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We describe the effects of neutrino propagation in thematter of the Earth relevant to experiments with atmospheric and accelerator
neutrinos and aimed at the determination of the neutrino mass hierarchy and CP violation. These include (i) the resonance
enhancement of neutrino oscillations in matter with constant or nearly constant density, (ii) adiabatic conversion in matter with
slowly changing density, (iii) parametric enhancement of oscillations in a multilayer medium, and (iv) oscillations in thin layers of
matter. We present the results of semianalytic descriptions of flavor transitions for the cases of small density perturbations, in the
limit of large densities and for small densitywidths. Neutrino oscillograms of the Earth and their structure after determination of the
1–3 mixing are described. A possibility to identify the neutrino mass hierarchy with the atmospheric neutrinos and multimegaton
scale detectors having low energy thresholds is explored. The potential of future accelerator experiments to establish the hierarchy
is outlined.

1. Introduction

Neutrinos are eternal travelers: once produced (especially
at low energies) they have little chance to interact and
be absorbed. Properties of neutrino fluxes are flavor com-
positions, lepton charge asymmetries, and energy spectra
of encode information. Detection of the neutrinos brings
unique knowledge about their sources, properties ofmedium,
the space-time they propagated as well as about neutrinos
themselves.

Neutrino propagation in matter is vast area of research
which covers a variety of different aspects: from conceptual
ones to applications. This includes propagation in matter
(media) with (i) different properties (unpolarized, polarized,
moving, turbulent, fluctuating, with neutrino components,
etc.), (ii) different density profiles, and (iii) in different
energy regions. The applications cover neutrino propagation
in matter of the Earth and the Sun, supernova and relativistic
jets as well as neutrinos in the early universe.

The impact of matter on neutrino oscillations was first
studied by Wolfenstein in 1978 [1]. He marked that matter
suppresses oscillations of the solar neutrinos propagating in
the Sun and supernova neutrinos inside a star. He consid-
ered hypothetical experiments with neutrinos propagating
through 1000 km of rock, something that today is no longer
only a thought but actual experimental reality. Later Barger et
al. [2] have observed thatmatter can also enhance oscillations
at certain energies. The work of Wolfenstein was expanded
upon in papers by Mikheev and Smirnov [3–5], in particular,
in the context of the solar neutrino problem. Essentially two
new effects have been proposed: the resonant enhancement
of neutrino oscillations in matter with constant and nearly
constant density and the adiabatic flavor conversion inmatter
with slowly changing density. It was marked that the first
effect can be realized for neutrinos crossing the matter of the
Earth. The second one can take place in propagation of solar
neutrinos from the dense solar core via the resonance region
inside the Sun to the surface with negligible density. This
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adiabatic flavor transformation, called later the MSW effect,
was proposed as a solution of the solar neutrino problem.

Since the appearance of these seminal papers, neu-
trino flavor evolution in background matter was studied
extensively including the treatment of propagation in media
which are not consisting simply of matter at rest, but also
backgrounds that take on a more general form. For instance,
in a thermal field theory approach [6], effects of finite
temperature and density can be taken readily into account.
If neutrinos are dense enough, new type of effects can arise
due to the neutrino background itself, causing a collective
behavior in the flavor evolution.This type of effect could have
a significant impact on neutrinos in the early universe and in
central parts of collapsing stars.

There has been a great progress in treatments of neutrino
conversion in matter, both from an analytical and a pure
computational points of view. From the analytical side, the
description of three-flavor neutrino oscillations in matter is
given by a plethora of formulas containing information that
may be hard to get a proper grasp of without introducing
approximations. Luckily, given the parameter values inferred
from experiments, various perturbation theories and series
expansions in small parameters can be developed. In this
paper we will explain the basic physical effects important
for the current and next generation neutrino oscillation
experiments and provide the relevant formalism. We present
an updated picture of oscillations and conversion given the
current knowledge on the neutrino oscillation parameters.

In this paper we focus mainly on aspects related to future
experiments with atmospheric and accelerator neutrinos.
The main goals of these experiments are to (i) establish the
neutrino mass hierarchy, (ii) discover CP violation in the
lepton sector and determination of the CP-violating phase,
(iii) precisely measure the neutrino parameters, in particular,
the deviation of 2-3 mixing frommaximal, and (iv) search for
sterile neutrinos and new neutrino interactions.

Accelerator and atmospheric neutrinos propagate in the
matter of the Earth. Therefore we mainly concentrate on
effects of neutrino propagation in the Earth, that is, in usual
electrically neutral and nonrelativistic matter. We update
existing results on effects of neutrino propagation in view of
the recent determination of the 1–3 mixing.

Thepaper is organized as follows. In Section 2we consider
properties of neutrinos in matter, in particular, mixing in
matter and effective masses (eigenvalues of the Hamilto-
nian); we derive equations which describe the propagation.
Section 3 is devoted to various effects relevant to neutrino
propagating in the Earth. We consider the properties of the
oscillation/conversion probabilities in different channels. In
Section 4 we explore the effects of the neutrino mass hier-
archy and CP-violating phase on the atmospheric neutrino
fluxes and neutrino beams from accelerators. Conclusions
and outlook are presented in Section 5.

2. Neutrino Properties in Matter

We will consider the system of 3-flavor neutrinos, ]𝑇
𝑓

≡

(]
𝑒
, ]

𝜇
, ]

𝜏
), mixed in vacuum:

]
𝑓
= 𝑈PMNS]𝑚. (1)

Here 𝑈PMNS is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix [7–9] and ]𝑇

𝑚
≡ (]

1
, ]

2
, ]

3
) is the

vector of mass eigenstates with masses 𝑚
𝑖
(𝑖 = 1, 2, 3). We

will use the standard parameterization of the PMNS matrix,

𝑈PMNS = 𝑈
23
(𝜃

23
) 𝐼

𝛿
𝑈
13
(𝜃

13
) 𝐼

∗

𝛿
𝑈
12
(𝜃

12
) , (2)

which is the most suitable for describing usual matter effects.
In (2) 𝑈

𝑖𝑗
(𝜃

𝑖𝑗
) are the matrices of rotations in the 𝑖𝑗-planes

with angles 𝜃
𝑖𝑗
and 𝐼

𝛿
≡ diag(1, 1, 𝑒𝛿).

In vacuum the flavor evolution of these neutrinos is
described by the Schrödinger-like equation

𝑖

𝑑]
𝑓

𝑑𝑡

=

𝑀𝑀
†

2𝐸

]
𝑓
, (3)

where 𝑀 is the neutrino mass matrix in the flavor basis
and 𝐸 is the neutrino energy. Equation (3) is essentially a
generalization of the equation 𝐸 ≈ 𝑝 + 𝑚

2
/2𝐸 for a single

ultrarelativistic particle. According to (3), the Hamiltonian in
vacuum can be written as

𝐻
0
=

1

2𝐸

𝑈PMNS𝑀
2

diag𝑈
†

PMNS, (4)

where 𝑀2

diag ≡ 𝑀
†
𝑀 = diag(𝑚2

1
, 𝑚

2

2
, 𝑚

2

3
) and we take the

masses 𝑚
𝑖
to be real (the term 𝑝𝐼 is omitted in (4) since it

does not produce a phase difference).

2.1. Refraction and Matter Potentials. The effective potential
for a neutrino in medium 𝑉

𝑓
can be computed as a forward

scattering matrix element 𝑉
𝑓

= ⟨Ψ|𝐻int|Ψ⟩. Here Ψ is the
wave function of the system of neutrino and medium, and
𝐻int is the Hamiltonian of interactions.

At low energies, theHamiltonian𝐻int is the effective four-
fermionHamiltonian due to exchange of the𝑊 and𝑍 bosons:

𝐻int =
𝐺
𝐹

√2
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5
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(5)

where 𝑔
𝑉
and 𝑔

𝐴
are the vector and axial vector coupling

constants.
In the Standard Model the matrix of the potentials in the

flavor basis is diagonal: 𝑉
𝑓
= diag(𝑉

𝑒
, 𝑉

𝜇
, 𝑉

𝜏
, 0, . . .).

Formedium thematrix elements of vectorial components
of vector current are proportional to velocity of particles of
medium. The matrix elements of the axial vector current are
proportional to spin vector. Therefore for nonrelativistic and
unpolarized medium (as well as for an isotropic distribution
of ultrarelativistic electrons) only the 𝛾

0 component of the
vector current gives a nonzero result, which is proportional
to the number density of the corresponding particles. Fur-
thermore, due to conservation of the vector current (CVC),
the couplings 𝑔𝑝

𝑉
and 𝑔

𝑛

𝑉
can be computed using the neutral

current couplings of quarks. Thus, taking into account that,
in the Standard Model, the neutral current couplings of
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electrons and protons are equal and of opposite sign, their
NC contributionscancel in electrically neutral medium. As a
result, the potential for neutrino flavor ]

𝑎
is

𝑉
𝑎
= √2𝐺

𝐹
(𝛿

𝑎𝑒
𝑛
𝑒
−

1

2

𝑛
𝑛
) , (6)

where 𝑛
𝑒
and 𝑛

𝑛
are the densities of electrons and neutrons,

respectively.
Only the difference of potentials has a physical meaning.

Contribution of the neutral current scattering to 𝑉 is the
same for all active neutrinos. Since 𝑉

𝑎
(𝑎 = 𝜇, 𝜏, or a

combination thereof) is due to the neutral current scattering,
in a normal medium composed of protons neutrons (nuclei)
and electrons,𝑉

𝜇
−𝑉

𝜏
= 0. Furthermore, the difference of the

potentials for ]
𝑒
and ]

𝑎
is due to the charged current scattering

of ]
𝑒
on electrons (]

𝑒
𝑒 → ]

𝑒
𝑒) [1]:

𝑉 = 𝑉
𝑒
− 𝑉

𝑎
= √2𝐺

𝐹
𝑛
𝑒
. (7)

The difference of potentials leads to the appearance of an
additional phase difference in the neutrino system: 𝜙matter ≡
(𝑉

𝑒
− 𝑉

𝑎
)𝑡 ≈ 𝑉𝑥. This determines the refraction length, the

distance over which an additional “matter” phase equals 2𝜋:

𝑙
0
≡

2𝜋

𝑉
𝑒
− 𝑉

𝑎

=

√2𝜋

𝐺
𝐹
𝑛
𝑒

. (8)

Numerically,

𝑙
0
= 1.6 ⋅ 10

9cm
1 g/cm3

𝑛
𝑒
𝑚
𝑁

, (9)

where 𝑚
𝑁
is the nucleon mass. The corresponding column

density 𝑑 ≡ 𝑙
0
𝑛
𝑒
= √2𝜋/𝐺

𝐹
is given by the Fermi coupling

constant only.
For antineutrinos the potential has an opposite sign.

Being zero in the lowest order the difference of potentials
in the ]

𝜇
-]
𝜏
system appears at a level of 10−5𝑉 due to the

radiative corrections [10].Thus in the flavor basis in the lowest
order in EW interactions the effect of medium on neutrinos
is described by ̂𝑉 = diag(𝑉

𝑒
, 0, 0) with 𝑉

𝑒
given in (7).

The potential has been computed for neutrinos in differ-
ent types of media, such as polarized or heavily degenerate
electrons, in [11–13].

2.2. Evolution Equation, Effective Hamiltonian, and
Mixing in Matter

2.2.1. Wolfenstein Equation. In the flavor basis, the Hamilto-
nian inmatter can be obtained by adding the interaction term
to the vacuum Hamiltonian in vacuum [1, 3–5, 14, 15]:

𝐻
𝑓
=

1

2𝐸

𝑈PMNS𝑀
2

diag𝑈
†

PMNS +
̂
𝑉. (10)

In (10) we have omitted irrelevant parts of the Hamiltonian
proportional to the unitmatrix.TheHamiltonian for antineu-
trinos can be obtained by the substitution

𝑈 󳨀→ 𝑈
∗
, 𝑉 󳨀→ −𝑉. (11)

There are different derivations of the neutrino evolution
equation in matter, in particular, strict derivations starting
from the Dirac equation or derivation in the context of
quantum field theory (see [16] and references therein).

Although the Hamiltonian 𝐻
𝑓
describes evolution in

time, with the connection 𝑥 = V𝑡 ≈ 𝑥 = 𝑐𝑡, (12) can be
rewritten as 𝑖𝑑]

𝑓
/𝑑𝑥 = (𝐻

0
+
̂
𝑉)]

𝑓
with 𝑉 = 𝑉(𝑥), so it can

be used as an evolution equation in space.
Due to the strong hierarchy of Δ𝑚2 and the smallness

of 1–3 mixing, the results can be qualitatively understood
and in many cases quantitatively described by reducing
3] evolution to 2] evolution. The reason is that the third
neutrino effectively decouples and its effect can be considered
as a perturbation. Of course, there are genuine 3] phenomena
such as CP violation, but even in this case the dynamics
of evolution can be reduced effectively to the dynamics of
evolution of 2] systems.The evolution equation for two-flavor
states, ]𝑇

𝑓
= (]

𝑒
, ]

𝑎
), in matter is

𝑖

𝑑]
𝑓

𝑑𝑡

=

[

[

[

Δ𝑚
2

4𝐸

(

− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃) +(

1

2

𝑉
𝑒

0

0 −

1

2

𝑉
𝑒

)

]

]

]

]
𝑓
,

(12)

where the Hamiltonian is written in symmetric form.

2.3. Mixing and Eigenstates in Matter. The mixing in matter
is defined with respect to ]

𝑖𝑚
—the eigenstates of the Hamil-

tonian in matter𝐻
𝑓
.

As usual, the eigenstates are obtained from the equation

𝐻
𝑓
]
𝑖𝑚

= 𝐻
𝑖𝑚
]
𝑖𝑚
, (13)

where 𝐻
𝑖𝑚

are the eigenvalues of 𝐻
𝑓
. If the density and

therefore 𝐻
𝑓
are constant, ]

𝑖𝑚
correspond to the eigenstates

of propagation. Since 𝐻
𝑓

̸=𝐻
0
, the states ]

𝑖𝑚
differ from

the mass states, ]
𝑖
. For low density 𝑛 → 0, the vacuum

eigenstates are recovered: ]
𝑖𝑚

→ ]
𝑖
. If the density, and

thus 𝐻
𝑓
change during neutrino propagation, ]

𝑖𝑚
and 𝐻

𝑖𝑚

should be considered as the eigenstates and eigenvalues of the
instantaneous Hamiltonian: 𝐻

𝑓
= 𝐻

𝑓
(𝑥), ]

𝑖𝑚
= ]

𝑖𝑚
(𝑥), and

𝐻
𝑖𝑚

= 𝐻
𝑖𝑚
(𝑥). For 𝑛 → 0 we have𝐻

𝑖𝑚
→ 𝑚

2

𝑖
/2𝐸.

The mixing in matter is a generalization of the mixing
in vacuum (1). Recall that the mixing matrix in vacuum
connects the flavor neutrinos, ]

𝑓
, and the massive neutrinos,

]mass.The latter are the eigenstates ofHamiltonian in vacuum:
]
𝐻

= ]mass. Therefore, the mixing matrix in matter is
defined as the matrix which relates the flavor states with the
eigenstates of theHamiltonian inmatter ]𝑇

𝐻
= (]

1𝑚
, ]

2𝑚
, ]

3𝑚
):

]
𝑓
= 𝑈

𝑚
]
𝐻
. (14)

From (13) we find that

]
†

𝑗𝑚
𝐻
𝑓
]
𝑖𝑚

= 𝐻
𝑖𝑚
𝛿
𝑗𝑖
. (15)

Furthermore, the Hamiltonian can be represented in the
flavor basis as

𝐻
𝑓
= ∑

𝛼𝛽

𝐻
𝛼𝛽
]
𝛼
]
†

𝛽
. (16)
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Inserting this expression as well as the relation ]
𝑗𝑚

= 𝑈
𝑚∗

𝛼𝑗
]
𝛼
,

which follows from (14), into (15) one obtains

∑

𝛼𝛽

𝑈
𝑚∗

𝛼𝑗
𝐻
𝛼𝛽
𝑈
𝑚

𝛽𝑖
= 𝐻

𝑖𝑚
𝛿
𝑗𝑖 (17)

or in matrix form 𝑈
𝑚†
𝐻
𝑓
𝑈
𝑚

= 𝐻
diag

= diag(𝐻
1𝑚
, 𝐻

2𝑚
,

𝐻
3𝑚
).Thus, themixingmatrix𝑈𝑚 can be founddiagonalizing

the full Hamiltonian. The columns of the mixing matrix,
𝑈
𝑖
≡ (𝑈

𝑚

𝑒𝑖
, 𝑈

𝑚

𝜇𝑖
, 𝑈

𝑚

𝜏𝑖
), are the eigenstates of theHamiltonian𝐻

𝑓

which correspond to the eigenvalues 𝐻
𝑖𝑚
. Indeed, it follows

from (17) that𝐻
𝑓
𝑈
𝑚
= 𝑈

𝑚
𝐻

diag.
Equation (14) can be inverted to ]

𝐻
= 𝑈

𝑚†]
𝑓
, or in

components ]
𝑖𝑚

= 𝑈
𝑚∗

𝛼𝑖
]
𝛼
, 𝛼 = 𝑒, 𝜇, 𝜏. According to this, the

elements ofmixingmatrix determine the flavor content of the
mass eigenstates so that |𝑈𝑚

𝛼𝑖
|
2 gives the probability to find ]

𝛼

in a given eigenstate ]
𝑖𝑚
. Correspondingly, the elements of the

PMNS matrix determine the flavor composition of the mass
eigenstates in vacuum.

2.4. Mixing in the Two-Neutrino Case. In the 2] case, there
is single mixing angle in matter 𝜃

𝑚
and the relations between

the eigenstates in matter and the flavor states read

]
𝑒
= cos 𝜃

𝑚
]
1𝑚

+ sin 𝜃
𝑚
]
2𝑚
,

]
𝑎
= cos 𝜃

𝑚
]
2𝑚

− sin 𝜃
𝑚
]
1𝑚
.

(18)

The angle 𝜃
𝑚
is obtained by diagonalization of the Hamilto-

nian (12) (see previous section):

sin22𝜃
𝑚
=

1

𝑅

sin22𝜃,

𝑅 ≡ (cos 2𝜃 − 2𝑉𝐸

Δ𝑚
2
)

2

+ sin22𝜃,
(19)

where𝑅 is the resonance factor. In the limit𝑉 → 0, the factor
𝑅 → 1 and the vacuummixing are recovered.The difference
of eigenvalues𝐻

𝑖𝑚
equals

𝜔
𝑚
≡ 𝐻

2𝑚
− 𝐻

1𝑚
=

Δ𝑚
2

2𝐸

√𝑅. (20)

This difference is also called the level splitting or oscillation
frequency, which determines the oscillation length: 𝑙

𝑚
=

2𝜋/𝜔
𝑚
(see Section 3.2).

The matter potential and Δ𝑚
2 always enter the mixing

angle and other dimensionless quantities in the combination

2𝐸𝑉

Δ𝑚
2
=

𝑙]

𝑙
0

, (21)

where 𝑙
0
is the refraction length. This is the origin of the

“scaling” behavior of various characteristics of the flavor
conversion probabilities. In terms of the mixing angle in
matter the Hamiltonian can be rewritten in the following
symmetric form:

𝐻
𝑓
=

𝜔
𝑚

2

(

− cos 2𝜃
𝑚

sin 2𝜃
𝑚

sin 2𝜃
𝑚

cos 2𝜃
𝑚

) . (22)

2.4.1. Resonance and Level Crossing. According to (19) the
effective mixing parameter in matter, sin22𝜃

𝑚
, depends on

the electron density and neutrino energy through the ratio
(21) of the oscillation and refraction lengths, 𝑥 = 𝑙]/𝑙0 ∝ 𝐸𝑉.
The dependence sin22𝜃

𝑚
(𝑉𝐸) for two different values of the

vacuum mixing angle, corresponding to angles from the full
three-flavor framework, is shown in Figure 1.Thedependence
of sin22𝜃

𝑚
on 𝐸 has a resonant character [3]. At

𝑙] = 𝑙
0
cos 2𝜃 (23)

the mixing becomes maximal: sin22𝜃
𝑚

= 1 (𝑅 = sin22𝜃).
The equality in (23) is called the resonance condition and it
can be rewritten as 2𝐸𝑉 = Δ𝑚

2 cos 2𝜃. For small vacuum
mixing the condition reads the following: oscillation length
≈ refraction length. The physical meaning of the resonance
is that the eigenfrequency, which characterizes a system of
mixed neutrinos, 𝜔 = 2𝜋/𝑙] = Δ𝑚

2
/2𝐸, coincides with the

eigenfrequency of the medium, 2𝜋/𝑙
0
= 1/𝑉. The resonance

condition (23) determines the resonance density

𝑛
𝑅

𝑒
=

Δ𝑚
2

2𝐸

cos 2𝜃
√2𝐺

𝐹

. (24)

The width of resonance on the half of height (in the density
scale) is given by 2Δ𝑛

𝑅

𝑒
= 2𝑛

𝑅

𝑒
tan 2𝜃. Similarly, for fixed 𝑛

𝑒

one can introduce the resonance energy and the width of
resonance in the energy scale. The width can be rewritten as
Δ𝑛

𝑅

𝑒
= 𝑛

0
sin 2𝜃, where 𝑛

0
≡ Δ𝑚

2
/2√2𝐸𝐺

𝐹
. When the mix-

ing approaches its maximalvalue: 𝜃 → 𝜋/4, the resonance
shifts to zero density: 𝑛𝑅

𝑒
→ 0, and thewidth of the resonance

increases converging to the fixed value: Δ𝑛𝑅
𝑒
→ 𝑛

0
.

