏, respectively.



4 Advances in High Energy Physics

0.02 0.04 0.06 0.08 0.10

𝛼 SS

1p3/2

1s1/2 1d5/2

1f7/2

−0.01

−0.02

−0.03

−0.04

−0.05

−0.06

−0.07

−0.08

−0.09

0

0.02 0.04 0.06 0.08 0.10

𝛼

0
0

1p3/2

1d5/2

1f7/2

1g9/2

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

PSS
(1

/fm
)

E
s n

k
(1

/fm
)

E
ps n

k

Figure 2: PSS: energy versus 𝛼 for pseudospin symmetry limit for 𝑉
0
= 4 fm−1, 𝑉

1
= 0.5 fm−1,𝐻 = 0.5,𝑀 = 5 fm−1, and 𝐶ps = −5 fm−1. SS:

energy versus 𝛼 for spin symmetry limit for 𝑉
0
= 4 fm−1, 𝑉

1
= 0.5 fm−1,𝐻 = 0.5,𝑀 = 5 fm−1, and 𝐶

𝑠
= 5 fm−1.

Also, 𝑉
1
is the depth of the potential. Substituting (14) into

(13), we can write the tensor potential as

𝑈 (𝑟) = −

1

𝑟

(𝐻 + 𝑉

1
𝑒

−𝛼𝑟
) . (16)

Substitution of (16) and (29) into (9) gives

{

𝑑

2

𝑑𝑟

2
−

𝜅 (𝜅 − 1)

𝑟

2
−

2𝜅 (𝐻 + 𝑉

1
𝑒

−𝛼𝑟
)

𝑟

2
+

𝐻

𝑟

2
+

𝛼𝑉

1
𝑒

−𝛼𝑟

𝑟

+

𝑉

1
𝑒

−𝛼𝑟

𝑟

2
−

𝐻

2

𝑟

2
−

2𝐻𝑉

1
𝑒

−𝛼𝑟

𝑟

2
−

𝑉

2

1
𝑒

−2𝛼𝑟

𝑟

2
− (𝑀 + 𝐸

ps
𝑛𝜅
)

× (𝑀 − 𝐸

ps
𝑛𝜅
+ 𝐶ps) − (𝑀 − 𝐸

ps
𝑛𝜅
+ 𝐶ps)𝑉0

𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

}

× 𝐺

ps
𝑛𝜅
(𝑟) = 0.

(17)

It is well known that the above equation cannot be exactly
solved due to the centrifugal term 𝑟

−2. In order to get rid of the
centrifugal term,wemake use of the following approximation
[27, 29] (see Figure 1):

1

𝑟

2
≈

4𝛼

2
𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

2
,

1

𝑟

2
≈

4𝛼

2
𝑒

−𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

2
, (18)

where 𝜅 = −

̃

ℓ and 𝜅 =

̃

ℓ + 1 for 𝜅 < 0 and 𝜅 > 0, respectively.
Using a new variable of the form 𝑠 = 𝑒

−2𝛼𝑟 and introducing

𝑓

ps
1

=

𝜀

2

ps

4𝛼

2
−

𝛽ps

4𝛼

2
+ 𝑉

1
(𝑉

1
+

1

2

) ,

𝑓

ps
2

=

2𝜀

2

ps

4𝛼

2
−

𝛽ps

4𝛼

2
− 𝑉

1
(2𝐻 + 2𝜅 −

3

2

) − 𝜂

𝜅
(𝜂

𝜅
− 1) ,

𝑓

ps
3

=

𝜀

2

ps

4𝛼

2
,

(19)

where

𝜀

2

ps = (𝑀 + 𝐸

ps
𝑛𝜅
) (𝑀 − 𝐸

ps
𝑛𝜅
+ 𝐶ps) , (20)

𝛽ps = (𝑀 − 𝐸

ps
𝑛𝜅
+ 𝐶ps)𝑉0, (21)

𝜅 (𝜅 − 1) + 2𝜅𝐻 − 𝐻 +𝐻

2
= (𝜅 + 𝐻) (𝜅 + 𝐻 − 1)

= 𝜂

𝜅
(𝜂

𝜅
− 1) 󳨀→ 𝜂

𝜅
= (𝜅 + 𝐻) ,

(22)

(17) is transformed to

𝑑

2
𝐺

ps
𝑛𝜅

𝑑𝑠

2
+

1

𝑠

𝑑𝐺

ps
𝑛𝜅

𝑑𝑠

+

−𝑓

ps
1
𝑠

2
+ 𝑓

ps
2
𝑠 − 𝑓

ps
3

𝑠

2
(1 − 𝑠)

2
𝐺

ps
𝑛𝜅

= 0.
(23)

Comparing (23) with (A.1), we find

𝛼

1
= 𝛼

2
= 𝛼

3
= 1, 𝜉

ps
1

= 𝑓

ps
1
,

𝜉

ps
2

= 𝑓

ps
2
, 𝜉

ps
3

= 𝑓

ps
3
.

