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We present the calculation of the form factor of the y., (1P) — J/wy and y,,(1P) — Y (1S) y decays in the frame work of QCD
sum rules. We also find branching ratio 3, (x., (LP) — J/yy)=(1.36"07)x 107> which is in agreement with the experimental data.

2+3,18

Furthermore, we estimate the I (x,,(1P)) = 4.275, MeV, where experimental bound for full width of y is T, (x40 (1P)) < 6 MeV.

1. Introduction

Heavy quarkonium states (like bb and c¢) and their decay
modes offer a laboratory to study the strong interaction in
the nonperturbative regime. Charmonium in particular has
served as a calibration tool for the corresponding techniques
and models [1, 2]. Heavy quarkonium states can have many
bound states and decay channels used to study and determine
different parameters of standard model (SM) and QCD from
the theoretical perspective. In particular, the calculation of
bottomonium masses [3], total widths, coupling constants
[4-7], and branching ratio can serve as benchmarks for the
low energy predictions of QCD. In addition, the theoretical
calculations on the branching ratio of radiative decays of
heavy quarkonium states are relatively clean with respect to
the hadronic or semileptonic decays, and their comparison
with experimental data could provide important insights into
their nature and hyperfine interaction. In this regard, the
decay width and branching ratio of radiative decays of several
¢ and bb states analysed by using an effective Lagrangian
approach valid for heavy quarkonia [8, 9].

The QCD sum rules have been used for the radiative

transitions in charmonium and bottomonium cases [10-15].
But exclusive y,, — J/yyand y,, — Yy decays have not

yet been studied in the framework of the QCD sum rules.
The y., — J/yy decay studied by CLEO detector operating
at CESR [16, 17]. The next experimental studies of exclusive
Xo — J/wyand y,, — Yy decays are going to start with
next operation of LHC.

We present the theoretical study on the form factor
of exclusive y,, — J/yy and x,, — Yy decays in
the frame work of QCD sum rules. Note that in order to
calculate the branching ratio we have to acquire information
about the masses and decay constants of the participating
particles. It is worth mentioning that the masses can be
obtained either by means of the experimental results, that
is, the particle data group or by the theoretical methods.
The decay constants, on the other hand, can be calculated
theoretically via different nonperturbative methods. In this
respect, masses and decay constants and spectrum of heavy
quarkonium states are calculated in the various approaches
(see, e.g., [1,18-25]). Here, firstly, we calculate the form factor
of xo — J/yyand y,, — Yy decays in the framework
of three-point QCD sum rules; secondly, we calculate the
branching ratio of exclusive y,, — J/wy and x,0 — Yy
decays.

In Section 2, we introduce the QCD sum rules technique
for the form factors of exclusive x,, — J/yyand y, — Yy



decays. Last section is devoted to the numerical analysis and
discussion.

2. QCD Sum Rules for the Form Factors

The three-point correlation function associated with the
Xo(1P) — J/yyand y,(1P) — Y(1S)y vertex is given by

1, = i j-d4xd4yefip'x”pl'y
S @
x(0]7 (jy M " @7 O)[0),
where I is the time ordering operator and g is momentum

of photon. Each meson and photon field can be described in
terms of the quark field operators as follows:

in () =c®) () v.c ) ()
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We calculate the correlation function equation (1) in
two different methods. In phenomenological or physical
approach, it can be evaluated in terms of hadronic param-
eters such as masses, decay constants, and form factors. In
theoretical or QCD side, on the other hand, it is calculated in
terms of QCD parameters, which are quark and gluon degrees
of freedom, by the help of the operator product expansion
(OPE) in deep Euclidean region. Equating the structure
calculated in two different approaches of the same correlation
function, we get a relation between hadronic parameters and
QCD degrees of freedom. Finally, we apply double Borel
transformation with respect to the momentum of initial and
final mesons (p” and p'*). This final operation suppresses the
contribution of the higher states and continuum.