In a medium with varying density, the layer in which
the density changes in the interval 𝑛𝑅

𝑒
± Δ𝑛

𝑅

𝑒
is called the

resonance layer. In this layer the angle 𝜃
𝑚
varies in the interval

from 𝜋/8 to 3𝜋/8.
For 𝑉 ≪ 𝑉

𝑅
, the mixing angle is close to the vacuum

angle: 𝜃
𝑚

≈ 𝜃, while for 𝑉 ≫ 𝑉
𝑅
, the angle becomes 𝜃

𝑚
≈

𝜋/2 and the mixing is strongly suppressed. In the resonance
region, the level splitting is minimal [17, 18], therefore the
oscillation length, as the function of density, is maximal.

2.5. Mixing of 3 Neutrinos in Matter. To a large extent,
knowledge of the eigenstates (mixing parameters) and eigen-
values of the instantaneous Hamiltonian in matter allows
the determination of flavor evolution in most of the realistic
situations (oscillations inmatter of constant density, adiabatic
conversion, and strong breaking of adiabaticity). The exact
expressions for the eigenstates and eigenvalues [19, 20]
are rather complicated and difficult to analyze. Therefore
approximate expressions for the mixing angles and eigenval-
ues are usually used. They can be obtained performing an
approximate diagonalization of𝐻

𝑓
which relies on the strong

hierarchy of the mass squared differences:

𝑟
Δ
≡

Δ𝑚
2

21

Δ𝑚
2

31

≈ 0.03. (25)

Without changing physics, the factor 𝐼
−𝛿

in themixingmatrix
can be eliminated by permuting it with 𝑈

12
and redefining
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the state ]
3
. Therefore, in what follows, we use 𝑈PMNS =

𝑈
23
𝐼
𝛿
𝑈
13
𝑈
12
. Here we will describe the case of normal mass

hierarchy: Δ𝑚2

31
> 0, Δ𝑚

2

32
> 0. Subtracting from the

Hamiltonian the matrix proportional to the unit matrix
𝑚
2

1
/2𝐸I, we obtain

𝑀
2

diag = Δ𝑚
2

31
diag (0, 𝑟

Δ
, 1) . (26)

2.5.1. Propagation Basis. The propagation basis, ]̃ =

(]
𝑒
, ]̃

2
, ]̃

3
)
𝑇, which is most suitable for consideration of the

neutrino oscillations inmatter, is defined through the relation

]
𝑓
= 𝑈

23
𝐼
𝛿
]̃. (27)

Since the potential matrix is invariant under 2-3 rotations,
the matrix of the potentials is unchanged and the the
Hamiltonian in the propagation basis becomes

̃
𝐻 =

1

2𝐸

𝑈
13
𝑈
12
𝑀

2

diag𝑈
†

12
𝑈
†

13
+
̂
𝑉. (28)

It does not depend on the 2-3 mixing or CP violation phase,
and so the dynamics of the flavor evolution do not depend on
𝛿 and 𝜃

23
. These parameters appear in the final amplitudes

when projecting the flavor states onto propagation-basis
states and back onto (27) the neutrino production and
detection.

Explicitly, the Hamiltonian ̃
𝐻 can be written as

̃
𝐻 =

Δ𝑚
2

31

2𝐸

×(

𝑠
2

13
+ 𝑠

2

12
𝑐
2

13
𝑟
Δ
+

2𝑉
𝑒
𝐸

Δ𝑚
2

31

𝑠
12

𝑐
12

𝑐
13

𝑟
Δ

𝑠
13

𝑐
13
(1 − 𝑠

2

12
𝑟
Δ
)

. . . 𝑐
2

12
𝑟
Δ

−𝑠
12

𝑐
12

𝑠
13

𝑟
Δ

. . . . . . 𝑐
2

13
+ 𝑠

2

12
𝑠
2

13
𝑟
Δ

).

(29)

Here all the off-diagonal elements contain small parameters
𝑟
Δ

and/or 𝑠
13
. Notice that, for the measured oscillation

parameters, 𝑠2
13

∼ 𝑟
Δ
.

2.5.2. Mixing Angles in Matter. The Hamiltonian in (29)
can be diagonalized performing several consecutive rotations
which correspond to developing the perturbation theory in
𝑟
Δ
. After a 1–3 rotation

]̃ = 𝑈
13
(𝜃

𝑚

13
) ]

󸀠 (30)

over the angle 𝜃𝑚
13
determined by

tan 2𝜃𝑚
13

=

sin 2𝜃
13

cos 2𝜃
13
− 2𝐸𝑉

󸀠
/Δ𝑚

2

31

,

where 𝑉
󸀠
=

𝑉

1 − 𝑠
2

12
𝑟
Δ

,

(31)

the 1–3 element of (29) vanishes. The expression (31) differs
from that for 2]mixing inmatter by a factor (1−𝑠2

12
𝑟
Δ
), which

increases the potential and deviates from 1 by

𝜉 ≡ 𝑠
2

12
𝑟
Δ
≈ 10

−2
. (32)

After this rotation the Hamiltonian in the ]󸀠 basis (30)
becomes

𝐻
󸀠
=

Δ𝑚
2

31

2𝐸

×(

ℎ
11

𝑠
12

𝑐
12

𝑟
Δ
cos (𝜃𝑚

13
−𝜃

13
) 0

. . . 𝑐
2

12
𝑟
Δ

𝑠
12

𝑐
12
𝑟
Δ
sin (𝜃𝑚

13
−𝜃

13
)

. . . . . . ℎ
33

),

(33)

where

ℎ
11,33

=

1

2

[ (1+𝜉+ 𝑥)

∓
√
[cos 2𝜃

13 (
1−𝜉)−𝑥]

2
+sin22𝜃

13(
1−𝜉)

2
] ,

(34)

and 𝑥 ≡ 2𝐸𝑉/Δ𝑚
2

31
. For 𝜉 = 0, these elements are reduced

to the standard 2] expressions. In the limit of zero density,
𝑥 → 0, ℎ

11
= 𝜉 = 𝑠

2

12
𝑟
Δ
, and consequently the 11-element of

the Hamiltonian equals𝐻󸀠

11
= 𝑠

2

12
Δ𝑚

2

12
/2𝐸.

In the lowest 𝑟
Δ

approximation one can neglect the
nonzero 2-3 element in (33). The state ]󸀠

3
then decouples and

the problem is reduced to a two-neutrino problem for (]󸀠
1
, ]󸀠

2
).

The eigenvalue of this decoupled state equals

𝐻
3𝑚

≈

Δ𝑚
2

31

2𝐸

ℎ
33
, ℎ

33
≥ 1.

(35)

The diagonalization of the remaining 1-2 submatrix is given
by rotation

]
󸀠
= 𝑈

12
(𝜃

𝑚

12
) ]

𝑚
, (36)

where 𝜃𝑚
12
is determined by

tan 2𝜃𝑚
12

=

sin 2𝜃
12
𝑟
Δ
cos (𝜃𝑚

13
− 𝜃

13
)

𝑐
2

12
𝑟
Δ
− ℎ

11

. (37)

Here ℎ
11
and 𝜃𝑚

13
are defined in (34) and (31), respectively.The

eigenvalues equal

𝐻
1𝑚,2𝑚

=

Δ𝑚
2

31

4𝐸

[𝑐
2

12
𝑟
Δ
+ℎ

11

∓√(𝑐
2

12
𝑟
Δ
−ℎ

11
)

2
+sin22𝜃

12
𝑟
2

Δ
cos2 (𝜃𝑚

13
−𝜃

13
)] .

(38)

According to this diagonalization procedure in the lowest
order in 𝑟

Δ
the mixing matrix in matter is given by

𝑈
𝑚
= 𝑈

23
(𝜃

23
) 𝐼

𝛿
𝑈
13
(𝜃

𝑚

13
) 𝑈

12
(𝜃

𝑚

12
) , (39)

where mixing angles 𝜃
𝑚

12
and 𝜃

𝑚

13
are determined in (37)

and (31), respectively. The 2-3 angle and the CP violation
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Figure 1: Resonance in neutrino mixing. The dependence of sin22𝜃
𝑚𝑖𝑗

on the product 𝑉𝐸 for vacuum mixing: sin22𝜃
12

= 0.851, Δ𝑚2

21
=

7.59 ⋅10
−5 eV2 (red) and sin2𝜃

13
= 0.0241,Δ𝑚2

31
= 2.47 ⋅10

−3 eV2 (green).The left semiplane corresponds to antineutrinos.The behavior of 𝜃
23

with vacuum value sin22𝜃
23
= 0.953 is included for completeness.The dashed lines are the predictions from a strict two-flavor approximation

while the solid thin lines are the results of numerical diagonalization of the full three-flavor system. The upper panels show the case of the
normal mass hierarchy and the lower panels show the inverted hierarchy.

phase are not modified by matter in this approximation.
The eigenvalues 𝐻

1𝑚
and 𝐻

2𝑚
are given in (38) and 𝐻

3𝑚
is

determined by (35).
The 2-3 element of matrix (33) vanishes after additional

2-3 rotation by an angle 𝜃󸀠
23

∼ 𝑟
Δ
:

tan 2𝜃󸀠
23

=

sin 2𝜃
12

𝑟
Δ
sin (𝜃𝑚

13
− 𝜃

13
)

ℎ
33
− 𝑐

2

12
𝑟
Δ

, (40)

which produces corrections of the next order in 𝑟
Δ
. With an

additional 2-3 rotation the mixing matrix becomes

𝑈
𝑚
= 𝑈

23
(𝜃

23
) 𝐼

𝛿
𝑈
13
(𝜃

𝑚

13
) 𝑈

12
(𝜃

𝑚

12
) 𝑈

23
(𝜃

󸀠

23
)

≈ 𝑈
23
(𝜃

𝑚

23
) 𝐼

𝛿
𝑚𝑈

13
(𝜃

𝑚

13
) 𝑈

12
(𝜃

𝑚

12
) ,

(41)

where

𝑈
23
(𝜃

𝑚

23
) 𝐼

𝑚

𝛿
= 𝑈

23
(𝜃

23
) 𝐼

𝛿
𝑈
23
(𝜃

23
) , (42)

and the last 2-3 rotation is on the angle 𝜃
23

determined
through sin 𝜃

23
= sin 𝜃󸀠

23
/ cos 𝜃𝑚

13
. The expression on the RH

of (41) is obtained by reducing the expression on the LH
side to the standard form by permuting the correctionmatrix
𝑈
23
(𝜃

󸀠

23
). According to (42), it is this matrix that leads to the

modification of 2-3mixing andCPphase inmatter. From (42)
one finds

sin 𝛿𝑚 sin 2𝜃𝑚
23

= sin 𝛿 sin 2𝜃
23
, (43)

that is, the combination sin 𝛿 sin 2𝜃
23

is invariant under
inclusion of matter effects. Furthermore, 𝜃𝑚

23
≈ 𝜃

23
and

𝛿
𝑚

≈ 𝛿 up to corrections of the order 𝑂(𝑟
Δ
). The results

described here allowing understand the behavior of the
mixing parameters sin22𝜃

𝑚𝑖𝑗
in the 𝐸𝑉 region of the 1–3

resonance and above it (see Figure 1).
In Figure 2 we present dependence of the flavor content

of the neutrino eigenstates on the potential. The energy level
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Figure 2: The flavor contents of the eigenstates of the Hamiltonian
in matter as functions of 𝐸𝑉. The vertical width of the band is taken
to be 1, then the vertical sizes of the colored parts give |𝑈

𝑒𝑖
|
2 (red),

and |𝑈
𝜇𝑖
|
2 (green), |𝑈

𝜏𝑖
|
2 (blue).The right and left panels correspond

to neutrinos and antineutrinos, respectively. We take the best fit
values of [21] with 𝛿 = 0. Variations of 𝛿 change the relative ]

𝜇
and

]
𝜏
contents. The dashed red line shows a shift of border between ]

𝜇

and ]
𝜏
flavors for 𝛿 = 𝜋. The upper (lower) panel corresponds to

normal (inverted) mass ordering.

scheme, the dependence of the eigenvalues 𝐻
𝑖𝑚

on matter
density, is shown in Figure 3. The energy levels in matter do
not depend on 𝛿 or 𝜃

23
, but they do depend on the 1–3 and 1-2

mixing.
In the case of normal mass hierarchy, there are two

resonances (level crossings) whose location is defined as the
density (energy) at which the mixing in a given channel
becomes maximal.

(1) TheH resonance, in the ]
𝑒
-]󸀠
𝜏
channel, is associated to

the 1–3 mixing and large mass splitting. According to
(31) 𝜃𝑚

13
= 𝜋/4 at

𝑉
𝑅

13
= cos 2𝜃

13
(1 − 𝑠

2

12
𝑟
Δ
)

Δ𝑚
2

31

2𝐸

.
(44)

(2) The L resonance at low densities is associated to the
small mass splitting and 1-2 mixing. It appears in the
]󸀠
𝑒
-]󸀠
𝜇
channel, where ]󸀠

𝑒
and ]

𝑒
differ by small (at low

densities) rotation given by an angle ∼ 𝜃
13
(see (31)).

According to (37) the position of the L-resonance,
𝜃
𝑚

12
= 𝜋/4, is given by 𝑐2

12
𝑟
Δ
= ℎ

11
, where ℎ

11
is defined

in (34). This leads to

𝑉
𝑅

12
= cos 2𝜃

12

Δ𝑚
2

21

2𝐸

1

𝑐
2

13

. (45)

For antineutrinos (𝑉𝐸 < 0 in Figure 3), the oscillation
parameters in matter can be obtained from the neutrino
parameters taking 𝑉 → −𝑉 and 𝛿 → −𝛿. The mixing
pattern and level scheme for neutrinos and antineutrinos are
different both due to the possible fundamental violation of
CP invariance and the sign of matter effect. Matter violates
CP invariance and the origin of this violation stems from the
fact that usual matter is CP asymmetric; in particular, there
are electrons in the medium but no positrons.

In the case of normalmass hierarchy there are no antineu-
trino resonances (level crossings), and with the increase of
density (energy) the eigenvalues have the following asymp-
totic limits:

𝐻
1𝑚

󳨀→ −𝑉, 𝐻
2𝑚

󳨀→

Δ𝑚
2

21
𝑐
2

12

2𝐸]

,

𝐻
3𝑚

󳨀→

Δ𝑚
2

31
𝑐
2

13

2𝐸]

.

(46)

3. Effects of Neutrino Propagation in
Different Media

3.1. The Evolution Matrix. The evolution matrix, 𝑆(𝑡, 𝑡
0
), is

defined as the matrix which gives the wave function of the
neutrino system ](𝑡) at an arbitrary moment 𝑡 once it is
known in the initial moment 𝑡

0
:

] (𝑡) = 𝑆 (𝑡, 𝑡
0
) ] (𝑡

0
) . (47)

Inserting this expression in the evolution equation (12), we
find that 𝑆(𝑡, 𝑡

0
) satisfies the same evolution equation as ](𝑡):

𝑖

𝑑𝑆

𝑑𝑡

= 𝐻𝑆. (48)

The elements 𝑆(𝑡, 𝑡
0
)
𝛼𝛽

of this matrix are the amplitudes of
]
𝛽
→ ]

𝛼
transitions: 𝑆(𝑡, 𝑡

0
)
𝛼𝛽

≡ 𝐴(]
𝛽
→ ]

𝛼
).The transition

probability equals 𝑃
𝛼𝛽

= |𝑆(𝑡, 𝑡
0
)
𝛼𝛽
|
2. The unitarity of the

evolution matrix, 𝑆†𝑆 = 𝐼, leads to the following relations
between the amplitudes (matrix elements):

󵄨
󵄨
󵄨
󵄨
𝑆
𝛼𝛼

󵄨
󵄨
󵄨
󵄨

2
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
𝛽𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

2

= 1,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
𝛽𝛽

󵄨
󵄨
󵄨
󵄨
󵄨

2

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
𝛼𝛽

󵄨
󵄨
󵄨
󵄨
󵄨

2

= 1,

𝑆
∗

𝛼𝛼
𝑆
𝛼𝛽

+ 𝑆
∗

𝛽𝛼
𝑆
𝛽𝛽

= 0,

𝑆
∗

𝛼𝛽
𝑆
𝛼𝛼

+ 𝑆
∗

𝛽𝛽
𝑆
𝛽𝛼

= 0.

(49)

The first and the second equations express the fact that the
total probability of transition of ]

𝛼
to everything is one, and
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Figure 3: The energy level scheme. We here show the dependence of the eigenvalues of the Hamiltonian in matter on 𝐸𝑉. Note that we are
plotting 2𝐸𝐻

𝑖𝑚
, which goes to Δ𝑚2

𝑖1
for low 𝑉𝐸. The left (right) panel corresponds to normal (inverted) mass ordering.

the same holds for ]
𝛽
. The third and fourth equations are

satisfied if
𝑆
𝛼𝛼

= 𝑆
∗

𝛽𝛽
, 𝑆

𝛽𝛼
= −𝑆

∗

𝛼𝛽
. (50)

With these relations the evolution matrix can be parame-
trized as

𝑆 = (

𝛼 𝛽

−𝛽
∗

𝛼
∗) , |𝛼|

2
+

󵄨
󵄨
󵄨
󵄨
𝛽

󵄨
󵄨
󵄨
󵄨

2
= 1. (51)

The Hamiltonian for a 2] system is T symmetric in
vacuum as well as in medium with constant density. In
medium with varying density the T symmetry is realized if
the potential is symmetric. Under T transformations 𝑆

𝛽𝛼
→

𝑆
𝛼𝛽
, and the diagonal elements 𝑆

𝛼𝛼
do not change. Therefore

according to (50) the T invariance implies that 𝑆
𝛽𝛼

= −𝑆
∗

𝛽𝛼
, or

Re 𝑆
𝛽𝛼

= 0; that is, the off-diagonal elements of the 𝑆 matrix
are pure imaginary.

3.2. Neutrino Oscillations in Matter with Constant Density.
In a medium with constant density and therefore constant
potential the mixing is constant: 𝜃

𝑚
(𝐸, 𝑛) = const. Conse-

quently, the flavor composition of the eigenstates does not
change and the eigenvalues 𝐻

𝑖𝑚
of the full Hamiltonian are

constant. The two-neutrino evolution equation in matter of
constant density can be written in the matter eigenstate basis
as

𝑖

𝑑]
𝑚

𝑑𝑥

= 𝐻
diag

]
𝑚
, (52)

where 𝐻
diag

≡ diag(𝐻
1𝑚
, 𝐻

2𝑚
). This system of equations

splits and the integration is trivial, ]
𝑖𝑚
(𝑡) = 𝑒

−𝑖𝐻
𝑖𝑚
𝑡]
𝑖𝑚
(0). The

corresponding 𝑆matrix is diagonal:

̃
𝑆 (𝑥, 0) = (

𝑒
𝑖𝜙
𝑚
(𝑥)

0

0 𝑒
−𝑖𝜙
𝑚
(𝑥)
) , (53)

where 𝜙
𝑚

≡ (1/2)𝜔
𝑚
𝑥 is the half-oscillation phase in

matter and a matrix proportional to the unit matrix has been
subtracted from the Hamiltonian.

The 𝑆matrix in the flavor basis (]
𝑒
, ]

𝑎
) is therefore

𝑆 (𝑥, 0)

=𝑈
𝑚
̃
𝑆 (𝑥, 0) 𝑈

𝑚†

=(

cos𝜙
𝑚
+𝑖 cos 2𝜃

𝑚
sin𝜙

𝑚
−𝑖 sin 2𝜃

𝑚
sin𝜙

𝑚

−𝑖 sin 2𝜃
𝑚

sin𝜙
𝑚

cos𝜙−𝑖 cos 2𝜃
𝑚

sin𝜙
𝑚

).

(54)

Then, for the transition probability, we can immediately
deduce

𝑃
𝑒𝑎
=

󵄨
󵄨
󵄨
󵄨
𝑆
𝑒𝑎

󵄨
󵄨
󵄨
󵄨

2
= sin22𝜃

𝑚
sin2𝜙

𝑚
, (55)

where 𝜙
𝑚
= 𝜋𝑥/𝑙

𝑚
, with

𝑙
𝑚
=

2𝜋

𝐻
2𝑚

− 𝐻
1𝑚

=

𝑙]

√𝑅

(56)

being the oscillation length in matter. The dependence of
𝑙
𝑚
on the neutrino energy is shown in Figure 4. For small

energies,𝑉𝐸 ≪ Δ𝑚
2, the length 𝑙

𝑚
≃ 𝑙]. It then increases with

energy and for small 𝜃 reaches themaximum 𝑙
max
𝑚

= 𝑙
0
/ sin 2𝜃

at 𝐸max
= 𝐸

𝑅
/cos22𝜃, that is, above the resonance energy. For

𝐸 → ∞ the oscillation length converges to the refraction
length 𝑙

𝑚
→ 𝑙

0
.