(24)
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From (A.4) one can determine the rest of coefficients as

𝛼

4
= 0, 𝛼

5
= −

1

2

, 𝛼

6
=

1

4

+ 𝑓

ps
1
,

𝛼

7
= −𝑓

ps
2
, 𝛼

8
= 𝑓

ps
3
, 𝛼

9
=

1

4

+ 𝑓

ps
1

+ 𝑓

ps
3

− 𝑓

ps
2
,

𝛼

10
= 1 + 2

√
𝑓

ps
3
,

𝛼

11
= 2 + 2(

√

1

4

+ 𝑓

ps
1

+ 𝑓

ps
3

− 𝑓

ps
2

+
√
𝑓

ps
3
) ,

𝛼

12
=
√
𝑓

ps
3
,

𝛼

13
= −

1

2

− (

√

1

4

+ 𝑓

ps
1

+ 𝑓

ps
3

− 𝑓

ps
2

+
√
𝑓

ps
3
) .

(25)

Substitution of the values of the parameters given by (25)
into (A.2) and (A.3) gives us the following relations for the
eigenfunctions and energy eigenvalues:

𝐺

ps
𝑛𝜅
(𝑟) = 𝑒

−2𝛼√𝑓
ps
3
𝑟
(1 − 𝑒

−2𝛼𝑟
)

(1/2)+√(1/4)+𝑓
ps
1
+𝑓

ps
3
−𝑓

ps
2

× 𝑃

(2√𝑓
ps
3
,2√(1/4)+𝑓

ps
1
+𝑓

ps
3
−𝑓

ps
2
)

𝑛 (1 − 2𝑒

−2𝛼𝑟
) ,

𝜌

𝑝
+ 𝜆

𝑝
√
𝑓

ps
3

+

𝛽

𝑝

4𝛼

2
= 0,

(26)

where

𝜌

𝑝
= 𝑛

2
+ 𝑛 +

1

2

+ (2𝑛 + 1)

×

√

1

4

+ (𝜅 + 𝑉

1
+ 𝐻) (𝜅 + 𝑉

1
+ 𝐻 − 1)

+ 𝜂

𝜅
(𝜂

𝜅
− 1) + 𝑉

1
(2𝐻 + 2𝜅 −

3

2

) ,

𝜆

𝑝
= 2𝑛 + 1 + 2

√

1

4

+ (𝜅 + 𝑉

1
+ 𝐻) (𝜅 + 𝑉

1
+ 𝐻 − 1),

(27)

On the other hand, the upper component can be found by
using the following relation:

𝐹

ps
𝑛,𝜅

(𝑟) =

1

𝑀 − 𝐸

ps
𝑛𝜅 + 𝐶ps

(

𝑑

𝑑𝑟

−

𝜅

𝑟

+ 𝑈 (𝑟))𝐺

ps
𝑛𝜅
(𝑟) . (28)

4. Spin Symmetry Limit

In this section, we consider the spin symmetry limit where
𝑑Δ(𝑟)/𝑑𝑟 = 0 or Δ(𝑟) = 𝐶ps = const. As in the previous
section, we consider

Σ (𝑟) = −𝑉

0
(

𝑒

−2𝛼𝑟

1 − 𝑒

−2𝛼𝑟
) ,

𝑈 (𝑟) = −

1

𝑟

(𝐻 + 𝑉

1
𝑒

−𝛼𝑟
) .

