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Considering energy conservation and the back reaction of radiating particles to the spacetime, we investigate the massive Dirac
particles’ Hawking radiation from a general static Riemann black hole using improved Damour-Ruffini method. A direct conse-
quence is that the radiation spectrum is not strictly thermal.The correction to the thermal spectrum is consistent with an underlying
unitary quantum theory and this may have profound implications for the black hole information loss paradox.

1. Introduction

In the 1970s, Hawking’s astounding discovery that black holes
radiate black body spectrum [1, 2] had greatly stimulated the
development of the theory of black hole thermodynamics
and then four laws of black hole thermodynamics were
established [3, 4]. Hawking radiation gives us new insights
into gravity physics and also provides some hints of quantum
gravity, so there have been a lot of works related to Hawking
radiation until recently. Our concern here is about informa-
tion conservation during Hawking radiation. From Hawk-
ing’s famous work, people know that black holes are not the
final state of stars, and, with the emission of Hawking radia-
tion, they could lose energy, shrink, and eventually evaporate
completely. However, because of the quality of purely thermal
spectrum, it also sets up a disturbing and difficult information
loss problem: what happens to information during black hole
evaporation? And it also implies the loss of unitarity or, to put
itmore severely, the breakdown of quantummechanics [5–9].
About the year of 2000, Parikh and Wilczek, contemplating
Hawking’s heuristic picture of tunneling triggered by vac-
uum fluctuations near the horizon, proposed a semiclassical
method to investigate the emission rate by treating Hawking
radiation as a tunneling process [10–12]. They found that the
barrier of tunneling is created by the outgoing particle itself,

and when energy conservation is considered, a corrected
spectrum is given, which supports the underlying unitary
theory. Subsequently, some references extended this method
to more general circumstances [13–17]. All of the results
obtain the conclusions that the spectrum is no longer pre-
cisely thermal and information can be taken out of the black
hole, which means a possible explanation for information
puzzle and the loss of quantum unitarity.

Considering the crucial points of energy conservation
and the back reaction of particles to the spacetime in Parikh
andWilczek’s method, [18–20] presented another method on
the base of classical Damour-Ruffini’s method to calculate
modified Hawking radiation from the BTZ black hole and
Kerr-Newman black hole and got the same result as Parikh
andWilczek’s tunnelingmethod. In this paper, wewill use this
method to calculate Dirac particles’ Hawking radiation from
the general Riemann black hole, and we obtain the same cor-
rectedHawking radiation spectrum as the previous literature.

The remainder of this paper is organized as follows. In
Section 2, we discuss the Dirac equations in the spacetime. In
Section 3, we investigate Hawking radiation using Damour-
Ruffini method. In Section 4, when energy conservation
and particles’ back reaction to the spacetime are taken into
account, we obtain the emission spectrumwhich is no longer
thermal. At last, we finish this paper with some conclusions.



2 Advances in High Energy Physics

2. Dirac Equations in the Static
Riemann Black Hole

Themetric of the static Riemann spacetime can be expressed
as
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2
= 𝑎
2
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2
− 𝑏
2
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2
− 𝑐
2
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2
− 𝑑
2
𝑑𝑧
2
, (1)

where 𝑎, 𝑏, 𝑐, 𝑑 are the functions of (𝑥, 𝑦, 𝑥) and the position
of event horizon is given by 𝑥 = 𝜉.

It is very convenient to study Dirac equations in curved
background using Newman-Penrose formalism [21, 22].
From metric (1), we choose a set of null tetrad frame as
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and the corresponding dual forms are
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So we can calculate 12 Newman-Penrose coefficients [22,
23] from (1), (2), and (3):
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𝛾 = 𝜀. (4)

In the curved spacetime, Dirac equations of a particle in
Newman-Penrose formalism are given as [24]
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where 𝐹
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2
are the four components of the wave

function 𝜓; 𝜇 is rest mass; and𝐷, Δ, 𝛿, 𝛿 are defined by
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By putting NP coefficients (4) into (5), we get the
equations in an explicit form:
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and these equations could also be rewritten in a more concise
matrix form:
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in which 𝛾
𝜇 is the 𝛾 metric in curved spacetime and 𝐼 is the

identity matrix.
Defining another variable 𝜓̂ as
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So we get the Dirac equations in a very simple and concise
form, which is helpful for the following disccusion.

3. Analytic Extension and Hawking
Thermal Radiation

We could always write [25]
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where 𝑥 = 𝜉 is the position of event horizon and 𝑞
2
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2
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are arbitary fuctions which are not zero and nonsingular at
the horizon.

The surface gravity 𝜅 is given by [25]
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Because 𝜅 is not zero and non singular, we need that
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Another consideration is the area of event horizon
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Then, we have
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Multiplying (23) by 𝑞(𝑥 − 𝜉)
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event horizon
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where 𝜔 is the energy of radiating particle, and we get the
radial wave equation which we are interested in:
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So it is easy to show that just outside the horizon (𝑥 > 𝜉)
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where we use the usual advanced Eddington-Finkelstein
coordinate, 𝑉 = 𝑡 + 𝑥.

We are concerned about the radiation of black hole, so we
only need to consider (30), while this equation is not analytic
on the horizon and therefore cannot be straightforwardly
extended to the region inside the horizon. FollowingDamour
and Ruffini’s method [26], we can extend the outgoing wave
equation (30) inside the horizon by turning the (−𝜋) angle
through the negative half complex plane. Let
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𝑇
.

(32)

Please notice that 𝑥 = (1/2𝜅) ln((𝜉 − 𝑥)/𝜉) is the tortoise
coordinate transformation inside the horizon.