A useful representation of the 𝑆 matrix for a layer with
constant density follows from (54):

𝑆 (𝑥, 0) = cos𝜙
𝑚
𝐼 − 𝑖 sin𝜙

𝑚 (𝜎 ⋅ n) , (57)

where 𝜎 is a vector containing the Pauli matrices and n ≡

(sin 2𝜃
𝑚
, 0, − cos 2𝜃

𝑚
).
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Figure 4: Dependence of the oscillation length in matter in units of the refraction length on neutrino energy for two different mixing angles
in vacuum.

The dynamics of neutrino flavor evolution in uniform
matter are the same as in vacuum, that is, it has a character
of oscillations. However, the oscillation parameters (length
and depth) differ from those in vacuum. They are now
determined by the mixing and effective energy splitting in
matter: sin22𝜃 → sin22𝜃

𝑚
, 𝑙] → 𝑙

𝑚
.

3.3.Neutrino PolarizationVectors andGraphic Representation.
It is illuminating to consider the dynamics of transitions
in different media using graphic representation [22–24].
Consider the two-flavor neutrino state, 𝜓𝑇

= (𝜓
𝑒
, 𝜓

𝑎
). The

corresponding Hamiltonian can be written as

𝐻 = (H ⋅ 𝜎) , (58)

where 𝜎 = (𝜎
1
, 𝜎

2
, 𝜎

3
), H is the Hamiltonian vector H ≡

(2𝜋/𝑙
𝑚
) ⋅ (sin 2𝜃

𝑚
, 0, cos 2𝜃

𝑚
), and 𝑙

𝑚
= 2𝜋/Δ𝐻

𝑚
is the

oscillation length. The evolution equation then becomes

𝑖𝜓̇ = (H ⋅ 𝜎) 𝜓. (59)

Let us define the polarization vector P

P ≡ 𝜓
† 𝜎

2

𝜓. (60)

In terms of the wave functions, the components of P equal

(𝑃
𝑥
, 𝑃

𝑦
, 𝑃

𝑧
)

= (Re𝜓∗

𝑒
𝜓
𝑎
, Im𝜓

∗

𝑒
𝜓
𝑎
,

1

2

(

󵄨
󵄨
󵄨
󵄨
𝜓
𝑒

󵄨
󵄨
󵄨
󵄨

2
−

󵄨
󵄨
󵄨
󵄨
𝜓
𝑎

󵄨
󵄨
󵄨
󵄨

2
)) .

(61)

The 𝑧-component can be rewritten as 𝑃
𝑧

= |𝜓
𝑒
|
2
− 1/2;

therefore𝑃
𝑒
≡ |𝜓

𝑒
|
2
= 𝑃

𝑧
+1/2 and fromunitarity𝑃

𝑎
≡ |𝜓

𝑎
|
2
=

1/2 − 𝑃
𝑧
. Hence, 𝑃

𝑧
determines the probabilities to find the

neutrino in a given flavor state. The flavor evolution of the

neutrino state corresponds to a motion of the polarization
vector in the flavor space. The evolution equation for P can
be obtained by differentiating (60) with respect to time and
inserting 𝜓̇ and 𝜓̇

† from evolution equation (59). As a result,
one finds that

𝑑

𝑑𝑡

P = H × P. (62)

If H is identified with the strength of a magnetic field,
the equation of motion (62) coincides with the equation
of motion for the spin of electron in the magnetic field.
According to this equation P precesses aroundH.

With an increase of the oscillation phase 𝜙 (see Figure 5)
the vector Pmoves on the surface of the cone having axis H.
The cone angle 𝜃

𝑎
, the angle between P andH, depends both

on themixing angle and on the initial state, and, in general, on
changes in process of evolution, for example, if the neutrino
evolves through several layers of different density. If the initial
state is ]

𝑒
, the angle equals 𝜃

𝑎
= 2𝜃

𝑚
in the initial moment.

The components of the polarization vector P are nothing
but the elements of the densitymatrix 𝜌 = 𝜎⋅P.The evolution
equation for 𝜌 can be obtained from (62)

𝑖

𝑑𝜌

𝑑𝑡

= [𝐻, 𝜌] . (63)

The diagonal elements of the density matrix give the proba-
bilities to find the neutrino in the corresponding flavor state.

3.4. Resonance Enhancement of Oscillations. Suppose a
source produces flux of neutrinos in the flavor state ]

𝜇
with

continuous energy spectrum. This flux then traverses a layer
of length 𝐿 with constant density 𝑛

𝑒
. At the end of this

layer a detector measures the ]
𝑒
component of the flux, so

that oscillation effect is given by the transition probability
𝑃
𝜇𝑒
. In Figure 6 we show dependence of this probability on
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𝑧

𝑥

𝑦

H

2𝜃𝑚

𝜃𝑎

P

𝜙

Figure 5: Graphic representation of neutrino oscillations. Neutrino polarization vector P precesses around the Hamiltonian vectorH (or the
vector of eigenstates of the Hamiltonian). The angle between P and H is given by the cone angle 𝜃

𝑎
, and the direction of axis of the cone is

determined by the mixing angle in matter 2𝜃
𝑚
.

energy for thin and thick layers. The oscillatory curves are
inscribed in the resonance envelope sin22𝜃

𝑚
. The period of

the oscillatory curve decreases with the length 𝐿. At the
resonance energy,

𝐸
𝑅
=

Δ𝑚
2 cos 2𝜃
2𝑉

=

Δ𝑚
2 cos 2𝜃

2√2𝐺
𝐹
𝑛
𝑒

, (64)

oscillations proceed with maximal depths. Oscillations are
enhanced up to 𝑃 > 1/2 in the resonance range (𝐸

𝑅
± Δ𝐸

𝑅
)

whereΔ𝐸
𝑅
= tan 2𝜃𝐸

𝑅
(see Section 2.4).This effectwas called

the resonance enhancement of oscillations.

3.5. Three-Neutrino Oscillations in Matter with Constant
Density. The oscillation probabilities in matter with constant
density have the same form as oscillation probabilities in
vacuum and the generalization of (53) is straightforward. In
the basis of the eigenstates of the Hamiltonian the evolution
matrix equals

̃
𝑆 (𝑥, 0) = (

𝑒
−2𝑖𝜙
1𝑚
(𝑥)

0 0

0 𝑒
−2𝑖𝜙
2𝑚
(𝑥)

0

0 0 𝑒
−2𝑖𝜙
3𝑚
(𝑥)

), (65)

and for the elements of the 𝑆 matrix in the flavor basis we
obtain 𝑆

𝛼𝛽
= ∑

𝑖
𝑈
𝑚∗

𝛼𝑖
𝑈
𝑚

𝛽𝑖
𝑒
−2𝑖𝜙
𝑚

𝑖
(𝑥). Removing 𝑒−2𝑖𝜙2𝑚 and using

the unitarity of the mixing matrix in matter we have

𝑆
𝛼𝛽

= 𝛿
𝛼𝛽

+ 2𝑖𝑒
𝜙
𝑚

21
(𝑥)
𝑈
𝑚∗

𝛼2
𝑈
𝑚

𝛽2
sin𝜙𝑚

21
(𝑥)

− 2𝑖𝑒
−𝑖𝜙
𝑚

32
(𝑥)
𝑈
𝑚∗

𝛼3
𝑈
𝑚

𝛽3
sin𝜙𝑚

32
(𝑥) .

(66)

In particular, for the amplitudes in matter involving only ]
𝑒

and ]
𝜇
, we obtain

𝑆
cst
𝑒𝜇

= 2𝑖𝑒
𝑖𝜙
𝑚

21
[𝑈

𝑚

𝑒1
𝑈
𝑚∗

𝜇1
sin𝜙𝑚

21

−𝑒
−𝑖𝜙
𝑚

31
𝑈
𝑚

𝑒3
𝑈
𝑚∗

𝜇3
sin𝜙𝑚

32
] ,

𝑆
cst
𝜇𝜇

= 1 + 2𝑖𝑒
𝑖𝜙
𝑚

21

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑚

𝜇1

󵄨
󵄨
󵄨
󵄨
󵄨

2

sin𝜙𝑚
21

− 2𝑖𝑒
−𝑖𝜙
𝑚

32

󵄨
󵄨
󵄨
󵄨
󵄨
𝑈
𝑚

𝜇3

󵄨
󵄨
󵄨
󵄨
󵄨

2

sin𝜙𝑚
32
,

𝑆
cst
𝑒𝑒

= 1 + 2𝑖𝑒
𝑖𝜙
𝑚

21cos2𝜃𝑚
13
cos2𝜃𝑚

12
sin𝜙𝑚

21

− 2𝑖𝑒
−𝑖𝜙
𝑚

32sin2𝜃𝑚
13
sin𝜙𝑚

32
.

(67)

3.6. Propagation in a Medium with Varying Density and
the MSW Effect

3.6.1. Equation for the Instantaneous Eigenvalues and the
Adiabaticity Condition. In nonuniform media, the density
changes along neutrino trajectory: 𝑛

𝑒
= 𝑛

𝑒
(𝑡). Correspond-

ingly, the Hamiltonian of system depends on time, 𝐻 =

𝐻(𝑡), and therefore themixing angle changes during neutrino
propagation: 𝜃

𝑚
= 𝜃

𝑚
(𝑛

𝑒
(𝑡)). Furthermore, the eigenstates of

the instantaneous Hamiltonian, ]
1𝑚

and ]
2𝑚
, are no longer

the “eigenstates” of propagation. Indeed, inserting ]
𝑓

=

𝑈(𝜃
𝑚
)]
𝑚
in the equation for the flavor states (c.f., (3)) we

obtain the evolution equation for eigenstates ]
𝑖𝑚
:

𝑖

𝑑]
𝑚

𝑑𝑡

= (

𝐻
1𝑚

−𝑖
̇
𝜃
𝑚

𝑖
̇
𝜃
𝑚

𝐻
2𝑚

) ]
𝑚
, (68)

where ̇
𝜃
𝑚

≡ 𝑑𝜃
𝑚
/𝑑𝑡. The Hamiltonian for ]

𝑖𝑚
(68) is

nondiagonal and, consequently, the transitions ]
1𝑚

↔ ]
2𝑚

occur. The rate of these transitions is given by the speed with
which the mixing angle changes with time. According to (68)
[3, 25], | ̇𝜃

𝑚
| determines the energy of transition ]

1𝑚
↔ ]

2𝑚

and |𝐻
2𝑚

− 𝐻
1𝑚
| gives the energy gap between the levels.



Advances in High Energy Physics 11

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

𝑃
𝑒𝜇

100

3𝑙𝑚(𝐸𝑅)/2
𝑙𝑚(𝐸𝑅)/2
𝑙𝑚(𝐸𝑅)/6

𝑙𝑣/𝑙0 = 2VE/ Δ𝑚2

Figure 6: Resonance enhancement of neutrino oscillations in matter with constant density. Shown is the dependence of the transition
probability ]

𝑒
→ ]

𝜇
on energy for sin2𝜃

13
= 0.0241 for three different sizes of layers: 𝐿 = 3𝑙

𝑚
(𝐸

𝑅
)/2, 𝑙

𝑚
(𝐸

𝑅
)/2, and 𝑙

𝑚
(𝐸

𝑅
)/6. The shaded area

shows the resonance envelope: sin22𝜃
𝑚
(𝐸).

The off-diagonal elements of the evolution equation (68)
can be neglected if ̇

𝜃
𝑚
is much smaller than other energy

scales in the system. The difference of the diagonal elements
of the Hamiltonian is, in fact, the only other energy quantity
and therefore the criterion for smallness of ̇

𝜃
𝑚
is

̇
𝜃
𝑚
≪ 𝐻

2𝑚
− 𝐻

1𝑚
. (69)

This inequality implies a slow enough change of density and
is called the adiabaticity condition. Defining the adiabaticity
parameter [22, 25] as

𝛾 ≡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̇
𝜃
𝑚

𝐻
2𝑚

− 𝐻
1𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, (70)

the adiabaticity condition can be written as 𝛾 ≪ 1.
For small mixing angle, the adiabaticity condition is most

crucial in the resonance layer where the level splitting is
small and the mixing angle changes rapidly. In the resonance
point, it takes the physically transparent form [3]: Δ𝑟

𝑅
> 𝑙

𝑅

𝑚
,

where 𝑙𝑅
𝑚

≡ 𝑙]/ sin 2𝜃 is the oscillation length in resonance,
and Δ𝑟

𝑅
≡ (𝑛

𝑒
/(𝑑𝑛

𝑒
/𝑑𝑟))

𝑅
tan 2𝜃 is the spatial width of

the resonance layer. According to this condition at least one
oscillation length should be obtained within the resonance
layer.

In the case of large vacuummixing, the point of maximal
adiabaticity violation [26, 27] is shifted to density, 𝑛

𝑒
(𝑎V),

larger than the resonance density: 𝑛
𝑒
(𝑎V) → 𝑛

𝐵
> 𝑛

𝑅
.

Here 𝑛
𝐵

= Δ𝑚
2
/2√2𝐺

𝐹
𝐸 is the density at the border of

resonance layer for maximal mixing. Outside the resonance
and in the nonresonant channel, the adiabaticity condition
has been considered in [28, 29].

3.7. Adiabatic Conversion and the MSW Effect. If the adia-
baticity condition is fulfilled and ̇

𝜃
𝑚
can be neglected, the

Hamiltonian for the eigenstates becomes diagonal. Con-
sequently, the equations for the instantaneous eigenstates
]
𝑖𝑚

split as in the constant density case. The instantaneous
eigenvalues evolve independently, but the flavor content of
the eigenstates changes according to the change of mixing
in matter. This is the essence of the adiabatic approximation;
we neglect ̇

𝜃
𝑚
in evolution equation but do not neglect the

dependence of 𝜃
𝑚
on density. The solution can be obtained

immediately as

̃
𝑆 (𝑥, 0) = (

𝑒
𝑖𝜙
𝑚

0

0 𝑒
−𝑖𝜙
𝑚

) ,

𝜙
𝑚
=

1

2

∫

𝑥

0

(𝐻
2𝑚

− 𝐻
1𝑚
) 𝑑𝑥

󸀠
,

(71)

in symmetric form. The only difference from the constant
density case is that the eigenvalues now depend on time and
therefore integration appears in the phase factors.

The evolution matrix in the flavor basis can be obtained
by projecting back from the eigenstate basis to the flavor basis
with the mixing matrices corresponding to initial and final
densities:
𝑆
𝑓 (

𝑥, 0)

= 𝑈
𝑚
(𝑡)

̃
𝑆 (𝑥, 0) 𝑈

𝑚†
(0)

=(

𝑐
𝑚
𝑐
0

𝑚
𝑒
𝑖𝜙
𝑚
+𝑠

𝑚
𝑠
0

𝑚
𝑒
−𝑖𝜙
𝑚

−𝑐
𝑚
𝑠
0

𝑚
𝑒
𝑖𝜙
𝑚
+𝑠

𝑚
𝑐
0

𝑚
𝑒
−𝑖𝜙
𝑚

−𝑠
𝑚
𝑐
0

𝑚
𝑒
𝑖𝜙
𝑚
+𝑐

𝑚
𝑠
0

𝑚
𝑒
−𝑖𝜙
𝑚

𝑠
𝑚
𝑠
0

𝑚
𝑒
𝑖𝜙
𝑚
+𝑐

𝑚
𝑐
0

𝑚
𝑒
−𝑖𝜙
𝑚

).

(72)
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From this procedure we find, for example, the probability of
]
𝑒
-]
𝑒
transition

𝑃
𝑒𝑒
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
𝑓(
𝑥, 0)𝑒𝑒

󵄨
󵄨
󵄨
󵄨
󵄨

2

=

1

2

[1 + cos 2𝜃
𝑚 (𝑥) cos 2𝜃𝑚 (0)]

+

1

2

sin 2𝜃
𝑚 (𝑥) sin 2𝜃𝑚 (0) cos 2𝜙𝑚 (𝑥) .

(73)

If the initial and final densities coincide, as in the case of
neutrinos crossing the Earth, we obtain the same formulas
as in constant density case:

𝑃
𝛼𝛽

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝑖

𝑈
𝑚

𝛼𝑖
(0) 𝑈

𝑚∗

𝛽𝑖
(0) 𝑒

−𝑖𝜙
𝑖𝑚
(𝑡,0)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(74)

with the mixing angle taken at the borders (initial or final
state). In particular, the survival probability equals 𝑃

𝛼𝛼
=

1 − sin22𝜃
𝑚
(0)sin2𝜙

𝑚
(𝑥).

Averaging over the phase, which means that the contri-
butions from ]

1
and ]

2
add incoherently, gives

𝑃 = (cos 𝜃
𝑚
cos 𝜃0

𝑚
)

2

+ (sin 𝜃
𝑚
sin 𝜃0

𝑚
)

2

= sin2𝜃
𝑚
+ cos 2𝜃

𝑚
cos2𝜃0

𝑚
.

(75)

The mixing in the neutrino production point 𝜃0
𝑚

is deter-
mined by density in this point, 𝑛0

𝑒
, and the resonance density.

Consequently, the picture of the conversion depends on how
far from the resonance layer (in the density scale) a neutrino
is produced. Strong transitions occur if the initial and final
mixings differ substantially, which is realized when the initial
density is much above the resonance density and the final one
is below the resonance density and therefore neutrinos cross
the resonance layer.

According to (73) the oscillation depth equals 𝐷 =

| sin 2𝜃
𝑚
sin 2𝜃0

𝑚
|. Both the averaged probability (75) and the

depth (73) are determined by the initial and final densities
and do not depend on the density distribution along the
neutrino trajectory. Essentially they are determined by the
ratios 𝑦 ≡ 𝑛/𝑛

𝑅
in the initial and final moments. This is a

manifestation of the universality of the adiabatic approxima-
tion result.

In contrast, the phase does depend on the density distri-
bution and the period of oscillations (the latter is given by the
oscillation length in matter). So, it is the phase that encodes
information about the density distribution.

The probability depends on 𝑡 via the phase 𝜙
𝑚
(𝑡) and

also via the mixing angle 𝜃
𝑚
(𝑡). Two degrees of freedom

are operative and 𝑃 dependence on time is an interplay of
two effects: oscillations, associated with the phase 𝜙

𝑚
(𝑡), and

the adiabatic conversion related to change of 𝜃
𝑚
. Depending

on initial condition 𝑛
0

𝑒
, the relative importance of the two

effects is different. If neutrinos are produced far above the
resonance, 𝑛0

𝑒
≫ 𝑛

𝑅

𝑒
, the initial mixing is strongly suppressed,

𝜃
0

𝑚
≈ 𝜋/2. Consequently, the neutrino state, for example,

]
𝑒
, consists mainly of one eigenstate, ]

2𝑚
, and furthermore,

one-flavor ]
𝑒
dominates in ]

2𝑚
. Since the admixture of the

second eigenstate is very small, oscillations (interference

effects) are strongly suppressed.Thus, here the nonoscillatory
flavor transition occurs when the flavor of whole state (which
nearly coincides with ]

2𝑚
) follows the density change. At zero

density ]
2𝑚

= ]
2
, and therefore the probability to find the

electron neutrino (survival probability) equals [3]

𝑃 =

󵄨
󵄨
󵄨
󵄨
⟨]

𝑒
| ] (𝑡)⟩

󵄨
󵄨
󵄨
󵄨

2
≈

󵄨
󵄨
󵄨
󵄨
⟨]

𝑒
| ]

2𝑚 (𝑡)⟩

󵄨
󵄨
󵄨
󵄨

2

=

󵄨
󵄨
󵄨
󵄨
⟨]

𝑒
| ]

2
⟩

󵄨
󵄨
󵄨
󵄨

2
≈ sin2𝜃.

(76)

The final probability, 𝑃 = sin2𝜃, is the feature of the nonoscil-
latory transition (as pure adiabatic conversion). Deviation
from this value indicates the presence of oscillations; see (73).

If neutrinos are produced not too far from resonance, for
example, at 𝑛0

𝑒
> 𝑛

𝑅

𝑒
, the initial mixing is not suppressed.

Although ]
2𝑚

is the main component of the neutrino state,
the second eigenstate, ]

1𝑚
, has appreciable admixture; the

flavor mixing in the neutrino eigenstates is significant, and
the interference effect is not suppressed. Here we deal with
the interplay of the adiabatic conversion and oscillations.

Production in the resonance is a special case; if 𝜃0
𝑚
= 45

∘,
the averaged probability equals 𝑃 = 1/2 independently of
the final mixing. This feature is important for determining
the oscillation parameters. Strong transitions (𝑃 > 1/2)
occur when neutrinos cross resonance layer. These features
are realized for solar neutrinos when propagating from their
production region inside the Sun to the surface of the Sun.
The adiabatic propagation occurs also in a single layer of the
Earth (e.g., in the mantle).

3.8. Adiabaticity Violation. For most of applications the
adiabaticity is either well satisfied (neutrinos in the Sun or
supernovae), or maximally broken due to sharp (instanta-
neous) density change (neutrinos in the Earth, neutrinos
crossing the shock wave fronts in supernova). In the former
case the evolution is described by the adiabatic formulas. In
the latter case description is also simple; one just needs to
match the flavor conditions at the borders between layers,
find the flavor state before the density jump, and then
use it as an initial state for the evolution after the jump.
The intermediate case of the adiabaticity breaking can be
realized for neutrinos in the mantle of the Earth, for high
energy neutrinos propagating in the Sun (neutrinos from
annihilation of hypothetical WIMPs) or for sterile neutrinos
with very small mixing.