2.1. Phenomenological Side. We insert the complete sets of
appropriate vector meson (|V)(V|) and scalar meson (|S)(S|)
states (regarding the conservation of the quantum numbers
of corresponding interpolating currents) inside correlation
functions equation (1). Here, vector state is either J/y or Y
and scalar state is y,(, state. After integrating over the x and
y, we get the following result for the correlation function
equation (1):

. . 4
<0']S (x)'S> (S| ()| V) <V|]#|O>
" (i~ p") (m ~ p?)
where - - - contains the contribution of the higher and contin-
uum states with the same quantum numbers.

The matrix elements of the above equation are related to
the hadronic parameters as follows:

<0 ']I‘: (x)| V> = mvae;,
(s[5’ o) = imsf;. (4)

(Sl | vy =eF (4 =0){(p' - a)e,-(a-€)p}

)
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where F(qz) is the form factor of transition and €’ is the
polarization vector associated with the vector meson. Using
(4) in (3) and considering the summation over polarization
vectors via

v PP G

the result of the physical side is as follows:

_ emvamsfs*
W == N 2
(mV_P )(”"s—P )
We are going to compare the coefficient of g, structure

for further calculation from different approaches of the
correlation functions.

FO)(p' " q) g+ - (6)

2.2. Theoretical (QCD) Side. Theoretical side consists of
perturbative (bare loop; see Figure 1) and nonperturbative
parts (the contributions of two gluon condensate diagrams,
Figure 2). We calculate it in the deep Euclidean space (p* —

—00 and p'2 — —00). We consider this side as
H[w (p” P) = (Hper + Hnonper) (pl ’ q) g[w' (7)

2.2.1. Bare Loop. The perturbative part is a double dispersion
integral as follows:
12
1 S S,
=t [ [as 20
dn - (-0p")  ®

+ subtraction terms,

where p(s, s', g%) is called spectral density. We aim to evaluate
the spectral density with the help of the bare loop diagram
in Figurel. One of the generic methods to calculate this
bare loop integral is the Cutkosky method, where the quark
propagators of Feynman integrals are replaced by the Dirac
delta functions:

— (-2mi) 6 (qz - mz) . 9)
Then, using the Cutkosky method we get spectral density as

ch(b)Nc (—4m§(b) + q2 + S — SI)
M2 (5,8, q?) (g2 +s—5")

p (s, s, qz) = (10)

where AM(a, b, ¢) = a® +b*+c*—2ac—2bc—2ab and N, =3isthe
color number. Note that, since three § functions of integrand
must vanish simultaneously, the physical regions in the s — s’
plane must satisfy the following inequality:

B s (q2 +s— s') -
AL/2 (mf(b), mf(b), s) M2 (s,s', %)

-1< f(s,s')

(11)
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FIGURE 1: The bare loop diagram for the x,, — J/yyand y,, — Yy
decays.

2.2.2. Two Gluon Condensates. We consider the two gluon
condensate diagrams. Note that we do not include the heavy
quarks condensate diagrams, since the heavy quark contribu-
tions are exactly reducible to the gluon condensate [26]. Now,
as a nonperturbative part, we must add contributions coming
from the gluon condensates presented in Figures 2(a), 2(b),
2(c), 2(d), 2(e), and 2(f).

These diagrams are calculated in the Fock-Schwinger
fixed-point gauge [27-29], where the vacuum gluon field is
as follows:

a ! i a 0 !
45, (K) = -5 m)*Gy,, (0) a—k;)a“” (),

where k' is the gluon momentum and A‘; is the gluon field.
In addition, the quark-gluon-quark vertex is used as

a . (A
Liju = lgy#(?)y' (13)

We come across the following integrals in calculating the
gluon condensate contributions [30, 31]:

d*k
m)*

X 1% ([k2 —ml ' [(p+ k)P =y

X [(p' + k)2 - mf(b)} >_1,

I,[a,b,c] = J

d*k
n)*

x ke X <[k2 —m | [(p+k) - mi(b)]b

X [(p' + k)2 - mf(b)] )_1,

1, [a,b,c] = J

(14)

where k is the momentum of the spectator quark m,).