(29)

Substitution of (16) and (22) into (10) gives

{

𝑑

2

𝑑𝑟

2
−

𝜅 (𝜅 + 1)

𝑟

2
−

2𝜅𝐻

𝑟

2
−

𝐻

2

𝑟

2
−

𝐻

𝑟

2
−

2𝜅𝑉

1
𝑒

−𝛼𝑟

𝑟

2

−

𝛼𝑉

1
𝑒

−𝛼𝑟

𝑟

−

𝑉

1
𝑒

−𝛼𝑟

𝑟

2
−

2𝐻𝑉

1
𝑒

−𝛼𝑟

𝑟

2
−

𝑉

2

1
𝑒

−2𝛼𝑟

𝑟

2

−𝜀

2

𝑠
+

𝛽

𝑠
𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

}𝐹

𝑠

𝑛𝜅
(𝑟) = 0,

(30)

with 𝜀

2

𝑠
= (𝐸

𝑠

𝑛𝜅
+𝑀 − 𝐶

𝑠
)(𝑀 − 𝐸

𝑠

𝑛𝜅
), 𝛽
𝑠
= (𝐸

𝑠

𝑛𝜅
+𝑀 − 𝐶

𝑠
)𝑉

0
,

and 𝑘 = ℓ and 𝑘 = −ℓ − 1 for 𝑘 < 0 and 𝑘 > 0, respectively.
Substituting (18) into (30), we have

{

𝑑

𝑑𝑟

2
−

4𝛼

2
Λ

𝜅
(Λ

𝜅
− 1) 𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

2
−

8𝛼

2
𝜅𝑉

1
𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

2
−

2𝛼

2
𝑉

1
𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

−

4𝛼

2
𝑉

1
𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

2
−

8𝛼

2
𝐻𝑉

1
𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

2
−

4𝛼

2
𝑉

2

1
𝑒

−4𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

2

−𝜀

2

𝑠
+

𝛽

𝑠
𝑒

−2𝛼𝑟

(1 − 𝑒

−2𝛼𝑟
)

}𝐹

𝑠

𝑛𝜅
(𝑟) = 0,

(31)

where

𝜅 (𝜅 + 1) + 2𝜅𝐻 + 𝐻 +𝐻

2
= (𝜅 + 𝐻 + 1) (𝜅 + 𝐻)

= Λ

𝜅
(Λ

𝜅
− 1) 󳨀→ Λ

𝜅
= (𝜅 + 𝐻 + 1) .

(32)

Introducing a new transformation of the form 𝑦 = 𝑒

−2𝛼𝑟, we
arrive at the Schrödinger-like equation:

{

𝑑

2

𝑑𝑦

2
+

1

𝑦

𝑑

𝑑𝑦

+

−𝑓

𝑠

1
𝑦

2
+ 𝑓

𝑠

2
𝑦 − 𝑓

𝑠

3

𝑦

2
(1 − 𝑦)

2
}𝐹

𝑠

𝑛𝜅
(𝑦) = 0, (33)

where

𝑓

𝑠

1
=

𝜀

2

𝑠

4𝛼

2
+

𝛽

𝑠

4𝛼

2
+ 𝑉

1
(𝑉

1
−

1

2

) ,

𝑓

𝑠

2
=

2𝜀

2

𝑠

4𝛼

2
+

𝛽

𝑠

4𝛼

2
− Λ

𝜅
(Λ

𝜅
− 1) − (2𝜅 + 2𝐻 +

3

2

)𝑉

1
,

𝑓

𝑠

3
=

𝜀

2

𝑠

4𝛼

2
.

(34)

Using the same approach we used to solve (23), the energy
equation is obtained as

𝜌

𝑠
+ 𝜆

𝑠
√𝑓

𝑠

3
−

𝛽

𝑠

4𝛼

2
= 0,

(35)
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where

𝜌

𝑠
= 𝑛

2
+ 𝑛 +

1

2

+ (2𝑛 + 1)

×

√

1

4

+ (𝜅 + 𝑉

1
+ 𝐻 + 1) (𝜅 + 𝑉

1
+ 𝐻)

+ Λ

𝜅
(Λ

𝜅
− 1) + 𝑉

1
(2𝐻 + 2𝜅 +

3

2

) ,

𝜆

𝑠
= 2𝑛 + 1 + 2

√

1

4

+ (𝜅 + 𝑉

1
+ 𝐻 + 1) (𝜅 + 𝑉

1
+ 𝐻),

(36)

and the corresponding upper and lower radial wave functions
are

𝐹

𝑠

𝑛,𝑘
(𝑟) = 𝑒

−2𝛼√𝑓
𝑠

3
𝑟
(1 − 𝑒

−2𝛼𝑟
)