If the density changes rapidly, ̇
𝜃
𝑚

is not negligible in
(68) and the adiabaticity condition (70) is not satisfied. The
transitions ]

1𝑚
↔ ]

2𝑚
become noticeable and therefore the

admixtures of the eigenstates in a given propagating state
change. The 𝑆matrix in the flavor basis is given by

𝑆
𝑓 (

𝑥, 0) = 𝑈
𝑚
(𝑡)

̃
𝑆 (𝑥, 0) 𝑈

𝑚†
(0)

= 𝑈
𝑚
(𝑡) (

𝑆
11

−𝑆
∗

21

𝑆
21

𝑆
∗

11

)𝑈
𝑚†

(0) ,

(77)
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where ̃𝑆 is the evolution matrix in the basis of instantaneous
eigenstates. Then the ]

𝑒
-]
𝑒
transition probability 𝑃

𝑒𝑒
≡

|𝑆
𝑓
(𝑥, 0)

𝑒𝑒
|
2 equals

𝑃
𝑒𝑒
=

1

2

[1 + cos 2𝜃
𝑚 (𝑡) cos 2𝜃𝑚 (0)]

− 𝑃
21
cos 2𝜃

𝑚 (𝑡) cos 2𝜃𝑚 (0) + 𝑃int,

(78)

where𝑃
21

≡ |𝑆
21
|
2 is the probability of ]

2𝑚
→ ]

1𝑚
transitions

and 𝑃int is an interference term

𝑃int =
1

4

sin 2𝜃
𝑚 (𝑡) sin 2𝜃𝑚 (0) [𝑆

2

11
+ 𝑆

∗2

11
+ 𝑆

2

21
+ 𝑆

∗2

21
]

+

1

2

sin [2𝜃
𝑚 (0) − 2𝜃

𝑚 (𝑥)] [𝑆11
𝑆
∗

21
+ 𝑆

∗

11
𝑆
21
] ,

(79)

which depends on the oscillation phase.The averaged proba-
bility (𝑃int = 0) equals [30]

𝑃
𝑒𝑒
=

1

2

+ (

1

2

− 𝑃
21
) cos 2𝜃

𝑚 (𝑡) cos 2𝜃𝑚 (0) . (80)

If the initial density ismuch larger than the resonance density,
then 𝜃

𝑚
(0) ≈ 𝜋/2 and cos 2𝜃

𝑚
(0) = −1. In this case the

averaged probability can be rewritten as

𝑃
𝑒𝑒
= sin2𝜃

𝑚 (𝑡) + 𝑃
21
cos 2𝜃

𝑚 (𝑡) . (81)

Violation of adiabaticity weakens transitions if cos 2𝜃
𝑚
(𝑡) >

0, thus leading to an increase of the survival probability. In the
adiabatic case 𝑆

11
= 𝑒

𝑖𝜙
𝑚 , 𝑆

21
= 0, and therefore 𝑆2

11
+ 𝑆

∗2

11
=

2 cos 2𝜙
𝑚
(𝑥), so that (78) is reduced to (73).

In the graphic representation (Figure 5), the neutrino
vector moves on the surface of the cone (phase change) and
the axis of the cone rotates according to the density change.
The cone angle 𝜃

𝑎
changes as a result of violation of the

adiabaticity).
There are different approaches to compute the flop proba-

bility 𝑃
21
. In the adiabatic regime the probability of transition

between the eigenstates is exponentially suppressed 𝑃
12

∼

exp(−𝜋/2𝛾) with 𝛾 given in (70) [30, 31]. One can consider
such a transition as penetration through a barrier of height
𝐻
2𝑚

− 𝐻
1𝑚

by a system with the kinetic energy 𝑑𝜃
𝑚
/𝑑𝑡. This

leads to the Landau-Zener probability

𝑃
𝐿𝑍

= exp (−𝜋2𝜅
𝑅
) = exp(−𝜋ℎΔ𝑚

2

4𝐸

sin22𝜃
cos 2𝜃

) , (82)

where ℎ ≡ 𝑛(𝑑𝑛/𝑑𝑟)
−1 [32]. In the case of weak adiabaticity

violation, one can develop an adiabatic perturbation theory
which gives the results as a series expansion in the adiabaticity
parameter [33].

3.9. Theory of Small Matter Effects

3.9.1. Minimal Width Condition. If the vacuummixing angle
is small, there exists a lower limit on the amount of matter
needed to induce significant flavor change due to matter

effect. The amount of matter is characterized by the column
density of electrons along the neutrino trajectory:

𝑑 = ∫

𝐿

0

𝑛
𝑒 (
𝑥) 𝑑𝑥. (83)

We can define 𝑑
1/2

as the column density for which the
oscillation transition probability surpasses 1/2 for the first
time in the course of propagation. Then it is possible to show
that [34]

𝑑
1/2

≥ 𝑑min =

𝜋

2√2𝐺
𝐹
tan 2𝜃 (84)

for all density profiles. Furthermore, the minimum, 𝑑min, is
realized for oscillations in amediumof constant density equal
to the resonance density. The relation (84) is known as the
minimal width condition. This condition originates from an
interplay between matter effects and vacuum mixing. The
acquired matter phase, √2𝐺

𝐹
𝑑, must be large. At the same

time, sincematter effects by themselves are flavor conserving,
also vacuum mixing is required in order to induce flavor
conversion. The smaller the vacuum mixing is, the larger the
width that is required.

3.9.2. Vacuum Mimicking. Vacuum mimicking [35], which
states that regardless of the matter density, the initial flavor
evolution of neutrino state is similar to that of vacuum
oscillations. Consequently for small baselines, 𝐿, it is not
possible to see matter effect and any such effect appearing in
higher order of 𝐿. Indeed, consider the evolution matrix

𝑆 = T [exp(−𝑖 ∫
𝐿

0

𝐻(𝑥) 𝑑𝑥)] , (85)

whereT denotes time ordering of the exponential. For small
values of 𝐿, it can be expanded as

𝑆 = 1 − 𝑖 ∫

𝐿

0

𝐻(𝑥) 𝑑𝑥 + O (𝐿
2
) . (86)

If initial neutrino state has definite flavor, the amplitude
of flavor transition is given by the off-diagonal element
of 𝐻(𝑥) which does not depend on matter potential. The
matter contribution to𝐻(𝑥) is diagonal. Therefore the flavor
transitions depend on the matter density only at higher order
in 𝐿. This result holds true as long as 𝐿 ≪ 𝑙

𝑚
or when the

phase of oscillation is small [36].
This can be seen explicitly in the case of medium with

constant density where, expanding the oscillatory factor for
small oscillation phase, we have the transition probability

𝑃 = sin22𝜃
𝑚
sin2𝜙𝑚

=

1

𝑅

sin22𝜃 sin2𝜙√𝑅 ≈ 𝜙
2sin22𝜃.

(87)

Note that vacuum mimicking only occurs if the initial
neutrino state is a flavor eigenstate [36]. If the initial neutrino
is in a flavor-mixed state, for example, in a mass eigenstate,
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then matter will affect this state already at lowest order
in 𝐿. This situation is realized in several settings involving
astrophysical neutrinos propagating through the Earth, for
example, solar and supernova neutrinos, where the neutrinos
arrive at the Earth as mass eigenstates. The mimicking is not
valid if there are nonstandard flavor changing interactions, so
that matter effect appears in the off-diagonal elements of the
Hamiltonian.

3.9.3. Effects of Small Layers of Matter. If the minimal width
condition is not satisfied, that is 𝑑 = 𝑛𝑥 ≪ 𝐺

−1

𝐹
, the matter

effect on result of evolution is small. This inequality can be
written as 𝑉𝑥 ≪ 1 which means that the oscillation phase
is small. In this case the matter effect can be considered as
small perturbation of the vacuumoscillation result even if the
MSW resonance condition is satisfied.

The reasons for the smallness of the matter effect are
different depending on the energy interval. Consider a layer
of constant density with the length 𝑥. There are three
possibilities.

(i) 𝐸 ≪ 𝐸
𝑅

(𝐸
𝑅

is the resonance density)—nearly
vacuum oscillations in low density medium take
place. Matter effect gives small corrections to the
oscillation depth and length which are characterized
by 2𝑉𝐸/Δ𝑚2

= 𝑉𝑥/2𝜋 ≪ 1, here 𝑥 ∼ 𝑙].
(ii) 𝐸 ∼ 𝐸

𝑅
—modification of oscillation parameters is

strong; however 𝑙𝑅] ∼ 𝑙]/ sin 2𝜃 ∼ 2𝜋/(𝑉 sin 2𝜃).
Consequently, 𝑥/𝑙𝑅] = 𝑥𝑉 sin 2𝜃/2𝜋 ≪ 1. Oscillations
are undeveloped due to smallness of phase.

(iii) 𝐸 ≫ 𝐸
𝑅
—matter suppresses oscillation depth by a

factor 𝐸
𝑅
/𝐸 ≪ 1. Since the oscillation length equals

𝑙
𝑚

≈ 2𝜋/𝑉, one obtains 𝑥/𝑙
𝑚

= 𝑥𝑉/2𝜋 ≪ 1. Hence
in this case the distance is very small and oscillation
effect in the layer has double suppression.

3.10. Propagation in Multilayer Medium

3.10.1. Parametric Effects in the Neutrino Oscillations. The
strong transitions discussed in the previous sections require
the existence of large effective mixing, either in the entire
medium (constant density) or at least in a layer (adiabatic
conversion). There is a way to get strong transition without
large vacuum or matter mixings. This can be realized with
periodically or quasiperiodically changing density [24, 37]
when the conditions of parametric resonance are satisfied.
Although the flavor conversion in a layer which corresponds
to one period is small, strong transitions can build up over
several periods. For large mixing even a small number of
periods are enough to obtain strong flavor transitions.

The usual condition of parametric resonance is that the
period of density change 𝑇

𝑛
is an integer times the effective

oscillation length 𝑙
𝑚
[38]:

∫

𝑙
𝑇

𝑑𝑥

𝑙
𝑚

= 𝑘, (𝑘 = 1, 2, 3, . . .) , (88)

or 𝑙
𝑇
/𝑙
𝑚

= 𝑘. Such an enhancement has been considered
first for modulation of the profile by sine function [39]. This

may have some applications for intense neutrino fluxes when
neutrino-neutrino interactions become important.

The solvable case, which has simple physical interpreta-
tion, is provided by the castle wall profile, forwhich the period
𝑙
𝑇
is divided into the two parts 𝑙

1
and 𝑙

2
(𝑙
1
+ 𝑙

2
= 𝑙

𝑇
) with

the densities 𝑛
1
and 𝑛

2
, respectively (𝑛

1
̸= 𝑛
2
and, in general,

𝑙
1

̸= 𝑙
2
). Thus, the medium consists of alternating layers with

two different densities [37, 40–45].
For the “castle wall” profile, the simplest realization of the

parametric resonance condition is reduced to equality of the
oscillation phases acquired by neutrinos over the two parts of
the periods [41]:

Φ
1
= Φ

2
= 𝜋. (89)

The enhancement of transition depends on the number
of periods and on the amplitude of perturbation, which
determines the swing angle (the difference of the mixing
angles in the two layers, Δ𝜃 ≡ 2𝜃

1𝑚
− 2𝜃

2𝑚
). For small

Δ𝜃 a large transition probability can be achieved after many
periods. For large “swing” angle, even a small number of
periods are sufficient.

3.10.2. Parametric Enhancement: General Consideration. In
general the condition (89) is not necessary for the enhance-
ment or even for maximal enhancement. First, consider
the oscillation effect over one period. The corresponding
evolution matrix is given by the product

𝑆
𝑇
= 𝑆

2
𝑆
1
, (90)

where 𝑆
𝑘
(𝑘 = 1, 2) is the evolution in layer 𝑘 given by (57). For

brevity we will write it as 𝑆
𝑘
= 𝑐

𝑘
𝐼−𝑖𝑠

𝑘
(𝜎⋅n

𝑘
), 𝑘 = 1, 2, where

𝑐
𝑘
≡ cos𝜙

𝑘
, 𝑠

𝑘
≡ sin𝜙

𝑘
, and 𝜙

𝑘
is the half phase acquired in

layer 𝑘:

𝜙
𝑘
=

1

2

Δ𝐻
𝑘
𝑙
𝑘
=

Δ𝑚
2

4𝐸

𝑅(𝑉
𝑘
)

1/2
𝑙
𝑘
,

n
𝑘
≡ (sin 2𝜃

𝑚𝑘
, 0, − cos 2𝜃

𝑚𝑘
) .

(91)

Here 𝜃
𝑚𝑘

is the mixing angle in layer 𝑘.
Insertion of 𝑆

𝑘
from (57) into (90) gives [37]

𝑆
𝑇
= 𝑌I − 𝑖 (𝜎 ⋅ X) , (92)

where
𝑌 ≡ 𝑐

1
𝑐
2
− 𝑠

1
𝑠
2
(n

1
⋅ n

2
) ,

X = 𝑠
1
𝑐
2
n
1
+ 𝑠

2
𝑐
1
n
2
− 𝑠

1
𝑠
2
[n

1
× n

2
] .

(93)

Explicitly, (n
1
⋅ n

2
) = cos(2𝜃

𝑚1
− 2𝜃

𝑚2
) and [n

1
× n

2
] =

sin(2𝜃
𝑚1

− 2𝜃
𝑚2
)e
𝑦
. Using unitarity of 𝑆

𝑇
, which gives 𝑋2

+

𝑌
2
= 1, one can parametrize 𝑋 and 𝑌 with a new phase Φ as

𝑌 ≡ cosΦ and 𝑋 ≡ sinΦ. Then the evolution matrix 𝑆
𝑇
can

be written in the form 𝑆
𝑇
= cosΦ − 𝑖 sinΦ(𝜎 ⋅

̂X) = 𝑒
−𝑖(𝜎⋅X̂)Φ,

where ̂X ≡ X/𝑋. Consequently, the evolution matrix after 𝑛
periods equals

𝑆
𝑛
= (𝑆

𝑇
)

𝑛
= 𝑒

−𝑖(𝜎⋅X̂)𝑛Φ

= cos 𝑛Φ − 𝑖 (𝜎 ⋅
̂X) sin 𝑛Φ.

(94)
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It is simply accounted for by an increase of the phase: Φ →

𝑛Φ. This is the consequence of the fact that the evolution
matrices over all periods are equal and therefore commute. If
the evolution ends at some instant 𝑡 which does not coincide
with the end of a full period, that is, 𝑡 = 𝑛𝑇 + 𝑡

󸀠, then
𝑆(𝑡) = 𝑆(𝑡

󸀠
)𝑆

𝑛
.

The transition probability computed with (94) is

𝑃
𝑛

𝑒𝜇
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑆
𝑛

𝑒𝜇

󵄨
󵄨
󵄨
󵄨
󵄨

2

=

𝑋
2

1
+ 𝑋

2

2

𝑋
2

sin2𝑛Φ. (95)

It has the form of the usual oscillation probability with phase
𝑛Φ and depth (𝑋

2

1
+ 𝑋

2

2
)/𝑋

2. The oscillations described by
(95) are called the parametric oscillations. Under condition

−𝑋
3
= 𝑠

1
𝑐
2
cos 2𝜃

𝑚1
+ 𝑠

2
𝑐
1
cos 2𝜃

𝑚2
= 0, (96)

which is called the parametric resonance condition, the depth
of oscillations (95) becomes 1 and the transition probability is
maximal when 𝑛Φ = 𝜋/2 + 𝜋𝑘, where 𝑘 is an integer. There
are different realizations of the condition (96) which imply
certain correlations among themixing angles and phases.The
simplest one, 𝑐

1
= 𝑐

2
= 0, coincides with (89).

3.10.3. Parametric Enhancement in Three Layers. For small
number of layers an enhancement of flavor transition can
occur due to certain relations between the phases andmixing
angles in different layers. This in turn imposes certain
conditions on the parameters of the layers: their densities
and widths. The conditions are similar to the parametric
resonance condition and this enhancement is called the
parametric enhancement of flavor transitions. These condi-
tions can be satisfied for certain energies and baselines for
neutrinos propagating in the Earth.

Consider conditions for maximal enhancement of oscil-
lations for a different number of layers. It is possible to show
[46] that they are generalizations of the conditions in one
layer which require that (i) the depth of oscillations is 1 (we
call it the amplitude condition) and (ii) the oscillation phase
is 𝜙 = 𝜋/2 + 𝜋𝑘—the phase condition.

Consider first the case of one layer with (in general)
varying density (it can correspond to the mantle crossing
trajectories in the Earth). The resonance condition for con-
stant density case, cos 2𝜃

𝑚
= 0, can be written according to

(22) and (51) as 𝛼 = 𝛼
∗, that is, 𝑆(1)

11
= 𝑆

(1)

22
, or equivalently,

Im 𝑆
(1)

11
= 0, where the superscript indicates the number of

layers. This generalization goes beyond the original MSW
resonance condition (even for constant density). The phase
condition can be rewritten in terms of the elements of the
evolution matrix (c.f., (54)) as Re𝛼 ≡ Re 𝑆(1)

11
= 0. The

absolute maximum of the transition probability occurs when
these conditions are satisfied simultaneously, that is, when
𝑆
(1)

11
= 0.
The parametric resonance condition (96) can be general-

ized to the case of nonconstant densities in the layers although
the generalization is not unique. Indeed, according to (92) the
condition 𝑋

3
= 0 can be written in terms of the elements of

the evolution matrix for the two layers as the equality of the
diagonal elements 𝑆(2)

11
= 𝑆

(2)

22
. Let us find the conditions for

extrema for density profiles consisting of two layers. We have
𝑆
(2)

= 𝑆
2
𝑆
1
, where 𝑆(2)

11
= 𝛼

2
𝛼
1
− 𝛽

2
𝛽
∗

1
, 𝑆

(2)

12
= 𝛼

2
𝛽
1
+ 𝛽

2
𝛼
∗

1
,

and 𝛼
𝑖
, 𝛽

𝑖
for each layer have been defined in (51). The sum

of the two complex numbers in the transition amplitude 𝑆(2)
12

has the largest possible result if they have the same phase:
arg(𝛼

2
𝛽
1
) = arg(𝛽

2
𝛼
∗

1
), which can also be rewritten as

arg (𝛼
1
𝛼
2
𝛽
1
) = arg (𝛽

2
) . (97)

This condition is called the collinearity condition [46]. It is an
extremum condition for the two-layer transition probability
under the constraint of fixed transition probabilities in the
individual layers. In other words, if the absolute values |𝛽

𝑖
|

of the transition amplitudes are fixed while their arguments
are allowed to vary, then the transition probability reaches an
extremum when these arguments satisfy (97).

The conditions for maximal transition probability for
three layers can be found in the following way. The 1-2
elements of the evolution matrix 𝑆(3) equal

𝑆
(3)

12
= 𝛼

3
𝑆
(2)

12
+ 𝛽

3
𝑆
(2)∗

11

= 𝛼
3
𝛼
2
𝛽
1
+ 𝛼

3
𝛽
2
𝛼
∗

1
+ 𝛽

3
𝛼
∗

2
𝛼
∗

1
− 𝛽

3
𝛽
∗

2
𝛽
1
.

(98)

In the case of neutrino oscillations in the Earth, the third layer
is just the second mantle layer, and its density profile is the
reverse of that of the first layer. The evolution matrix for the
third layer is therefore the transpose of that for the first one
[47]; that is, 𝛼

3
= 𝛼

1
, 𝛽

3
= −𝛽

∗

1
, and the expression for 𝑆(3)

12

can be written as

𝑆
(3)

12
= 𝛼

1
𝛼
2
𝛽
1
− 𝛼

∗

1
𝛼
∗

2
𝛽
∗

1
+

󵄨
󵄨
󵄨
󵄨
𝛼
1

󵄨
󵄨
󵄨
󵄨

2
𝛽
2
+

󵄨
󵄨
󵄨
󵄨
𝛽
1

󵄨
󵄨
󵄨
󵄨

2
𝛽
∗

2
. (99)

Note that𝛽
2
is pure imaginary because the core density profile

is symmetric.Therefore the amplitude 𝑆(3)
12

in (99) is also pure
imaginary, as it must be because the overall density profile
of the Earth is symmetric as well. If the collinearity condition
for two layers (97) is satisfied, then not only the full amplitude
𝑆
(3)

12
, but also each of the four terms on the right-hand side of

(99) is pure imaginary. If the collinearity condition is satisfied
for two layers, then it is automatically satisfied for three layers.
This is a consequence of the facts that the density profile of
the third layer is the reverse of that of the first layer and
that the second layer has a symmetric profile. The conditions
described here allow reproducing very precisely all the main
structures of the oscillograms of the Earth (see Section 4.1).