These integrals are calculated by shifting to the Euclidean
space-time and using the Schwinger representation for the
Euclidean propagator:

1
(k2 + m?)" I'(n)

o0 n-1 —a(k*+m?)
L daa e . (15)

This kind of expression is very easy for the Borel transforma-
tion since

—ap? 1
Bp00)e o() oo
where M is Borel parameter.

We perform integration over the loop momentum and
over the two parameters which we use in the exponential
representation of propagators [28]. As a final operation we

apply double Borel transformations to p* and p'2. We get the
Borel transformed form of the integrals in (14) as

(_ 1 )a+h+c
162T (a) T (b) T (¢)

y (Mf)z—a—b(Mg)Z—a—c (17)
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and M? and M’ are the Borel parameters. The function
U y(a,b) is as follows:

U, (a,b) = L dy(y+Mf +M§)ayb

(19)
555
XexXp|——— —by—by|,
y
where
1 2 4 4 2 2 2 2
By = v (e (M1 + M3) + MoM; (2 = )]
1 2
me(b) 2 2
B, = A [M]+M5],
2
M)
Bi= e
1 2
(20)

where the circumflex of T in the equations is used for the
results after the double Borel transformation. As a result of
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FIGURE 2: Two gluon condensate diagram as a radiative correction for the x,, — J/yyand y,, — Yy decays.

the lengthy calculations we obtain the following expressions
for the two gluon condensate:

2mog <G2 >

3mc( b)

Hnonper ==

M p)

x {3my, [2[L (L4 D + T, (4,1,1)
+I, (1,1,4)+21, (1,4, 1)+21, (4,1,1)]
+1y (1,1,4)]
- 1,(1,2,2)+61, (1,3,1)+1, (2,1,2)-2I, (2,2, 1)
-21,(1,2,2) + 6, (1,3,1) + 21, (2,1,2)
-6I,(2,2,1) + 61, (3,1,1) - 31, (1,1,3)

+61, (1,3, 1)} .
(21)

Now, we can compare g,,, coefficient of (6) and (7). Our
result related to the sum rules for the corresponding form
factor is as follows:

emg/Mzem%,/M’2

F(q ) ) Jv fsmymg

X ! JSO dsré ds' (s s 2)0
472 4’”?(1:) 4mc(h PASS-14

12

x [1 - (f (S, s’))z] e_S/Mze_S,/M + 1_Inonper
(22)

Note that finally we have to set g* = 0 for the real photon.

3. Numerical Analysis

In this section we calculate the value of form factors and the
branching ratios. We use m, = 1.275 + 0.025 GeV and m,, =
4.18 + 0.03 GeV [32], which correspond to the pole masses
m, = 1.65 £ 0.07 GeV and m;, = 4.78 + 0.06 GeV [6]. Also,
my, = 3096.916+0.011 MeV [32], sm, = 3414.75£0.31 MeV
[32] m,, =9859.44+£ 042+ 0.3 MeV [32], my = 9460.30 +
026 MeV [32], f,, = (343 + 112)MeV [33], f, = (175 +
55) MeV [33], f;,, = (481£36) MeV [3], fy = (746+62) MeV
(3], and the full width for y.: T}% = 10.4 + 0.6 MeV [32] are
used.

To do further numerical analyses we have to know the
value or range of the auxiliary parameters of QCD sum rules.
Those are the continuum thresholds (s, and s(')) and the Borel
mass parameters (M and M'?). The physical results are
required to be either weakly dependent on or independent of
the aforementioned parameters. Therefore, we must consider
the working regions of these auxiliary parameters where the
dependence of the form factors is weak. We also consider
the working regions for the Borel mass parameters M* and

M” i a way that both the contributions of the higher
states and continuum are sufficiently suppressed and the
contributions coming from higher dimensions operators can
be ignored. With the aforementioned conditions, we find the
stable region for the form factor in the following intervals:
5GeV? < M? < 12GeV?* and 5GeV? < M"* < 10 GeV? for
Xeo — J/wy decays (see also Figures 3 and 4). We also get
15GeV? < M? < 30GeV? and 12GeV? < M" < 25GeV?
for x,0 — Yy decays.