Therefore, according to Sannan’s work [27], the emission
rate at the horizon is

Γ =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
out
𝜔

(𝑥 > 𝜉)

𝜓out
𝜔

(𝑥 < 𝜉)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 𝑒
−2𝜋𝜔/𝜅

. (33)

Then, it is easy to obtain the thermal radiation spectrum

𝑁
𝑤
=

1

𝑒2𝜋𝜔/𝜅 + 1
=

1

𝑒𝜔/𝑇 + 1
, (34)

where𝑇 = 𝜅/2𝜋 is the temperature of the horizon and 𝜅 is the
surface gravity.

4. Back Reaction to the Spacetime

In Section 3, we obtain Hawking’s purely thermal spectrum
equations (33) and (34), without considering the back reac-
tion of emitting particles to the spacetime, which will lead
to the information loss puzzle. As a matter of fact, when a
particle with energy 𝜔

𝑖
radiates from the black hole whose

mass is 𝑀, the mass of the black hole 𝑀 should reduce to
𝑀− 𝜔

𝑖
, and the emission rate should be

Γ
𝑖
= 𝑒
−2𝜋𝜔𝑖/𝜅𝑖 , (35)

where 𝜅
𝑖
is the surface gravity of the black hole after emitting

this particle.
For many particles’ emission, assuming that they radiate

one by one, we have

Γ = ∏

𝑖

Γ
𝑖
= 𝑒
∑
𝑖
(−2𝜋𝜔𝑖/𝜅𝑖). (36)
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Andwe could regard the emission as a continuous process, so
the sum in (36) should be replaced by integration

Γ = 𝑒
∫
𝑤

0
−(𝑑𝜔/𝑇)

= 𝑒
∫
𝑀−𝜔

𝑀
(𝑑𝑀/𝑇)

= 𝑒
𝑆2−𝑆1 = 𝑒

Δ𝑆
, (37)

where Δ𝑆 is the difference between the entropy of the black
hole before and after emission, and note that we have used the
first law of black hole thermodynamics 𝑑𝑆 = 𝑑𝑀/𝑇, which
manifests that Hawking radiation should be a quasistatic
process.

So we obtain the modified Hawking radiation, which is
consistent with the tunneling method of Parikh. We find
that Hawking radiation is not a pure thermal spectrum, the
deviation from pure thermal spectrum could explain the
information loss paradox, and the result is precisely consis-
tent with an underlying unitary theory. According to Parikh’s
discussion [11, 12], “Quantummechanics tells us that the rate
must be expressed as

Γ (𝑖 󳨀→ 𝑓) =
󵄨󵄨󵄨󵄨󵄨
𝑀
𝑓𝑖

󵄨󵄨󵄨󵄨󵄨

2

⋅ (phase space factor) , (38)

where the first term on the right is the square of the amplitude
for the process. The phase space factor is obtained by sum-
ming over final states and averaging over initial states. But
the number of final states is just the final exponent of the final
entropy, while the number of initial states is the exponent of
the initial entropy.” So, we have

Γ ∼
𝑒
𝑆final

𝑒𝑆initial
= exp (Δ𝑆) , (39)

which is in agreement with our resultant equation (37). This
suggests that the formula we have is actually exact, up to a
prefactor.

Next we will give a concrete example [28], Schwarzschild
Black Hole, and we would see more clearly.

Following the same step above, we could first get Hawk-
ing’s thermal spectrum of Dirac particles:

Γ = 𝑒
−8𝜋𝑀𝑤

= 𝑒
−𝑤/𝑇

, (40)

where 𝑇 = 1/8𝜋𝑀 is the Hawking temperature.
If we consider back reaction, the emission rate is

Γ = ∏

𝑖

Γ
𝑖
= 𝑒
−8𝜋∫

𝑤

0
(𝑀−𝑤

󸀠
)𝑑𝑤
󸀠

= 𝑒
−8𝜋𝑀𝑤(1−(𝑤/2𝑀))

, (41)

and we can calculate the difference of the entropy before and
after emission easily:

Δ𝑆BH =
Δ𝐴

4
=
1

4
[4𝜋(2 (𝑀 − 𝑤))

2
− 4𝜋(2𝑀)

2
]

= − 8𝜋𝑀𝑤(1 −
𝑤

2𝑀
) ,

(42)

so we also get Γ = 𝑒
Δ𝑆BH , which coincides with the above gen-

eral discussion. We find that when we neglect the quadratic
term in the exponential part, (41) becomes a Boltzmann fac-
tor, and otherwise, the spectrum is not purely thermal, which
would explain the information puzzle, and some information
could be taken out from black hole in terms of the higher
term.

5. Discussion and Conclusion

This paper carefully investigates Hawking radiation (37) of
massive Dirac particles from a general static Riemann space-
time using improved Damour-Ruffini’s method. In 1983, [23]
proved that Dirac particles radiate thermally in this space-
time. In our work, we consider energy conservation and the
back reaction of radiating particles to the spacetime and
have concluded that the radiation spectrum cannot be strictly
thermal, and information can be taken out from the black
hole. Our result is the same as Parikh andWilczek’s tunneling
method and is also consistent with an underlying unitary
theory. Because our metric is general, not only to get the
corrected spectrum using Parikh and Wilczek’s tunneling
method is not easy, but also the theory of this paper is general,
andwe use this improvedDamour-Ruffini’smethod to get the
important result.

Actually, by the method of classical Damour-Ruffini
method, without considering the back reaction to the space-
time, we could get the blackbody spectrum near the black
hole. But the equation of emergent wave should contain a
potential barrier between the horizon and the infinity, which
characterizes the spacetime curvature outside the black hole,
so the observer at infinity could see a greybody spectrum.
The blackbody spectrum near the horizon is scattered by
the potential barrier and becomes the greybody spectrum
at infinity. And we often call Hawking radiation blackbody
spectrum, which implies the spectrum near the horizon.
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