3.11. Oscillations of High Energy Neutrinos. At high energies
or in high density medium when 𝑉 > Δ𝑚

2
/2𝐸, we can

use Δ/𝑉 ≡ Δ𝑚
2
/4𝐸𝑉 as a small parameter and develop a

perturbation theory using its smallness. However, in most
situations of interest, the neutrino path length in matter 𝐿
is so large that Δ ⋅ 𝐿 ≳ 1. Therefore the vacuum part of the
Hamiltonian cannot be considered as a small perturbation in
itself and the effect of Δ on the neutrino energy level splitting
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should be taken into account. For this reason we split the
Hamiltonian as𝐻 =

̃
𝐻

0
+ 𝐻

𝐼
with

̃
𝐻

0
=

𝜔
𝑚

2

(

1 0

0 −1

) ,

𝐻
𝐼
= sin 2𝜃Δ(

−𝜖 1

1 𝜖

) ,

(100)

where 𝜔
𝑚 is the oscillation frequency (20) and 𝜖 ≡

(2Δ cos 2𝜃−𝑉+𝜔
𝑚
)/2Δ sin 2𝜃 ≈ (Δ/𝑉) sin 2𝜃 ≪ 1. The ratio

of the second and the first terms in the Hamiltonian (100)
is given by the mixing angle in matter 𝜃

𝑚
: 2Δ sin 2𝜃/𝜔𝑚

=

sin 2𝜃
𝑚
. Therefore for sin 2𝜃

𝑚
≪ 1 the term 𝐻

𝐼
can be

considered as a perturbation. Furthermore, 𝜖 ∼ sin 2𝜃
𝑚
,

so the diagonal terms in 𝐻
𝐼
can be neglected in the lowest

approximation.
The solution for 𝑆 matrix can be found in the form 𝑆 =

𝑆
0
⋅ 𝑆

𝐼
, where 𝑆

0
is the solution of the evolution equation with

𝐻 replaced by 𝐻
0
(see (71)). The matrix 𝑆

𝐼
then satisfies the

equation

𝑖

𝑑𝑆
𝐼

𝑑𝑥

= 𝑆
−1

0
𝐻
𝐼
𝑆
0
𝑆
𝐼
=
̃
𝐻

𝐼
𝑆
𝐼
, (101)

where ̃
𝐻

𝐼
≡ 𝑆

−1

0
𝐻
𝐼
𝑆
0
is the perturbation Hamiltonian in the

“interaction” representation. Equation (101) can be solved by
iterations: 𝑆

𝐼
= 𝐼 + 𝑆

(1)

𝐼
+ . . ., which leads to the standard

perturbation series for the 𝑆matrix. For neutrino propagation
between 𝑥 = 0 and 𝑥 = 𝐿 we have, to the lowest non-trivial
order,

𝑆 (𝐿) = 𝑆
0 (
𝐿) [𝐼 − 𝑖Δ sin 2𝜃∫

𝐿

0

𝑑𝑥(

0 𝑒
𝑖2𝜙(𝑥)

𝑒
−𝑖2𝜙(𝑥)

0

)] .

(102)

The ]
𝑒
↔ ]

𝑎
transition probability 𝑃

2
= [𝑆(𝐿)]

𝑎𝑒
is given by

𝑃
2
= Δ

2sin22𝜃
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝐿

0

𝑑𝑥𝑒
−𝑖2𝜙(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

. (103)

For density profiles that are symmetric with respect to the
center of the neutrino trajectory,𝑉(𝑥) = 𝑉(𝐿−𝑥), (103) gives

𝑃
2
= 4(

Δ𝑚
2

4𝐸

)

2

sin22𝜃[∫
𝐿/2

0

𝑑𝑧 cos 2𝜙 (𝑧)]
2

, (104)

where 𝑧 = 𝑥 − 𝐿/2 is the distance from the midpoint
of the trajectory and 𝜙(𝑧) is the phase acquired between
this midpoint and the point 𝑧. The transition probability 𝑃

2

decreases with the increase of neutrino energy essentially as
𝐸
−2. The accuracy of (103) also improves with energy as 𝐸−2.
Inside the Earth, the accuracy of the analytic formula

is extremely good already for 𝐸 ≳ 8GeV. When neutrinos
do not cross the Earth’s core (cosΘ > −0.837) and so
experience a slowly changing potential 𝑉(𝑥), the accuracy
of the approximation (103) is very good even in the MSW
resonance region 𝐸 ∼ (5–8)GeV.

The above formalism applies in the low energy case as
well, with only minor modifications: the sign of 𝐻

0
in (100)

has to be flipped, and correspondingly one has to replace
𝜔
𝑚

→ −𝜔
𝑚 in the definition of 𝜖. The expressions for the

transition probability in (103) and (104) remain unchanged.

3.12. Effects of Small Density Perturbations. Let us consider
perturbation around smooth profile for which exact solution
is known. The simplest possibility that has implications
for the Earth matter profile is the constant density with
additional perturbation:𝑉(𝑥) = 𝑉+Δ𝑉(𝑥). Correspondingly,
the Hamiltonian of the system can be written as the sum of
two terms:

𝐻(𝑥) = 𝐻 + Δ𝐻 (𝑥) , (105)

where

𝐻 ≡ 𝜔(

− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

) ,

Δ𝐻 ≡

Δ𝑉 (𝑥)

2

(

1 0

0 −1

) .

(106)

Here, 𝜃 = 𝜃
𝑚
(𝑉) is themixing angle inmatter and𝜔 = 𝜔

𝑚
(𝑉)

is half of the energy splitting (half-frequency) in matter, both
with the average potential 𝑉. We will denote by 𝑆(𝑥) the
evolution matrix of the system for the constant density case
𝐻(𝑥) = 𝐻. The expression for 𝑆(𝑥) is given in (54) with
𝜃
𝑚
= 𝜃 and 𝜙

𝑚
(𝑥) = 𝜙(𝑥) ≡ 𝜔𝑥, 𝜔 = 𝜔

𝑚
(𝑉).

The solution of the evolution equation with Hamiltonian
(105) [46] is of the form

𝑆 (𝑥) = 𝑆 (𝑥) + Δ𝑆 (𝑥) ,

Δ𝑆 (𝑥) = −𝑖𝑆 (𝑥)𝐾1 (
𝑥) ,

(107)

where 𝐾
1
(𝑥) satisfies |𝐾

1
(𝑥)

𝑎𝑏
| ≪ 1. Inserting (107) into

the evolution equation, one finds the following equation for
𝐾
1
(𝑥) to the first order in Δ𝐻(𝑥) and𝐾

1
(𝑥):

𝑑𝐾
1 (
𝑥)

𝑑𝑥

= 𝑆

†

Δ𝐻 (𝑥) 𝑆

=

Δ𝑉

2

[− cos 2𝜃(− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

)

+ sin 2𝜃 cos 2𝜙𝐺 (𝜃) + sin 2𝜃 sin 2𝜙𝜎
2
] ,

(108)

where𝐺(𝜃) ≡ cos 2𝜃𝜎
1
+ sin 2𝜃𝜎

3
.The first term in (108) does

not contribute to 𝑆 ≡ 𝑆(𝐿) since ⟨Δ𝑉⟩ ≡ ∫Δ𝑉(𝑥)𝑑𝑥 = 0, and
(108) can be immediately integrated:

𝐾
1 (
𝐿) =

1

2

sin 2𝜃 [𝐺 (𝜃)∫

𝐿

0

Δ𝑉 (𝑥) cos 2𝜙 (𝑥) 𝑑𝑥

+𝜎
2
∫

𝐿

0

Δ𝑉 (𝑥) sin 2𝜙 (𝑥) 𝑑𝑥] .

(109)
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Introducing the distance from the midpoint of the neutrino
trajectory 𝑧 ≡ 𝑥 − 𝐿/2, one obtains from (109)

Δ𝑆 ≡ Δ𝑆 (𝐿) = −𝑖 sin 2𝜃 [𝐺 (𝜃) Δ𝐼 + 𝜎
2
Δ𝐽] , (110)

where Δ𝐼 ≡ (1/2) ∫

𝐿/2

−𝐿/2
Δ𝑉(𝑧) cos(2𝜔𝑧)𝑑𝑧, Δ𝐽 ≡ (1/2)

∫

𝐿/2

−𝐿/2
Δ𝑉(𝑧) sin(2𝜔𝑧)𝑑𝑧. In these integrals, Δ𝑉(𝑧) ≡

Δ𝑉(𝑥(𝑧)) and 𝑥(𝑧) = 𝑧 − 𝐿/2. The integral Δ𝐽 vanishes if
the perturbation Δ𝑉(𝑧) is symmetric with respect to the
midpoint of the trajectory. Analogously,Δ𝐼 vanishes ifΔ𝑉(𝑧)
is antisymmetric. The expression for 𝑆 defined in (107) is
equivalent to (13)–(16) obtained in [48] in the context of
solar neutrino oscillations.

For practical purposes it is useful to have an expression
for 𝑆 which is exactly unitary regardless of the size of the
perturbation. For this we rewrite (110) as follows:

Δ𝑆 = 𝜀𝑆
󸀠
,

𝑆
󸀠
= −𝑖 [𝐺 (𝜃) cos 𝜉 + 𝜎

2
sin 𝜉] ,

(111)

where sin 𝜉 = Δ𝐽/√(Δ𝐽)
2
+ (Δ𝐼)

2 and 𝜖 = sin 2𝜃 ⋅

√(Δ𝐽)
2
+ (Δ𝐼)

2. Thus, 𝑆 = 𝑆 + 𝜀𝑆
󸀠 and we replace it by

𝑆 = cos 𝜀𝑆 + sin 𝜀𝑆󸀠. (112)

Here both 𝑆
󸀠 and 𝑆 are unitary matrices, and due to their

specific form the combination on the right-hand side of (112)
is exactly unitary.

For a symmetric density profile with respect to the
midpoint of the trajectory, the term Δ𝐽 is absent. From (54),
(110), and (112) we immediately get the transition probability

𝑃 = [cos 𝜀 sin 2𝜃 sin𝜙 + sin 𝜀 cos 2𝜃]
2

≈ sin22𝜃 [sin𝜙 + Δ𝐼 cos 2𝜃]
2

,

(113)

where 𝜀 ≡ sin 2𝜃 Δ𝐼 and𝜙 ≡ 𝜙(𝐿) = 𝜔𝐿. Here the first term in
the square brackets describes oscillations in constant density
matter with average potential 𝑉

1
.

3.13. Oscillation Probabilities and Their Properties. It is con-
venient to consider the neutrino flavor evolution in the
propagation basis ]̃ = (]

𝑒
, ]̃

2
, ]̃

3
)
𝑇, defined in (27). In this

basis propagation is not affected by the 2-3 mixing and CP
violation.The dependence on these parameters appears when
one projects the initial flavor state on the propagation basis
and the final state back onto the original flavor basis. The
propagation-basis states are related to the mass states as

]̃ = 𝑈
13
𝐼
−𝛿
𝑈
12
]. (114)

Since the transformations, which connect ]̃ and ]
𝑓
, do not

depend on matter potential and therefore distance, the states
]̃ satisfy the evolution equation 𝑖(𝑑]̃/𝑑𝑡) =

̃
𝐻]̃, with the

Hamiltonian ̃
𝐻 defined in (28).

3.13.1. 𝑆 Matrix and Oscillation Amplitudes. A number of
properties of the oscillation probabilities can be obtained
from general consideration of matrix of the oscillation
amplitudes. We introduce the evolution matrix (the matrix
of amplitudes) in the propagation basis as

̃
𝑆 = (

𝐴
𝑒𝑒

𝐴
𝑒2̃

𝐴
𝑒3̃

𝐴
2̃𝑒

𝐴
2̃2̃

𝐴
2̃3̃

𝐴
3̃𝑒

𝐴
3̃2̃

𝐴
3̃3̃

) . (115)

Then according to (27) the 𝑆matrix in the flavor basis equals

𝑆 =
̃
𝑈
̃
𝑆
̃
𝑈

†

,

̃
𝑈 ≡ 𝑈

23
𝐼
𝛿
.

(116)

In this part, we use the notation 𝐴
𝑖𝑗
for the amplitudes in

the propagation basis and 𝑆
𝑖𝑗
for the amplitudes in the flavor

basis. In terms of the propagation-basis amplitudes (115) the
𝑆matrix in the flavor basis can be written as

𝑆 = (

𝐴
𝑒𝑒

𝑐
23
𝐴
𝑒2̃
+ 𝑠

23
𝑒
−𝑖𝛿

𝐴
𝑒3̃

−𝑠
23
𝐴
𝑒2̃
+ 𝑐

23
𝑒
−𝑖𝛿

𝐴
𝑒3̃

𝑐
23
𝐴
2̃𝑒
+ 𝑠

23
𝑒
𝑖𝛿
𝐴
3̃𝑒

𝑐
2

23
𝐴
2̃ 2̃

+ 𝑠
2

23
𝐴
3̃ 3̃

+ 𝐾
𝜇𝜇

−𝑠
23
𝑐
23
(𝐴

2̃ 2̃
− 𝐴

3̃ 3̃
) + 𝐾

𝜇𝜏

−𝑠
23
𝐴
2̃𝑒
+ 𝑐

23
𝑒
𝑖𝛿
𝐴
3̃𝑒

−𝑠
23
𝑐
23
(𝐴

2̃ 2̃
− 𝐴

3̃ 3̃
) + 𝐾

𝜏𝜇
𝑠
2

23
𝐴
2̃ 2̃

+ 𝑐
2

23
𝐴
3̃ 3̃

+ 𝐾
𝜏𝜏

), (117)

where

𝐾
𝜇𝜇

≡ 𝑠
23
𝑐
23
(𝑒

−𝑖𝛿
𝐴
2̃ 3̃

+ 𝑒
𝑖𝛿
𝐴
3̃2̃
) ,

𝐾
𝜇𝜏

≡ 𝑐
2

23
𝑒
−𝑖𝛿

𝐴
2̃ 3̃

− 𝑠
2

23
𝑒
𝑖𝛿
𝐴
3̃2̃
,

𝐾
𝜏𝜇

= 𝐾
𝜇𝜏
(𝛿 󳨀→ −𝛿,

̃
2 ←→

̃
3) ,

𝐾
𝜏𝜏

= −𝐾
𝜇𝜇
.

(118)

The scheme of transitions is shown in Figure 7. There is
certain hierarchy of the amplitudes which can be obtained
immediately from the form of the Hamiltonian in the propa-
gation basis (29):

𝐴
𝑒3̃
, 𝐴

3̃𝑒
∼ 𝑠

13
,

𝐴
𝑒2̃
, 𝐴

2̃𝑒
∼ 𝑟

Δ
∼ 𝑠

2

13
,

𝐴
3̃2̃
, 𝐴

2̃3̃
∼ 𝑠

13
𝑟
Δ
∼ 𝑠

3

13
,

(119)
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that is, 𝐴
2̃3̃

and 𝐴
3̃2̃

are the smallest amplitudes. In the
propagation basis there is no fundamental CP or T violation.
Therefore for a symmetric density profile with respect to the
middle point of trajectory (as in the case of the Earth) the
neutrino evolution is T invariant which yields

𝐴
2̃𝑒
= 𝐴

𝑒2̃
,

𝐴
3̃𝑒
= 𝐴

𝑒3̃
,

𝐴
3̃2̃

= 𝐴
2̃ 3̃
.

(120)

Consequently, for𝐾
𝛼𝛽

we obtain

𝐾
𝜇𝜏

= 𝐴
2̃ 3̃

(cos 2𝜃
23
cos 𝛿 − 𝑖 sin 𝛿) ,

𝐾
𝜏𝜇

= 𝐾
𝜇𝜏 (

𝛿 󳨀→ −𝛿) ,

𝐾
𝜇𝜇

= −𝐾
𝜏𝜏

= 𝐴
2̃ 3̃

sin 2𝜃
23
cos 𝛿.

(121)

These terms proportional to small amplitudes 𝐴
2̃ 3̃

and 𝐴
3̃2̃

are of the order 𝑂(𝑠2
13
).

For a symmetric density profile, from (117), (120), and
(121) one finds for the probabilities 𝑃

𝛼𝛽
≡ |𝑆

𝛽𝛼
|
2:

𝑃
𝑒𝑒
=

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒𝑒

󵄨
󵄨
󵄨
󵄨

2
= 1 −

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒2̃

󵄨
󵄨
󵄨
󵄨

2
−

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨

2
, (122)

𝑃
𝜇𝑒

= 𝑐
2

23

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒2̃

󵄨
󵄨
󵄨
󵄨

2
+ 𝑠

2

23

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨

2

+ 2𝑠
23
𝑐
23
Re (𝑒−𝑖𝛿𝐴∗

𝑒2̃
𝐴
𝑒3̃
) ,

(123)

𝑃
𝜏𝑒
= 𝑠

2

23

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒2̃

󵄨
󵄨
󵄨
󵄨

2
+ 𝑐

2

23

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨

2

− 2𝑠
23
𝑐
23
Re (𝑒−𝑖𝛿𝐴∗

𝑒2̃
𝐴
𝑒3̃
) ,

(124)

𝑃
𝜇𝜇

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
2

23
𝐴
2̃ 2̃

+ 𝑠
2

23
𝐴
3̃ 3̃

+2𝑠
23
𝑐
23
cos 𝛿𝐴

2̃ 3̃

󵄨
󵄨
󵄨
󵄨

2
,

(125)

𝑃
𝜇𝜏

=

󵄨
󵄨
󵄨
󵄨
𝑠
23
𝑐
23
(𝐴

3̃ 3̃
− 𝐴

2̃ 2̃
)

+ (cos 2𝜃
23
cos 𝛿 + 𝑖 sin 𝛿)𝐴

2̃ 3̃

󵄨
󵄨
󵄨
󵄨

2
.

(126)

For antineutrinos the amplitudes can be obtained from the
results presented above substituting

𝛿 󳨀→ −𝛿, 𝐴
𝑖𝑗
󳨀→ 𝐴

𝑖𝑗
,

where 𝐴
𝑖𝑗
≡ 𝐴

𝑖𝑗 (
𝑉 󳨀→ −𝑉) .

(127)

Notice that the amplitudes of transitions (123) and (124),
that involve ]

𝑒
, are given by linear combinations of two

propagation-basis amplitudes. The other flavor amplitudes
depend on three propagation-basis amplitudes.

3.13.2. Factorization Approximation and Amplitudes for Con-
stant Density. As follows immediately from the form of the
Hamiltonian ̃

𝐻 in (29), in the limitsΔ𝑚2

21
→ 0 or/and 𝑠

12
→

0 the state ]̃
2
decouples from the rest of the system, and

consequently, the amplitude 𝐴
𝑒2̃
vanishes. In this limit, 𝐴

𝑒3̃

(as well as 𝐴
3̃ 3̃

and 𝑆
𝑒𝑒
) is reduced to a 2] amplitude which

depends on the parameters Δ𝑚2

31
and 𝜃

13
: 𝐴

𝐴
(Δ𝑚

2

31
, 𝜃

13
) ≡

𝐴
𝑒3̃
(Δ𝑚

2

21
= 0). The corresponding probability equals 𝑃

𝐴
≡

|𝐴
𝐴
|
2.
In the limit 𝑠

13
→ 0 the state ]̃

3
decouples while

the amplitude 𝐴
𝑒3̃

vanishes and the amplitude 𝐴
𝑒2̃

reduces
to a 2] amplitude depending on the parameters of the 1-2
sector, Δ𝑚2

21
and 𝜃

12
. Denoting this amplitude by𝐴

𝑆
we have

𝐴
𝑆
(Δ𝑚

2

21
, 𝜃

12
) ≡ 𝐴

𝑒2̃
(𝜃

13
= 0). We will use the notation

𝑃
𝑆
≡ |𝐴

𝑆
|
2.

This consideration implies that to the leading nontrivial
order in the small parameters 𝑠

13
and 𝑟

Δ
the amplitudes 𝐴

𝑒2̃

and𝐴
2̃𝑒
are reduced to two neutrino probabilities and depend

only on the “solar” parameters, whereas the amplitudes 𝐴
𝑒3̃

and 𝐴
3̃𝑒
only on the “atmospheric” parameters:

𝐴
𝑒2̃
≃ 𝐴

2̃𝑒
≃ 𝐴

𝑆
(Δ𝑚

2

21
, 𝜃

12
) ,

𝐴
𝑒3̃
≃ 𝐴

3̃𝑒
≃ 𝐴

𝐴
(Δ𝑚

2

31
, 𝜃

13
) .

(128)

The approximate equalities in (128) are called the factoriza-
tion approximation.

Due to the level crossing phenomenon the factorization
approximation (128) is not valid in the energy range of the
1–3 resonance where the 1–3 mixing in matter is enhanced.
In the case of a matter with an arbitrary density profile,
one can show, using simple power counting arguments, that
the corrections to the factorization approximation for the
amplitude 𝐴

𝑒2̃
are of order 𝑠2

13
, whereas the corrections to

the “atmospheric” amplitude 𝐴
𝑒3̃

are of order 𝑟
Δ
[49], in

agreement with our consideration for constant density. The
amplitude 𝐴

𝑒3̃
does not in general have a 2-flavor form, once

the corrections to the factorization approximation are taken
into account.

Using the expressions for 𝑈
𝑚

𝑒𝑖
and 𝑈

𝑚

𝜇𝑖
in terms of the

mixing angles in the standard parametrization,we can rewrite
(67) as

𝑆
cst
𝑒𝜇

= cos 𝜃𝑚
23
𝐴

cst
𝑒2̃

+ sin 𝜃𝑚
23
𝑒
−𝑖𝛿
𝑚

𝐴
cst
𝑒3̃
, (129)

where

𝐴
cst
𝑒2̃

≡ −𝑖𝑒
𝑖𝜙
𝑚

21 cos 𝜃𝑚
13
sin 2𝜃𝑚

12
sin𝜙𝑚

21
,

𝐴
cst
𝑒3̃

≡ −𝑖𝑒
𝑖𝜙
𝑚

21 sin 2𝜃𝑚
13
[sin𝜙𝑚

32
𝑒
−𝑖𝜙
𝑚

31
+ cos2𝜃𝑚

12
sin𝜙𝑚

21
] .