(1/2)+√(1/4)+𝑓
𝑠

1
+𝑓
𝑠

3
−𝑓
𝑠

2

× 𝑃

(2√𝑓
𝑠

3
,2√(1/4)+𝑓

𝑠

1
+𝑓
𝑠

3
−𝑓
𝑠

2
)

𝑛 (1 − 2𝑒

−2𝛼𝑟
) ,

(37)

𝐺

𝑠

𝑛,𝜅
(𝑟) =

1

𝑀 + 𝐸

𝑠

𝑛𝜅
− 𝐶

𝑠

(

𝑑

𝑑𝑟

+

𝜅

𝑟

− 𝑈 (𝑟))𝐹

𝑠

𝑛𝜅
(𝑟) . (38)
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5. Discussion and Numerical Results

We obtained the energy eigenvalues in the absence (𝐻 = 0,
𝑉

1
= 0) and the presence (𝐻 = 0.5, 𝑉

1
= 0.5) of the Coulomb-

like plus Yukawa tensor interaction for various values of
the quantum numbers 𝑛 and 𝜅. The results are reported in
Tables 1 and 2 under the condition of the pseudospin and

spin symmetries, respectively, where we can see the way the
tensor interaction affects the degeneracy of the system. If we
set 𝐻 = 𝑉

1
= 0, the potential reduces into the Hulthén

potential and our result is consistent with that of Aydoğdua
et al. [27]. In Tables 1 and 2, we have compared our results
with [27]. We represent the effects of the 𝛼-parameter on the
bound states for 𝐻 = 𝑉

1
= 0.5 in Figure 2. It is seen that if
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the 𝛼-parameter increases, the bound states become more
bounded in both for symmetry limits. Figures 3 and 4
present the effect of the tensor interaction on the bound
states. We have plotted the energy versus 𝑀 in Figure 5.
Figure 6 shows the effects of 𝐶ps and 𝐶

𝑠
on the bound-

states. In Figures 7 and 8, the wave functions are plotted for
pseudospin and spin symmetry limits with and without a
tensor interaction, respectively. It is seen in Figures 7 and
8 that the tensor interaction affects only the shape of the
wave functions and does not change the node structure
of the radial upper and lower components of the Dirac
spinors.

6. Conclusion

In this paper, we obtained the approximate analytical solu-
tions of the Dirac equation for the Hulthén potential with
a novel generalized tensor interaction consisting of the

Coulomb and Yukawa interactions within the framework
of pseudospin and spin symmetry limits using the NU
technique. We have obtained the energy levels in a closed
form and the corresponding wave functions in terms of
the Jacobi polynomials. We also included some numerical
results to investigate the way the combination of Coulomb
and Yukawa potentials. Finally, the results of our work find
many applications in both nuclear and Hadron physics and
therefore provide more general solutions compared to other
previous works performed in [30, 31].

Appendix

TheNUmethod solves many linear second-order differential
equations by reducing them to a generalized equation of
hypergeometric type. Here, instead of the original formu-
lation, we use the parametric version which enables us



Advances in High Energy Physics 9

to solve a second-order differential equation of the form
[22, 32]

{

𝑑

2

𝑑𝑠

2
+

𝛼

1
− 𝛼

2
𝑠

𝑠 (1 − 𝛼

3
𝑠)

𝑑

𝑑𝑠

+

1

[𝑠 (1 − 𝛼

3
𝑠)]

2
[−𝜉

1
𝑠

2
+ 𝜉

2
𝑠 − 𝜉

3
]}𝜓 = 0.

(A.1)

According to the NU method, the eigenfunction is

𝜓 (𝑠) = 𝑠

𝛼12
(1 − 𝛼

3
𝑠)

−𝛼12−(𝛼13/𝛼3)

× 𝑃

(𝛼10−1,(𝛼11/𝛼3)−𝛼10−1)

𝑛
(1 − 2𝛼

3
𝑠)

(A.2)

and the energy of the system satisfies

𝛼

2
𝑛 − (2𝑛 + 1) 𝛼

5
+ (2𝑛 + 1) (√𝛼

9
+ 𝛼

3√
𝛼

8
)

+ 𝑛 (𝑛 − 1) 𝛼

3
+ 𝛼

7
+ 2𝛼

3
𝛼

8
+ 2√𝛼

8
𝛼

9
= 0,

(A.3)

where

𝛼

4
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And 𝑃(𝛼,𝛽)
𝑛

is Jacobi polynomial.
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