(130)

Here 𝜙𝑚
31

= 𝜙
𝑚

32
+𝜙

𝑚

21
. Since to a good approximation 𝜃𝑚

23
≈ 𝜃

23

and 𝛿𝑚 ≈ 𝛿 (see Section 2.5) [20, 50], the amplitudes𝐴cst
𝑒2̃
and

𝐴
cst
e3̃ can be identified with 𝐴

𝑒2̃
and 𝐴

𝑒3̃
in (123) and (124).

In terms of mixing angles, 𝑈𝑚

𝜇1
= −𝑠

𝑚

12
𝑐
𝑚

23
− 𝑐

𝑚

12
𝑠
𝑚

13
𝑠
𝑚

23
𝑒
𝑖𝛿
𝑚

,
𝑈
𝑚

𝜇3
= 𝑐

𝑚

13
𝑠
𝑚

23
, the amplitude 𝑆cst

𝜇𝜇
can be rewritten as

𝑆
cst
𝜇𝜇

= cos2𝜃𝑚
23
𝐴

cst
2̃ 2̃

+ sin2𝜃𝑚
23
𝐴

cst
3̃ 3̃

+ sin 2𝜃𝑚
23
cos 𝛿𝑚𝐴cst

2̃ 3̃
,

(131)
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Figure 7: Scheme of transitions between the flavor states. Evolution is considered in the propagation basis ]̃. The lines which connect the
flavor states and the propagation-basis states indicated projection of one basis onto another. The lines connecting the states of propagation
basis ]̃ show transitions between them.

where

𝐴
cst
2̃ 2̃

≡ 1 + 2𝑖𝑒
𝑖𝜙
𝑚

21sin2𝜃𝑚
12
sin𝜙𝑚

21
,

𝐴
cst
3̃ 3̃

≡ 1 − 2𝑖𝑒
−𝑖𝜙
𝑚

32cos2𝜃𝑚
13
sin𝜙𝑚

32

+ 2𝑖𝑒
𝑖𝜙
𝑚

21sin2𝜃𝑚
13
cos2𝜃𝑚

12
sin𝜙𝑚

21
,

𝐴
cst
2̃ 3̃

≡ 𝑖𝑒
𝑖𝜙
𝑚

21 sin 𝜃𝑚
13
sin 2𝜃𝑚

12
sin𝜙𝑚

21
.

(132)

Notice that 𝐴cst
2̃ 2̃

has exactly the form of the corresponding
2] amplitude driven by the solar parameters. The amplitude
𝐴

cst
3̃ 3̃

also coincides to a very good approximation with
the corresponding 2] amplitude driven by the atmospheric
parameters. In the approximation 𝜃

𝑚

23
≈ 𝜃

23
and 𝛿

𝑚
≈ 𝛿

the amplitudes (132) can be identified with the corresponding
amplitudes in the propagation basis.

3.13.3. Properties of the Flavor Oscillation Probabilities

(1) ]
𝑒
-]
𝑒
channel: the total probability of the ]

𝑒
disappear-

ance equals

1 − 𝑃
𝑒𝑒
= 𝑃

𝑒𝜇
+ 𝑃

𝑒𝜏
= 𝑃

𝑒2̃
+ 𝑃

𝑒3̃
. (133)

The probability 𝑃
𝑒𝑒

does not depend on the CP-
violating phase and the 2-3 mixing in the standard
parametrization. The interference of the solar and
atmospheric modes in 𝑃

𝑒𝑒
originates mainly from

𝑃
𝑒3̃

≡ |𝐴
𝑒3̃
|
2. The survival probability then equals

𝑃
𝑒𝑒
= 1−𝑃

𝑒𝜇
−𝑃

𝑒𝜏
= 1−𝑃

𝐴
−𝑃

𝑆
. At high energies, where

the effects of the 1-2mixing andmass splitting in𝑃 are
suppressed, the probability is 𝑃

𝑒𝑒
≈ 1 − 𝑃

𝑒𝜏
≈ 1 − 𝑃

𝐴
.

(2) ]
𝑒
-]
𝜇
and ]

𝑒
-]
𝜏
channels: the transition probability

𝑃
𝜇𝑒

≡ 𝑃(]
𝜇
→ ]

𝑒
) (see (123)) can be rewritten as

𝑃
𝜇𝑒

= 𝑐
2

23

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒2̃

󵄨
󵄨
󵄨
󵄨

2
+ 𝑠

2

23

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨

2

+ sin 2𝜃
23

󵄨
󵄨
󵄨
󵄨
𝐴
∗

𝑒2̃
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨
cos (𝜙 − 𝛿) ,

(134)

where𝜙 ≡ arg(𝐴∗

𝑒2̃
𝐴
𝑒3̃
). Unlike 1−𝑃

𝑒𝑒
, this probability

contains the interference term between 𝐴
𝑒2̃
and 𝐴

𝑒3̃

which depends on the CP violation phase. Since the
amplitude 𝐴

𝑒2̃
is suppressed at high energies due to

the smallness of the 1-2mixing inmatter, in the lowest
approximation we have

𝑃
𝜇𝑒

≈ sin2𝜃
23

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨

2
≈ sin2𝜃

23

󵄨
󵄨
󵄨
󵄨
𝐴
𝐴

󵄨
󵄨
󵄨
󵄨

2
. (135)

Themaximal value of the probability equals 𝑃
𝜇𝑒

≃ 𝑠
2

23
.

According to (123) and (124) the oscillation probabili-
ties 𝑃

𝜏𝑒
and 𝑃

𝑒𝜏
can be obtained from the correspond-

ing probabilities 𝑃
𝜇𝑒
and 𝑃

𝑒𝜇
through the substitution

𝑠
23

→ 𝑐
23
, 𝑐

23
→ −𝑠

23
[51]. The interference term

has the opposite signs for channels including ]
𝜏
as

compared with those with ]
𝜇
, which can be obtained

from the unitarity condition 𝑃
𝑒𝑒
+ 𝑃

𝜇𝑒
+ 𝑃

𝜏𝑒
= 1 and

the fact that 𝑃
𝑒𝑒
does not depend on 𝛿.

(3) The ]
𝜇
survival probability,𝑃

𝜇𝜇
, for symmetric density

profiles, (125), can be rewritten as

𝑃
𝜇𝜇

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑐
2

23
𝐴
2̃ 2̃

+ 𝑠
2

23
𝐴
3̃ 3̃

󵄨
󵄨
󵄨
󵄨
󵄨

2

+ 2 sin 2𝜃
23
cos 𝛿 Re [𝐴∗

2̃ 3̃
(𝑐

2

23
𝐴
2̃2̃
+ 𝑠

2

23
𝐴
3̃ 3̃
)]

+ sin22𝜃
23
cos2𝛿󵄨󵄨󵄨

󵄨
𝐴
2̃ 3̃

󵄨
󵄨
󵄨
󵄨

2
.

(136)

Since 𝐴
2̃ 3̃

= O(𝑟
Δ
𝑠
13
) is a small quantity, to a good

approximation one can neglect the term ∼ cos2𝛿
in (125), which is proportional to |𝐴

2̃ 3̃
|
2. For high

energies in the limit Δ𝑚2

21
→ 0 we have 𝐴

2̃ 2̃
= 1,

𝐴
2̃ 3̃

= 0. Then, parameterizing the 33-amplitude as
𝐴
3̃3̃

= √1 − 𝑃
𝐴
𝑒
−𝑖𝜙
𝑚

3̃ 3̃ we obtain from (136)

𝑃
𝜇𝜇

(Δ𝑚
2

21
= 0)

= 1 − sin22𝜃
23
sin2𝜙

𝑥
− 𝑠

4

23
𝑃
𝐴

− 0.5 sin22𝜃
23
cos 2𝜙

𝑋
(1 − √1 − 𝑃

𝐴
) ,

(137)

where 𝜙
𝑋

= 0.5 arg[𝐴∗

3̃3̃
𝐴
2̃2̃
] = 𝜙

𝑚

2̃2̃
− 𝜙

𝑚

3̃3̃
. The

probability can be rewritten as

𝑃
𝜇𝜇

= 1 − 0.5 sin22𝜃
23
− 𝑠

4

23
𝑃
𝐴

+ 0.5 sin22𝜃
23
(√1 − 𝑃

𝐴
) cos 2𝜙

𝑋
.

(138)
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(4) ]
𝜇
-]
𝜏
channel: for symmetric matter density profiles

the probability of ]
𝜇

→ ]
𝜏
oscillations is given in

(126). It can be rewritten as

𝑃
𝜇𝜏

=

1

4

sin22𝜃
23

󵄨
󵄨
󵄨
󵄨
𝐴
2̃2̃
− 𝐴

3̃3̃

󵄨
󵄨
󵄨
󵄨

2

+ sin 2𝜃
23
cos 2𝜃

23
cos 𝛿 Re [(𝐴∗

3̃ 3̃
− 𝐴

∗

2̃ 2̃
) 𝐴

2̃3̃
]

− sin 2𝜃
23
sin 𝛿 Im [𝐴

∗

𝑒2̃
𝐴
𝑒3̃
]

+ (1 − sin22𝜃
23
cos2𝛿) 󵄨󵄨󵄨

󵄨
𝐴
2̃3̃

󵄨
󵄨
󵄨
󵄨

2
.

(139)

The amplitude depends on 𝛿 through the terms proportional
to cos 𝛿 and sin 𝛿, and therefore 𝑃

𝜇𝜏
contains both CP- and

T-even and -odd terms. One can show that the 𝛿-dependent
interference terms, which are proportional to sin 𝛿 and cos 𝛿,
satisfy the relation 𝑃

𝛿

𝜇𝜏
= −𝑃

𝛿

𝜇𝑒
− 𝑃

𝛿

𝜇𝜇
. In the limit Δ𝑚2

21
→ 0

we obtain

𝑃
𝜇𝜏

= 0.5 sin22𝜃
23
− 𝑠

2

23
𝑐
2

23
𝑃
𝐴

− 0.5 sin22𝜃
23
(√1 − 𝑃

𝐴
) cos 2𝜙

𝑋
.

(140)

4. Matter Effects and Determination
of Neutrino Mass Hierarchy

4.1. Propagation of Neutrinos through the Earth. Flavor
neutrino evolution in the Earth is essentially oscillations in
a multi-layer medium with slowly changing density in the
individual layers and sharp density change on the borders
of layers. For energies 𝐸 > 0.1GeV, possible short-scale
inhomogeneities of the matter distribution can be neglected
and the density profile experienced by neutrinos is symmetric
with respect to the midpoint of the trajectory:

𝑉 (𝑥) = 𝑉 (𝐿 − 𝑥) . (141)

Here 𝐿 = 2𝑅
⊕
| cos 𝜃

𝑧
| is the length of the trajectory inside

the Earth, 𝑅
⊕
= 6371 km is the Earth radius, and 𝜃

𝑧
is the

zenith angle related to the nadir angle as Θ] = 𝜋 − 𝜃
𝑧
. For

0 ≤ Θ] ≤ 33.1
∘ neutrinos cross both the mantle and the core

of the Earth, whereas for larger values of the nadir angle they
only cross the Earth’smantle.The column density of the Earth
along the diameter equals 𝑑Earth = ∫ 𝑛(𝑥)𝑑𝑥, which is bigger
than the minimal width; the size of the Earth is comparable
with the neutrino refraction length.

For the 1-2 channel, the adiabaticity is well satisfied for all
energies. We can therefore use the adiabatic approximation.
The results of the evolution are determined by the mixing
at the surface of the Earth and by the adiabatic phase. In
the 1–3 channel the adiabaticity is broken at the resonance.
Thus, the constant density approximation with the average
density works well in this regime. For energies below the
resonance the matter effect becomes small and the constant
density approximation and the adiabatic approximation give
very similar results.

For the core-crossing trajectories, the profile consists
of three layers in the first approximation: (i) mantle (with

increasing density), (ii) core (with a symmetric profile), and
(iii) second mantle layer (with decreasing density). This
second mantle layer is T-inverted with respect to the first.
In this approximation the profile can be considered as three
layers of constant effective densities. As such, it looks like a
part (1.5 period) of the castle wall profile. Consequently, the
parametric enhancement of oscillations, and in particular, the
parametric resonance can be realized.

4.1.1. Neutrino Oscillograms of the Earth. A comprehensive
description of effects of neutrino passage through the Earth
can be obtained in terms of neutrino oscillograms. The
oscillograms are defined as lines of equal probabilities (or
certain combinations of probabilities) in the 𝐸]-cos𝜃𝑧 plane.
In Figure 8, we show the oscillograms for the oscillation
probabilities 𝑃

𝑒𝜇
and 𝑃

𝜇𝜇
, as well as the corresponding

probabilities for antineutrinos [43, 46, 52–55].
The structure of the oscillograms is well defined and

unique and reflects the structure of the Earth as well as
the properties of the neutrinos themselves. In a sense, the
oscillograms are the neutrino images of the Earth. In contrast
to usual light, there are several different images in different
flavors as well as in neutrinos and antineutrinos.

The positions of all main structures of the oscillograms
are determined by different realizations of the amplitude
condition and the phase condition. These are generalizations
of the condition for maximal flavor transitions in the case of
vacuum oscillations or oscillation in uniform matter. Recall
that, in the latter case, 𝑃 = 1 requires

(i) sin22𝜃
𝑚

= 1, the amplitude condition, which is
nothing but the MSW resonance condition, and

(ii) 𝜙 = 𝜋/2 + 𝜋𝑘, the phase condition.

At 𝐸 > 1GeV the main structures of oscillograms are
generated by the 1–3 mixing. They include the following.

(1) The MSW resonance pattern (resonance enhance-
ment of the oscillations) for trajectories crossing only
the mantle, with the main peak at 𝐸] ∼ (5–7)GeV.
The position of the maximum is given by the MSW
resonance condition:

𝐸] = 𝐸
𝑅
(Θ]) =

Δ𝑚
2

31
cos 2𝜃

13

2𝑉
1
(Θ])

, (142)

where 𝑉
1
(Θ]) is the average value of the potential

along the trajectory characterized by Θ]. The phase
condition becomes 2𝜙(𝐸], Θ]) = 2𝜔(𝑉, 𝐸])𝐿(Θ]) = 𝜋

and the intersection of the resonance and the phase
condition lines gives the absolute maximum of 𝑃

𝐴
.

Combining these conditions gives the coordinates of
the peak: cosΘ] = 0.77 and 𝐸

𝑅
= 6GeV.

(2) Three parametric ridges in the domain of core-
crossing trajectories | cos 𝜃

𝑧
| > 0.87 and 𝐸] > 3GeV.

The parametric ridges differ by the oscillation phase
acquired in the core, 𝜙

2
.
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Figure 8: Neutrino oscillograms of the Earth. Shown are the lines of equal flavor conversion probability in the 𝐸]-cosΘ] plane. Upper panels:
]
𝑒
→ ]

𝜇
(left) and ]

𝑒
→ ]

𝜇
(right); bottom panels: ]

𝜇
→ ]

𝜇
(left) and ]

𝜇
→ ]

𝜇
(right). Normal hierarchy is assumed.

(i) Ridge A lies between the core resonance (atΘ] ∼

0
∘) and the mantle resonance regions, 𝐸] ≈ 3–
6GeV. The phase in the core is 𝜙

2
≲ 𝜋. This

ridge merges with the MSW resonance peak in
the mantle.

(ii) Ridge B is situated at 𝐸] ≥ 5GeV. For the lowest
energies in the ridge andΘ] ∼ 0, the half phase
in the core equals 𝜙

2
∼ (1.2-1.3)𝜋.

(iii) Ridge C is located at 𝐸] > 11GeV in the matter
dominated region, where the mixing and, con-
sequently, oscillation depth are suppressed.

(3) The MSW resonance peak in core located at 𝐸] ∼

2.5–2.8GeV.
(4) The regular oscillatory pattern at low energies with

“valleys” of zero probability and ridges in the mantle
domain and a more complicated pattern with local
maxima and saddle points in the core domain.

In Figure 9, we show graphic representations of oscilla-
tionswhich correspond to salient features of the oscillograms.

For energies 𝐸] < 1GeV the main structures are induced
by the 1-2 mixing with small corrections due to 1–3 vacuum

oscillations. Neglecting effect of 𝜃
13
we have 1−𝑃

𝑒𝑒
= |𝐴

𝑒2̃
|
2
≡

𝑃
𝑆
. The probabilities of the modes including ]

𝑒
are expressed

in terms of a unique probability 𝑃
𝑆
.

The 1-2 pattern differs from the pattern for the 1–3 mixing
due to the large value of the 1-2 mixing.The oscillation length
at the resonance is smaller than that for the 1–3 mixing,
𝑙
𝑅

𝑚
= 𝑙]/ sin 2𝜃12 ∼ 𝑙]. The resonance energy is shifted to

smaller values both due to Δ𝑚
2

21
≪ Δ𝑚

2

31
and because of

the factor cos 2𝜃
12

≈ 0.4: 𝐸𝑅
12

= (Δ𝑚
2

21
/2𝑉) cos 2𝜃

12
. Here

𝑉 is the average value of the potential. The adiabaticity is
better satisfied than for the 1–3 mixing case and therefore
the oscillation probability in the mantle is determined by
the potential near the surface of the Earth 𝑉 averaged over
a distance of the order of the first oscillation length. The
oscillation length in matter 𝑙

𝑚
monotonically increases with

energy, approaching the refraction length 𝑙
0

≡ 2𝜋/𝑉 (c.f.
Figure 4). The jump of the mixing angle at the mantle-
core boundary is small. Thus, the sudden distortion of the
oscillation patterns at Θ] = 33

∘ is not as significant as it
is for the 1–3 mixing, in particular below the 1-2 resonance
energy. These features allow understanding the structure
of the oscillograms. In the mantle domain (Θ] > 33

∘)
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Figure 9: Graphic representation of transition in different points of oscillogram: peak due to MSW resonance in the mantle (left), peak
due to parametric enhancement of transition driven by 1–3 mixing (middle), and peak due to parametric enhancement of transition driven
by 1-2 mixing (right). In the left panel, neutrinos traverse only the mantle layer. In the right panel, neutrinos traverse the mantle (red), the
core (green), and again the mantle (blue). The dashed lines correspond to the Hamiltonian vector H for the mantle (red) and core (green),
respectively.

the oscillation pattern for neutrinos is determined by the
resonance enhancement of oscillations.There are threeMSW
resonance peaks above 0.1GeV, which differ from each other
by value of the total oscillation phase. The outer peak (Θ] ≈

82
∘) corresponds to 𝜙 ≈ 𝜋/2, the middle (Θ] = 60

∘) to
𝜙 ≈ 3𝜋/2, and the inner (Θ] ≈ 40

∘) to 𝜙 = 5𝜋/2. Recall
that such a large phase can be acquired due to the smaller
resonance oscillation length in comparison to that of the 1–3
mixing case, for which only one peak with 𝜙 = 𝜋/2 can be
realized. The resonance energy is given by (45), and for the
surface potential we find

𝐸
𝑅

12
≈ 0.12GeV. (143)

The ratio of the 1-2 and 1–3 resonance energies equals
𝐸
𝑅

12
/𝐸

𝑅

13
≈ 1/50. The estimate (143) is valid for the two outer

peaks. For the peak at Θ] = 40
∘, 𝑉 is larger and, accordingly,

the resonance energy is slightly smaller. The width of the
1-2 resonance is large and therefore the regions of sizable
oscillation probability are more extended in the 𝐸] direction
as compared to the oscillations governed by the 1–3 mixing
and splitting.

The resonance energy in the core is 𝐸
𝑅

12
≈ 0.04GeV.

Therefore for 𝐸] > (0.10–0.15)GeV the 1-2 mixing in the
core is substantially suppressed by matter. The peak at 𝐸] ≃

0.2GeV andΘ] ≃ 25
∘ is due to the parametric enhancement

of the oscillations. It corresponds to the realization of the
parametric resonance condition when the oscillation half
phases equal approximately 𝜙mantle ≈ 𝜋/2 and 𝜙core ≈ 3𝜋/2

(note that the total phase is ≈5𝜋/2 and this parametric ridge
is attached to the 5𝜋/2MSW peak in the mantle domain).

4.1.2. Oscillograms for the Inverted Mass Hierarchy. Themain
change compared to the normal hierarchy is that the 1–3
resonance structure now appears in the antineutrino channel.
The level crossing scheme is modified in comparison to NH.
In the neutrino channel there is only the 1-2 resonance.

In the approximation of Δ𝑚
2

21
= 0, the neutrino

oscillograms for the inverted hierarchy coincide with the
antineutrino oscillograms for the normal hierarchy and vice

versa, provided that Δ𝑚2

31
is taken to be the same in both

cases [56]: 𝑃𝐼𝐻
𝐴

= 𝑃

𝑁𝐻

𝐴
, 𝜙

𝐼𝐻

𝑋
= −𝜙

𝑁𝐻

𝑋
. Therefore 𝑃

𝐼𝐻

𝛼𝛽
=

𝑃

𝑁𝐻

𝛼𝛽
, 𝑃

𝐼𝐻

𝛼𝛽
= 𝑃

𝑁𝐻

𝛼𝛽
. The inclusion of the 1-2 mixing and mass

splitting breaks this symmetry.

4.2. CP Violation Effects

4.2.1. Interference and CP Violation. The survival probability
𝑃
𝑒𝑒

does not depend on the CP-violating phase 𝛿 neither
for oscillations in vacuum nor in matter [57, 58]. This is
the consequence of the facts that 𝛿 can be removed by
transforming to the propagation basis and that ]

𝑒
is not

affected by this transformation. For oscillations in vacuum,
or in matter with symmetric density profiles, the other two
survival probabilities, 𝑃

𝜇𝜇
and 𝑃

𝜏𝜏
, are T-even quantities

dependent on 𝛿 only through terms proportional to cos 𝛿 and
cos 2𝛿 [59]. In contrast to this, for oscillations in a matter
with nonsymmetric density profiles, these probabilities also
acquire terms proportional to sin 𝛿 and sin 2𝛿.

Introducing the phase 𝜙 ≡ arg(𝐴∗

𝑒2̃
𝐴
𝑒3̃
) and omitting

small terms proportional to |𝐴
2̃ 3̃
|
2
= O(𝑠6

13
) we obtain

𝑃
𝛿

𝜇𝑒
= sin 2𝜃

23
cos (𝜙 − 𝛿)

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒2̃
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨
, (144)

𝑃
𝛿

𝜇𝜇
= − sin 2𝜃

23
cos 𝛿 cos𝜙 󵄨󵄨󵄨

󵄨
𝐴
𝑒2̃
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨
− 𝐷

23
, (145)

𝑃
𝛿

𝜇𝜏
= − sin 2𝜃

23
sin 𝛿 sin𝜙 󵄨󵄨󵄨

󵄨
𝐴
𝑒2̃
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨
+ 𝐷

23
, (146)

where 𝐷
23

≡ (1/2) sin 4𝜃
23
cos 𝛿Re[𝐴∗

2̃ 3̃
(𝐴

3̃ 3̃
− 𝐴

2̃ 2̃
)] is

proportional to the small deviation of the 2-3 mixing from
maximal one. Notice that 𝐷

23
enters 𝑃

𝛿

𝜇𝜇
and 𝑃

𝛿

𝜇𝜏
with

opposite signs while 𝑃𝛿
𝜇𝑒

does not depend on 𝐷
23

at all. 𝐷
23

is CP even. The sum of these interference terms is zero.
For the other channels, 𝑃𝛿

𝛼𝛽
= 𝑃

−𝛿

𝛽𝛼
. For antineutrinos,

according to (127), the probabilities have the same form as
the corresponding probabilities derived abovewith a changed
sign of 𝛿 and the amplitudes computed with the opposite
sign of the potential. Thus, the 𝛿-dependent parts in all the
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channels are expressed in terms of two combinations of the
propagation-basis amplitudes, |𝐴

𝑒2̃
𝐴
𝑒3̃
| and𝐷

23
.

4.2.2.Magic Lines andCPDomains. To better assess the effect
of 𝛿, one can consider the difference of the oscillation prob-
abilities for two different values of the CP phase Δ𝑃CP

𝛼𝛽
(𝛿) ≡

𝑃
𝛼𝛽
(𝛿)−𝑃

𝛼𝛽
(𝛿

0
). In practice, this quantifies howwell the phase

𝛿 fits with some assumed true value 𝛿
0
. The structure of the

oscillograms for Δ𝑃CP
𝛼𝛽

(𝛿) can be understood in terms of the
grids of magic lines and interference phase lines along which
Δ𝑃

CP
𝛼𝛽

(𝛿) ≈ 0.
For the ]

𝜇
→ ]

𝑒
oscillation probability, the equality

Δ𝑃
CP
𝜇𝑒

(𝛿) ≡ 𝑃
𝜇𝑒 (

𝛿) − 𝑃
𝜇𝑒
(𝛿

0
)

= 𝑃
𝛿

𝜇𝑒
(𝛿) − 𝑃

𝛿

𝜇𝑒
(𝛿

0
)

(147)

is exact and the condition Δ𝑃
CP
𝜇𝑒

= 0 is equivalent to

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒2̃
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨
cos (𝜙 − 𝛿)

=

󵄨
󵄨
󵄨
󵄨
𝐴
𝑒2̃
𝐴
𝑒3̃

󵄨
󵄨
󵄨
󵄨
cos (𝜙 − 𝛿

0
) .

(148)

This equality is satisfied if at least one of the following three
conditions is fulfilled:

𝐴
𝑒2̃
(𝐸], Θ]) = 0,

𝐴
𝑒3̃
(𝐸], Θ]) = 0,

𝜙 (𝐸], Θ]) − 𝛿
0
= − [𝜙 (𝐸], Θ]) − 𝛿] + 2𝜋𝑙.

(149)

The last condition implies

𝜙 (𝐸], Θ]) =
(𝛿 + 𝛿

0
)

2

+ 𝜋𝑙. (150)

Under the conditions (149), the equality (148) is satisfied
identically for all values of 𝛿. In these cases the transition
probability does not depend on the CP phase. Since the
amplitudes 𝐴

𝑒2̃
and 𝐴

𝑒3̃
are complex quantities, these con-

ditions can be satisfied in isolated points of the (Θ], 𝐸]) plane
only. In contrast to this, in the factorization approximation
𝐴
𝑒2̃

= 𝐴
𝑆
and 𝐴

𝑒3̃
= 𝐴

𝐴
both the conditions are

fulfilled along certain lines in the oscillograms. This occurs
because the amplitudes 𝐴

𝑆
and 𝐴

𝐴
take a 2-flavor form.

On the basis of neutrino states where the corresponding
2 × 2 Hamiltonians are traceless, both 𝐴

𝐴
and 𝐴

𝑆
are pure

imaginary because of the symmetry of the Earth’s density
profile [47].

Let us consider the equalities 𝐴
𝑆
= 0 and 𝐴

𝐴
= 0 using

the constant density approximation.

(1) The condition 𝐴
𝑆
(𝐸], Θ]) = 0 is satisfied when

sin𝜙
𝑆
(𝐸], Θ]) = 0, which leads to

𝐿 (Θ]) ≈
2𝜋𝑛

𝜔
𝑚

21

, 𝑛 = 1, 2, . . . . (151)

At energies 𝐸] ≳ 0.5GeV which are much higher
than the 1-2 mixing MSW resonance in the mantle
and in the core of the Earth one has 𝜔𝑚

21
≈ 𝑉 and the

condition (151) becomes

𝐿 (Θ]) ≃
2𝜋𝑛

𝑉

. (152)

This expression is energy independent and deter-
mines the baselines for which the “solar” contribution
to the probability vanishes [61]. In the plane (Θ], 𝐸])

it represents nearly vertical lines at fixedΘ].There are
three solar magic lines which correspond to 𝑛 = 1 (in
the mantle domain) Θ] ≈ 54

∘ and 𝑛 = 2, 3 (in the
core domain) [61] Θ] ≈ 30

∘ and 12
∘. The existence of

a baseline (𝐿 ≈ 7600 km) for which the probability
of ]

𝑒
↔ ]

𝜇
oscillations in the Earth is approximately

independent of the “solar” parameters (Δ𝑚2

21
, 𝜃

12
) and

of theCPphase𝛿was first pointed out in [62] and later
discussed in, for example, [61, 63–68]. This baseline
was dubbed “magic” in [63].

(2) The atmospheric magic lines are determined by the
condition 𝐴

𝐴
(𝐸], Θ]) = 0 [61]. Along these lines,

the “atmospheric” contribution to the amplitudes of
]
𝜇

↔ ]
𝑒
and ]

𝜏
↔ ]

𝑒
transitions vanishes and

the probabilities of oscillations involving ]
𝑒
or ]

𝑒
do

not depend on CP phase. In the constant density
approximation, the condition 𝐴

𝐴
= 0 is satisfied

when sin𝜙
𝐴
= 0 (𝜙

𝐴
= 𝜋𝑘, 𝑘 = 1, 2, . . .) or explicitly

𝐿 (Θ]) ≈
2𝜋𝑘

𝜔
𝑚

31

, 𝑘 = 1, 2, . . . . (153)

For energies which are not too close to the 1–3 MSW
resonance, it reduces to

𝐸] ≃
Δ𝑚

2

31
𝐿 (Θ])

󵄨
󵄨
󵄨
󵄨
4𝜋𝑘 ± 2𝑉𝐿 (Θ])

󵄨
󵄨
󵄨
󵄨

, (154)

which corresponds to the bent curves in the (Θ], 𝐸])

plane. For very large energies, where Δ𝑚2

31
/2𝐸 ≪ 𝑉,

the atmospheric lines approach the same vertical lines
as the solar magic lines (152).

(3) The condition (150) determines the interference phase
lines in the (Θ], 𝐸]) plane. In the constant density
approximation 𝜙 ≈ −𝜙

𝑚

31
. Consequently in the energy

range between the two resonances we have

𝜙
𝑚

31
≈

Δ𝑚
2

31
𝐿

4𝐸]

= 𝜙
0

𝐴
, (155)
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Figure 10: Oscillograms for the difference of probabilities Δ𝑃CP
𝜇𝑒

(𝛿) = 𝑃
𝜇𝑒
(𝛿) − 𝑃

𝜇𝑒
(𝛿

0
) with 𝛿

0
= 0

∘. Shown are the solar (black), atmospheric
(white), and interference phase condition (cyan) curves from [60].

that is, in the first approximation 𝜙 does not depend
on the matter density. From (150) we then obtain

𝐸] =
Δ𝑚

2

31
𝐿 (Θ])

4𝜋𝑙 − 2 (𝛿 + 𝛿
0
)

. (156)

Thus, in the factorization approximation, the conditions
(149) and (150) define three sets of lines (grid of magic lines)
in the oscillograms (see Figure 10), which play crucial roles in
understanding the CP violation effects. Along the lines, the
probabilities 𝑃

𝜇𝑒
, 𝑃

𝑒𝜇
, 𝑃

𝜏𝑒
, and 𝑃

𝑒𝜏
do not depend on the CP

phase in the first order approximation.Theother probabilities
depend on the phase weakly.

From Figure 10, we can see that the magic lines described
above do not coincide exactly with the lines of Δ𝑃CP

𝜇𝑒
= 0

which bound the CP-domains. Furthermore, interconnec-
tions of the latter occur. This is due to the breakdown of the
factorization approximation.

4.3. Determination of Hierarchy with Accelerator Experiments.
An accelerator neutrino experiment has a fixed baseline
which corresponds to a vertical line with the length deter-
mined by the available energy spectrum. In the oscillogram
of Figure 11 we have included such lines for a handful of

accelerator experiments. Furthermore, this energy spectrum
is usually peaked at certain energy (or narrow energy range)
resulting in the experiment being most sensitive to the
oscillation probability at that specific energy. An accelerator
neutrino experiment would typically run for several years
in neutrinos or antineutrinos before switching polarity and
therefore getting information both on 𝑃

𝛼𝛽
and 𝑃

𝛼𝛽
. The goal

of such a search is to observe in which channel the oscillation
probability is suppressed and in which it is enhanced. If
a neutrino experiment could run at energy similar to the
resonant one and at a baseline of several thousand kilometers,
then this determination would be quite simple. However,
as can be seen from the oscillogram, accelerator neutrino
experiments are confined to relatively shallow trajectories
with rather poor oscillatory pattern, and this severely limits
their capabilities leading to various degeneracies. In partic-
ular, lack of knowledge of the mass hierarchy is part of the
famous eightfold degeneracy, which arises as follows. Assume
wehave access to the values of oscillation probabilities𝑃

𝜇𝑒
and

𝑃
𝜇𝑒
at a given baseline 𝐿 and energy 𝐸 only. Then there exist

three types of ambiguities that give rise to the same values
of the probabilities in different parts of the parameter space
(mixing angles, CP phase, and signs of mass differences).
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(1) Sign (hierarchy) degeneracy: this is the degeneracy due
to the unknown neutrino mass hierarchy. Changing
the mass hierarchy, it is often possible to find a point
in parameter space that predicts the same oscillation
probabilities.

(2) Intrinsic (𝜃
13
, 𝛿) degeneracy: for any combination of

(𝜃
13
, 𝛿), there exists a different combination (̂𝜃

13
,
̂
𝛿)

that also predicts the same oscillation probabilities.

(3) Octant (𝜃
23
) degeneracy: changing the octant of 𝜃

23

also leads to a degeneracy due to 𝜇-𝜏 symmetry. If 𝜃
23

is close to maximal, the effects of this degeneracy are
less pronounced.

Since each of these degeneracies is twofold, an overall
degeneracy is eightfold: 23 = 8. The first two of these
degeneracies can be illustrated in a biprobability plot of
Figure 12. As follows from this figure, even if both the
probabilities (for a given neutrino energy) are known with
infinite accuracy, we cannot identify the hierarchy within the
pink region.

For known mass hierarchy (e.g., normal one) a given
value of 𝜃

13
fixes ellipse in the plot along which the CP phase

varies. Increasing 𝜃
13

moves the ellipse up and to the right
in the plot. Therefore for every point on an ellipse, there will
be another ellipse corresponding another value 𝜃prime

13
, which

crosses this point and therefore 𝜃prime
13

reproduces the same
oscillation probabilities. For example, in the left intersection
of the black andwhite ellipse (Figure 12) both combinations of
𝜃
13
and 𝛿 correspond to those precise oscillation probabilities

and there are also values of 𝜃
13

and 𝛿 that will reproduce
them in the inverted hierarchy. For the right intersection, the
intrinsic degeneracy is still present, while the sign degeneracy
is resolved. It should be remembered that this type of figure
is just an illustration. In real experiment the neutrino energy
spans over wide range, the oscillation probabilities would

not be exactly known, and strictly this type of consideration
becomes invalid.

In order to see how these degeneracies manifest them-
selves in an experimental setup, we show the oscillation prob-
ability 𝑃

𝜇𝑒
as a function of the baseline length in Figure 13.

While the 295 km baseline is too short for matter effects to
be very significant, as the baseline increases matter effects
start being more and more important. In particular, when
the oscillation phase maximum occurs at an energy similar
to that of the matter resonance, as is the case of 7500 km
baseline, we can see the enhancement of the transition
probability in the neutrino channel for the normal hierarchy
and the suppression in the inverted. In a simple two-flavor
scenario, the amplitude of 𝑃

𝜇𝑒
at the resonance is one by

definition in the normal mass hierarchy case. At the same
time, the oscillation amplitude in the inverted hierarchy at the
same energy is given by

sin22̃𝜃 =

sin22𝜃
1 + 3cos22𝜃

≃

1

4

sin22𝜃, (157)

where the last equality holds for small 𝜃. On the other hand,
if the neutrino energy is far below the resonance in order
to accumulate a significant oscillation phase, such as in the
left and middle panels, then the oscillation amplitude will be
effectively given by

sin22̃𝜃 ≃ sin22𝜃 [1 + 4𝑉𝐸

Δ𝑚
2
cos 2𝜃] . (158)

The reason that the 810 km baseline separates the hierarchies
better than the 295 km one is based mainly on the fact that
the oscillation maximum can be reached for higher energies
due to the longer baseline, and thus, the relative difference
between probabilities for the two hierarchies increases. Also
note that the oscillation probabilities for the 7500 kmbaseline
are not very dependent on the CP-violating phase 𝛿. This is
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Figure 12: Two different illustrations of parameter space degeneracies. Left panel: biprobability plot for 𝐿 = 295 km and 𝐸 = 0.65GeV.
The red band indicates the possible values of the probabilities for normal hierarchy, the blue for inverted, and the pink for the intersection
of the two. The black and white ellipses represent the possible values of the probabilities for two different fixed values of 𝜃
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. Right panel:

probability isocontours of 𝑃
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(black) and 𝑃
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(red).The values of the probabilities correspond to those of the intersections between the black

and white ellipses in the left panel (with the thick lines representing the upper left intersection). The intersections are where the parameter
values reproduce the oscillation probabilities for both neutrinos and antineutrinos.
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due to the so-called magic baseline effect, which has been
discussed before.

In order to successfully determine the neutrinomass hier-
archy in a single accelerator experiment, two conditions are
of major importance. (1) The baseline must be long enough
to allow for a significant value of 𝑉𝐸 in order to separate
the neutrino and antineutrino oscillation probabilities. To
separate the mass hierarchy determination from the effects
of the CP phase, this separation must be large enough to
avoid overlap of the probabilities within the experimental
uncertainties. (2) The statistics must be high enough and the
systematics low enough in order to make the split statistically
significant. The literature contains several proposals for long
baseline experiments with baselines of several thousands of

kilometers in order to satisfy these conditions. However, as
we will discuss later, the large value of 𝜃

13
also provides

us with an opportunity to pin down the value of 𝛿. Such
measurements require the presence of interference terms
which will be small at the very long baselines, and instead
medium long baselines around 1000 km, such as the 810 km
baseline shown in Figure 13, may be preferable due to the
significant 𝛿 dependence of probabilities.

4.3.1. CP Violation Effects and the Mass Hierarchy. Figure 13
shows a significant dependence of the probabilities on theCP-
violating phase 𝛿, especially at small baselines. We are mainly
interested in the oscillation probability at the first or second
oscillation maximum, where an experiment would typically
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be placed. In these baselines𝐿 the ]
𝜇
-]
𝑒
oscillation probability

(the “golden channel”) can be expanded in the small quantity
Δ𝑚

2

21
𝐿/2𝐸 which gives [69]

𝑃
𝑒𝜇

≈ 𝑠
2

23
𝑃
2𝑓

+ 𝑐
13
sin 2𝜃

13
sin 2𝜃

12
sin 2𝜃

23

Δ𝑚
2

21

2𝐸𝑉

× sin(𝑉𝐿
2

) sin(
Δ𝑚

2

31
𝐿

4𝐸

) cos(𝛿 −
Δ𝑚

2

31
𝐿

4𝐸

) ,

(159)

where 𝑃2𝑓 is the two-flavor oscillation probability discussed
earlier. In (159) we have neglected terms of the second (and
higher) order in Δ𝑚

2

21
𝐿/2𝐸 (while the first neglected term

is not suppressed by 𝜃
13
, for the value of 𝜃

13
measured by

reactor experiments the suppression by the solar mass square
splitting is about 6 times stronger) as well as the matter effect
on Δ𝑚

2

31
. It is the second term that is responsible for creating

the band of different oscillation probabilities displayed in
Figure 13, and hence, for creating the sign degeneracy in
accelerator neutrino experiments. The appearance of the
sin(𝑉𝐿/2) term is an inheritance from the magic baseline
oscillations and will vanish the 𝛿-dependent termwhen𝑉𝐿 =

2𝜋. Furthermore, we can observe that this term contains all
of themixing angles in the sameway as the Jarlskog invariant,
which is expected due to the CP dependence of the term.

4.4. Determination of Hierarchy with Atmospheric Neutrinos

4.4.1. Neutrino Fluxes. The original flux of atmospheric
neutrinos contains incoherent components of ]

𝑒
, ]

𝜇
and the

corresponding antineutrinos, while the original ]
𝜏
flux is

negligible. We introduce Φ0

𝑒
and Φ

0

𝜇
, the electron and muon

neutrino fluxes, as well as Φ

0

𝑒
and Φ

0

𝜇
, the electron and

muon antineutrino fluxes, at the detector in the absence of
oscillations. The flavor ratios

𝑟 ≡

Φ
0

𝜇

Φ
0

𝑒

, 𝑟 ≡

Φ

0

𝜇

Φ

0

𝑒

(160)

increase with energy.
There is a mild neutrino-antineutrino asymmetry: the

neutrino flux Φ0

𝜇
/Φ

0

𝜇
≈ 0.8-0.9. All the fluxes (at 𝐸 > 1GeV)

decrease rapidly with energyΦ0

𝛼
∝ 𝐸

−𝑘, 𝑘 = 𝑘(𝐸) = 3–5, and
an azimuthal dependence shows up at low energies.

The flux of neutrinos of flavor ]
𝛼
at a detector, with

oscillations taken into account, is given by

Φ
𝛼
= Φ

0

𝑒
𝑃
𝑒𝛼
+ Φ

0

𝜇
𝑃
𝜇𝛼

= Φ
0

𝑒
[𝑃

𝑒𝛼
+ 𝑟 (𝐸,Θ]) 𝑃𝜇𝛼] , 𝛼 = 𝑒, 𝜇, 𝜏.

(161)

Similar expressions hold for the antineutrino fluxes. Inserting
the analytic expressions for the probabilities (122)–(126), one
finds

Φ
𝑒

Φ
0

𝑒

= 1 + (𝑟𝑠
2

23
− 1) 𝑃
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𝑟

𝑃
𝛿

𝑒𝜏
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where 𝑃
𝑒3̃

≡ |𝐴
𝑒3̃
|
2 and 𝑃

𝑒2̃
≡ |𝐴

𝑒2̃
|
2 are defined in

Section 3.13. In the factorization approximation they corre-
spond to the atmospheric and solar oscillation modes. The
𝛿-dependent terms have been introduced in (144).

Using unitarity relations

󵄨
󵄨
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󵄨
󵄨
󵄨
𝐴
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󵄨
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2
= 1 − 𝑃

𝑒2̃
,
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where the terms proportional to |𝐴
3̃2̃
|
2 have been neglected

we can approximate

Re (𝐴∗

2̃ 2̃
𝐴
3̃ 3̃
) ≈ √(1 − 𝑃

𝑒3̃
) (1 − 𝑃

𝑒2̃
) cos𝜓. (164)

Here 𝜓 ≡ arg𝐴
33
𝐴
∗

22
is the relative phase between the two

amplitudes. For the ]
𝑒
flux, we then obtain

Φ
𝑒

Φ
0

𝑒

≈ 1 + (𝑟𝑠
2

23
− 1) 𝑃

𝑒3̃
+ (𝑟𝑐

2

23
− 1) 𝑃

𝑒2̃

+ 𝑟 sin 2𝜃
23
√𝑃

𝑒3̃
𝑃
𝑒2̃
cos (𝜙 − 𝛿) .

(165)

The oscillated fluxes satisfy the sum rule

Φ
𝑒
+ Φ

𝜇
+ Φ

𝜏
= Φ

0

𝑒
+ Φ

0

𝜇
, (166)

which simply reflects the unitarity of transitions and, conse-
quently, conservation of the total flux in oscillations.

The formulas (161) also show the screening effect. Terms
with oscillation probabilities driven by the 1-2 and 1–3
mixings appear with the “screening” factors [70, 71]: 𝑃

𝑒3̃
with

(𝑟𝑠
2

23
− 1) and 𝑃

𝑒2̃
with (𝑟𝑐

2

23
− 1). The contribution of the

“atmospheric mode” vanishes along the line 𝑟(𝐸, Θ]) = 1/𝑠
2

23
,

whereas the contribution of the “solar mode” vanishes along
𝑟(𝐸, Θ]) = 1/𝑐

2

23
. For maximal mixing both contributions

vanish along the same line, 𝑟(𝐸, Θ]) = 2. For the neutrino
energies above 0.1 GeV, 𝑟 > 1.8-1.9, and only one of these
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contributions can vanish for substantial deviation of the 2-
3 mixing from maximal: 𝑠2

23
or 𝑐2

23
< 0.45. Thus, both the

effects of 1-2 and 1–3 mixing turn out to be subleading and
the oscillation effects are well described by the first order
approximation of 2-3 vacuum oscillations.

In the ]
𝜇
flux, the contributions of the 1-2 and 1–3

modes are suppressed by additional factors 𝑠2
23
/𝑟 and 𝑐

2

23
/𝑟,

respectively.There is no suppression of the interference terms,
which depend on the CP violation phase. Furthermore, in the
]
𝑒
flux the interference term is enhanced by the flux ratio 𝑟.

There is no suppression of the interference terms of the 1-2
and 1–3 modes in the 𝜇-𝜏mode.

4.4.2. Sensitivity to Mass Hierarchy. Let us discuss the sensi-
tivity of large water or ice detectors of atmospheric neutrinos
to the neutrinomass hierarchy.The ]

𝜇
-like events correspond

to interactions ]
𝜇
+𝑁 → 𝜇+𝑋, ]

𝜇
+𝑁 → 𝜇

+
+𝑋 and can

be observed as events withmuon tracks and hadron cascades.
There are also some contributions from ]

𝜏
which produce 𝜏

with subsequent decay into 𝜇. The number of ]
𝜇
-like events

in the 𝑖𝑗-bin in the 𝐸]-cos 𝜃𝑧 plane equals

𝑁
𝑁𝐻

𝑖𝑗,𝜇
= 2𝜋𝑁

𝐴
𝜌𝑇∫

Δ
𝑖
cos 𝜃
𝑧

𝑑 cos 𝜃
𝑧

× ∫

Δ
𝑗
𝐸]

𝑑𝐸]𝑉eff (𝐸])𝐷𝜇
(𝐸], 𝜃𝑧) ,

(167)

where 𝑇 is the exposure time,𝑁
𝐴
is the Avogadro number, 𝜌

is the density of ice, 𝑉eff(𝐸], 𝜃𝑧) is the effective volume of the
detector, and the number density of events per unit time per
target nucleon is given by

𝐷
𝜇
(𝐸], 𝜃𝑧) = [𝜎

𝐶𝐶
(Φ

0

𝜇
𝑃
𝜇𝜇

+ Φ
0

𝑒
𝑃
𝑒𝜇
)

+𝜎
𝐶𝐶

(Φ

0

𝜇
𝑃
𝜇𝜇

+ Φ

0

𝑒
𝑃
𝑒𝜇
)] .

(168)

It is assumed here that experiments do not distinguish the
neutrino and antineutrino events and corresponding signals
are summed up.

The fine-binned distribution of events (166) is shown in
Figure 14. For illustration we use the effective volume of
PINGU with 22 additional strings [72]. which increases from
∼2Mt at 𝐸] = 2GeV to 20Mt at 𝐸] = 20GeV. The pattern
of the event number distribution follows the oscillatory
picture due to the ]

𝜇
-]
𝜇
mode of oscillations with a certain

distortion in the resonance region. The maxima and minima
are approximately along the lines of equal oscillation phases
𝐸] ∼ 𝜙

32
Δ𝑚

2

32
| cos 𝜃

𝑧
|𝑅

⊕
(where 𝑅

⊕
is the Earth radius), with

distortion in the resonance region 𝐸] = (4–10)GeV. In the
high density bins, the number of events reaches 200 and the
total number of events is about 105.

The expression for the density of events (168) can be
written as

𝐷
𝑁𝐻

𝜇
= 𝜎

𝐶𝐶
(𝐸])Φ
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where

𝜅
𝜇
≡

𝜎
𝐶𝐶
Φ

0

𝜇

𝜎
𝐶𝐶
Φ
0

𝜇

. (170)

Similarly one can determine the number of events for
inverted mass hierarchy. Let us introduce the 𝑁-𝐼 hierarchy
asymmetry for the 𝑖𝑗-bin in the (𝐸]-cos 𝜃𝑧) plane as

𝐴
𝑁-𝐼
𝜇,𝑖𝑗

≡

𝑁
𝐼𝐻

𝜇,𝑖𝑗
− 𝑁

𝑁𝐻

𝜇,𝑖𝑗

√𝑁
𝑁𝐻

𝜇,𝑖𝑗

. (171)

The moduli of the asymmetry (171) are the measures of
statistical significance of the difference of the number of
events for the normal and inverted mass hierarchies: 𝑆

𝑖𝑗
=

|𝐴
𝑖𝑗
|.
The strongest effect of hierarchy change is in the strips

along the constant phase lines in the energy interval 𝐸] = (4–
12)GeV, where these lines are distorted by the matter effect.
Here the asymmetry changes sign with the zenith angle,
and the number of intervals with the same sign asymmetry
increases with the decrease of energy. The ]

𝜏
→ 𝜏 → 𝜇

events can be considered as background events and treated
within ∼5% systematic errors.

4.4.3. Measurements. According to Figure 14, the hierarchy
asymmetry of the ]

𝜇
events has opposite signs in different

parts of the oscillogram. Thus, the integration over 𝐸] and
cos 𝜃

𝑧
substantially reduces the sensitivity to the hierarchy.

Due to this, a relatively good reconstruction of the neutrino
energy and direction is required to identify the hierarchy.
The uncertainties of the reconstruction of energy 𝜎

𝐸
and

angle 𝜎
𝜃
should be comparable to or smaller than the sizes

of the domains with the same sign of the asymmetry. The
oscillograms for the reconstructed neutrino energy 𝐸

𝑟

] and
angle 𝜃

𝑟

𝑧
can be obtained by smearing of the 𝐸]-cos𝜃𝑧

oscillograms with the reconstruction functions of the width
𝜎
𝐸
and angle 𝜎

𝜃
.

Small uncertainties 𝜎
𝐸

and 𝜎
𝜃
require rather precise

measurements of the energy 𝐸
𝜇
and direction 𝜃

𝜇
of the

muon, as well as energy of the accompanying hadron cascade
𝐸
ℎ
. Then the neutrino energy equals 𝐸

𝑟

] = 𝐸
𝜇
+ 𝐸

ℎ
. The

reconstruction of the neutrino direction is more involved. In
the first approximation, one can use 𝜃] ≈ 𝜃

𝜇
with a spread

which decreases with energy: 𝜎
𝜃

∼ 𝐴√𝑚
𝑝
/𝐸](𝐴 = 𝑂(1)).

Knowledge of the hadron cascade energy allows reducing
this uncertainty. Further improvements could be possible if
some information about geometry of the cascade is available.
A possibility to separate (at least partially) the neutrino and
antineutrino samples would significantly improve sensitivity
to the mass hierarchy, as well as to CP violation.

All this imposes conditions on the detector character-
istics. According to Figure 14, the most sensitive region to
the hierarchy is around the resonance and above: 𝐸 = (5–
15)GeV. The number of events in Super-Kamiokande is too
small, but (upgraded) ice and underwater detectors of the
multimegaton (∼10 Mt) scale could collect around the order



Advances in High Energy Physics 29

20
18
16
14
12
10

8
6
4
2

187
165
143
121
99
77
55
33
11

−1 −0 0.8 −0.2−0.4−0.6

𝑁𝜇
𝑁𝐻 (PINGU 1yr)

cos 𝜃𝑧

𝐸
𝑣

(G
eV

)

(a)

−1 −0 0.8 −0.2−0.4−0.6

20
18
16
14
12
10

8
6
4
2

(PINGU 1 
+3.2
+2.56
+1.92
+1.28
+0.64
0
−0.64

−1.28

−1.92

−2.56

−3.2

yr)

𝐸
𝑣

(G
eV

)

cos 𝜃𝑧

( )/𝑁𝜇 𝑁𝜇
𝑁𝐻− ( )𝑁𝜇

𝑁𝐻 1/2𝐼𝐻

(b)

Figure 14: Left: the binned distribution of the number of 𝜇 events in PINGU after 1 year under the assumption that the neutrino hierarchy is
normal. Right: the𝑁-𝐼 hierarchy asymmetry of ]

𝜇
events in the𝐸]-cos 𝜃𝑧 plane.The absolute value of the asymmetry in a given bin determines

the statistical significance of the difference of the numbers of events for the inverted and normal mass hierarchies. Both figures from [56].

of 105]
𝜇
events a year in this range so that a high statistics

study becomes possible.
A small enough spacing between the PMTs (∼10–20m

between strings and 3–5m in the vertical direction) will
allow the reduction of the threshold down to a few GeV
and perform reasonably good measurements of the muon
and hadron cascade characteristics. Very high statistics will
also allow resolving the problem of parameter degeneracy;
effects qualitatively similar to the mass hierarchy effect can
be obtained by small (within 1𝜎 interval) variations of Δ𝑚2

32

and 𝜃
23
. The effect of an unknown CP phase is small.

High statistics would allow resolving the degeneracy
problem by selecting specific regions in the 𝐸]-cos𝜃𝑧 for the
analysis, where effects of Δ𝑚2

32
are suppressed in comparison

to the hierarchy effects or averaged out as a result of specific
integration. High statistics also allow performing an analysis
of the data using Δ𝑚

2

32
and 𝜃

23
as fit parameters. This will

open a possibility to determine the mass hierarchy and
measure these parameters simultaneously.

Note that other experimental techniques using atmo-
spheric neutrinos may also prove valuable for determination
of the mass hierarchy. In particular, experiments that can
separate neutrinos from antineutrinos on an event basis
need a significantly lower number of events to obtain the
same sensitivity. Thus, such detectors can be smaller in size
as compared to the neutrino telescopes. In this context,
a magnetized iron calorimeter, such as the India-based
Neutrino Observatory [73], could also provide an important
contribution to the determination of mass hierarchy. The
capabilities of detectors using charge identification were
studied in [74].

4.4.4. Interplay between Accelerator and Atmospheric Neu-
trinos. The atmospheric neutrino data can also be used
to complement the data from accelerator neutrino exper-
iments in order to extract the most information possible.

As was demonstrated in [74], the atmospheric neutrino
determination of the neutrino mass hierarchy can be sig-
nificantly affected by the addition of external priors and, in
particular, may lead to different sensitivity to the neutrino
mass hierarchy in the cases of true normal or inverted
hierarchy. However, once external input on the neutrino
oscillation parameters is included by considering also other
experiments, the room to mimic the true oscillation pattern
in the wrong hierarchy becomes much more restricted and
the sensitivity to the hierarchy increases. Adding the accel-
erator experiments’ own sensitivity to the mass hierarchy, a
measurementmay be possible even for the current generation
of accelerator experiments by the addition of detector capable
of lepton charge identification. This has been discussed in
[75] and the prospects of using amagnetized iron calorimeter
detector to augment the current generation of accelerator
experiments are a 2–4𝜎 determination of the mass hierarchy
within 10 years of data taking, depending on the true value
of the oscillation parameters and the characteristics of the
detector.

5. Discussion and Conclusions

In this paper, we have described the effects of neutrino prop-
agation in matter relevant to experiments with atmospheric
and accelerator neutrinos and aimed at the determination of
the neutrinomass hierarchy andCP violation.Thus, to a large
extent, we have focused on neutrino propagation in the Earth
matter.

(1) At relatively low energies, the dominant effect of neu-
trino interactions with matter is the elastic forward
scattering, which is described by an effective poten-
tial. Neutrino evolution in matter is then described
by a Schrödinger-like equation including this effective
potential. The potential differences for neutrinos of
different types influence the flavor evolution of the
system of mixed neutrinos. In the majority of realistic
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situations, neutrinos propagate in normal (unpolar-
ized nonrelativistic) matter with nearly constant or
slowly changing density.

(2) Matter modifies the neutrino flavor mixing and
changes the eigenvalues of the Hamiltonian of prop-
agation. This is equivalent to a modification of the
dispersion relations of neutrinos. The influence of
matter on mixing of neutrinos has a resonance char-
acter. At energies or densities for which the eigen-
frequency of the neutrino system with mixing 𝜔

𝑖𝑗
=

Δ
2

𝑖𝑗
/2𝐸 equals approximately the eigenfrequency of

the medium 2𝜋/𝑙
0
, the mixing in matter becomes

maximal. Large mixing shifts the position of the
resonance to lower values of the potential. At usual
densities, there are two resonances related to the two
mass squared differences Δ𝑚

2

21
and Δ𝑚

2

31
between

the neutrino mass eigenstates. The resonances are
realized in oscillation channels involving electron
neutrinos.

(3) In many practical situations, knowledge of neutrino
mixing in matter and the eigenstates of the Hamil-
tonian in matter allows finding the results of the
neutrino flavor evolution immediately. This includes
neutrino oscillations in matter with constant density
and also adiabatic conversion of neutrinos, where
the averaged oscillation results can be written down
immediately. In the nonaveraged case, the problem is
reduced to finding the oscillation phase (integrating
the energy splittings over distance). In this sense the
Nature has implemented the most (computationally)
simple setups. The very convenient presentation of
mixing in matter can be obtained as series expansion
in the ratio of the two mass squared differences, 𝑟

Δ

(perturbative diagonalization of the effective Hamil-
tonian), which allows to understanding a number of
subtle results.The simplest and physically transparent
description of dynamics of neutrino flavor evolution
can be obtained in the propagation basis (in the case
of the standard parameterization). In this basis, the
CP-violating phase and 2-3 mixing do not influence
the evolution and the amplitudes of transitions do
not depend on 𝛿 or 𝜃

23
. The dependence on these

parameters appears as a result of projecting the states
of the propagation basis back to the flavor states at
production and detection. In many practical cases
the 3] evolution can be reduced to evolution of two
neutrino systems with certain corrections.

(4) There are two practically important cases: (i) neutrino
propagation in matter with constant or nearly con-
stant density and (ii) neutrino propagation in matter
with slowly (adiabatically) changing density.

(5) In the case of constant density, flavor evolution has a
character of oscillations with parameters determined
by mixing and mass splitting in matter. The oscilla-
tions are an effect of a phase difference increase in
the course of neutrino propagation. The resonance
enhancement of oscillations is realized in an energy

region around 𝐸
𝑅
. If the density is approximately

constant, then the results can be obtained by using
perturbation theory in the deviation of the den-
sity distribution from a constant one. The accuracy
improves if the density profile is symmetric with
respect to the middle point of the neutrino trajectory,
as is realized for neutrinos crossing the Earth. A
simple and rather precise semianalytical description
of neutrino oscillations inmatter with varying density
can be obtained in the limits of small density, 𝑉 <

Δ𝑚
2

𝑖𝑗
/2𝐸, and high density, 𝑉 ≫ Δ𝑚

2

𝑖𝑗
/2𝐸. The latter

gives a very accurate description of neutrino flavor
evolution in the Earth at 𝐸 > (8–10)GeV.

(6) In a medium with slowly changing density, adia-
batic conversion takes place. This effect is related
to the change of mixing in matter due to density
change. Adiabaticity implies that there are no tran-
sitions among the eigenstates of the instantaneous
Hamiltonian during propagation.The strongest flavor
transformation is realized when the initial density is
much larger, and the final one is much lower than
the resonance density. In this case, the initial state
(and due to adiabaticity, the state at any othermoment
of evolution) practically coincides with one of the
eigenstates. Therefore, oscillation effects are absent
and nonoscillatory flavor conversion takes place.This
is realized for supernova neutrinos and approximately
for high energy solar neutrinos. In general, if the
initial mixing is not strongly suppressed, an interplay
of adiabatic conversion and oscillations occurs. Adia-
batic transformations are also realized for neutrinos
with energy ≤ 1GeV propagating in the mantle of
the Earth. In particular, thismeans that the oscillation
depth at the detector is determined by mixing at the
surface of the Earth and not bymixing at average den-
sity. Until now, the mater effects have been observed
in solar neutrinos and, indirectly, in atmospheric
neutrinos and there is good chance that they will be
observed by new generation of the accelerator and
atmospheric neutrino experiments.

(7) Strong flavor transition can be realized without
enhancement of mixing. This occurs in matter with
periodic or quasiperiodic density change when the
parametric resonance condition is fulfilled. For small
mixing strong transition requires a large number of
periods. A similar enhancement can take place in
matter with several layers of different densities. Here
the enhancement occurs when a certain correlation
between the oscillation phases in each layer and
amplitudes of oscillations determined by mixing is
present. The case of a medium with 3 layers (1.5
periods) is of practical interest for neutrinos crossing
both the mantle and the core of the Earth. For a
multilayer medium two conditions must be satisfied
to have strong transitions: the amplitude (collinearity)
and the phase conditions.

(8) For neutrinos crossing a small amount of matter,
such as accelerator experiments with baselines up to
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(1-2) ⋅ 103 km, the column density of matter is small
and, according to the minimal width condition, the
matter effect on oscillations is small regardless of
energy, vacuum mass splitting, and neutrino mixing.
Furthermore, if the oscillation phase is small, then
mimicking of vacuum oscillations occurs.

(9) A comprehensive description of the neutrino fla-
vor transitions in the Earth is given in terms of
neutrino oscillograms of the Earth. After the recent
determination of the 1–3 mixing, the structure of
oscillograms is well fixed. The salient features of
oscillograms at high energies (due to 1–3 mixing) are
theMSWresonance peak in themantle domain, three
parametric ridges, and the MSW peak in the core
domain. At low energies (due to 1-2 mixing), there
are three peaks, due to the MSW resonance, and the
parametric ridge. The positions of all these and other
structures are determined by the generalized phase
and amplitude conditions. In the case of normal mass
hierarchy, the resonance peaks induced by the 1–3
mixing are in the neutrino channels. For inverted
mass hierarchy they are in the antineutrino channels.
This is the foundation for determining the neutrino
mass hierarchy. The resonance structures due to the
1-2 mixing are always in the neutrino channels, since
the sign of the small mass square difference has been
fixed.

(10) The CP properties of the oscillograms (their depen-
dence on CP phase) are determined by the CP
domains, areas in which the CP violation effect has
the same sign. The borders of these domains are
approximately determined by the grids of the magic
lines (solar and atmosphericmagic lines) and the lines
where the oscillation phase condition is fulfilled.

(11) Measurements of matter effects in neutrino oscilla-
tions provide a good opportunity to determine the
neutrino mass hierarchy. The 1-2 ordering has been
determined due to thematter effect of solar neutrinos.
The 1–3 ordering can be identified by studying the
matter effects in accelerator and atmospheric neu-
trino experiments. There is a good chance that future
studies of the atmospheric neutrinos with multi-
megaton underwater (ice) detectors will be able to
establish the mass hierarchy. With a threshold of
a few GeV, these detectors will be sensitive to the
resonance region (∼ 6–10)GeV, where the difference
of probabilities for the normal and inverted mass
hierarchies is maximal. The challenges here are the
accuracy of reconstruction of the neutrino energies
and directions. Integration over the energy and angle,
as well as summation of neutrino and antineutrino
signals, diminishes the sensitivity to the hierarchy.
Another problem is the degeneracy of the hierarchy
effects with the effects of other neutrino parameters,
in particular with Δ𝑚

2
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.

(12) In accelerator experiments, many of the problems
mentioned above are absent. However, existing and

proposed accelerator experiments will cover only
peripheral regions of oscillograms where enhance-
ment of oscillations is very weak and oscillatory
structures are rather poor. As a consequence the
problem of degeneracy here is even more severe.
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