The continuum thresholds, s, and s}, are fixed by the mass
of the corresponding ground-state hadron. Note that they
must not be greater than the energy of the first excited states
with the same quantum numbers. In our numerical calcula-
tions the following regions for the continuum thresholds in
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FIGURE 3: The dependence of the F(g*> = —10) on M for three
different values of s, = 13.8, 14.54, 16.11, s(', = 11.56, 12.25, 13.69,
and M* = 8 for the y,, — J/yy decays. The green, blue, and purple
lines are for minimum, central, and maximum values of s, and 56.

sand s’ channels are used: (mg + 0.3)> < s, < (mg + 0.7)°
and (my + 0.3)* < s(') < (my + 0.7)% for s and s’ channels,
respectively. Here, g is the mass of either y,, or x;,, meson
and my, is the mass of either J/y or Y meson. We studied
the dependence of the form factor (F(qz)) on continuum
thresholds (see Figures 3 and 4). The figures show the weak
dependence of the form factor for the chosen intervals.

Note that we follow the standard procedure in the QCD
sum rules, where the continuum thresholds are supposed to
be independent of Borel mass parameters and g*. However,
this assumption is not free of uncertainties (see, e.g., [34]).

Considering the large negative q* enables us to evaluate
the correlation function by means of OPE that gives better
convergence property; therefore, we use the extrapolation of
the form factor from negative q” into the physical region
(positive ¢ region).

The best fit curve for

F (qz) —aet ¢ (23)

is employed for the negative g* region and fit is extrapolated
for the positive g region (see Figure 5). The values a = 0.83 +
0.23,b = 0.2+0.02,and ¢ = 0.01 £0.003 for x,, — J/yyand
a=0.412+0.14,b = 0.2 £ 0.016, and ¢ = 0.0084 + 0.003 for
Xpo — Yy decays are obtained via (23).

Using ¢ = 0 in (23), we obtain the F(0) = 0.83 +
0.23 GeV " and the F(0) = 0.41+0.14 GeV " for y, — J/yy
and y,, — Yy decays, respectively. It is worth mentioning
that firstly, the contributions of the two gluon condensate in
the value of the F(0) is about 3%. Secondly, roughly 80%
of the errors in our numerical calculation arise from the
variation continuum thresholds, Borel mass parameter in the
given intervals, and uncertainties of the input parameters and
the remaining 20% occurs as a result of the quark masses
when one proceeds from the MS to the pole-scheme mass
parameters, the input parameters.

0.30 T T T T

0.25 | ]

0.15 | b

F (1/GeV)

0.10 | b

0.05 | E

0.00 1 1 1 1
5 6 7 8 9 10

M (GeV?)

FIGURE 4: The dependence of the F(g*> = —10) on M* for three
different values of s, = 13.8, 14.54, 16.11, s, = 11.56, 12.25, 13.69,
and M = 6 for the y,, — J/yy decays. The green, blue, and purple

. P . !
lines are for minimum, central, and maximum values of s, and s,.

1.8 ]
16 b
14 b
12 b

1.0 b

F (1/GeV)

0.8 b
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F1GURE 5: The dependence of the fit function (23) and the form factor
(22) on q2 for values of s, = 14.5, s('] =1225M*=8,and M* =6
for the y,, — J/yy decays. The blue line is (22).

The matrix element for the decay of y,, — J/yy and
Xpo — Yyisas follows:

M=eb(f =0){( )¢ e~ (a-¢) (¢ 0)}. @

where p’ and €' are the momentum and polarization of final
state vector meson, that is, either J/y or Y mesons, € is the
polarization of real photon, and p is the momentum of initial
scalar meson.

Using this matrix element, we get

- 2\3

m

r- |L|2|M|2 IR Om(1-2L), @5
8nmyg 8 myg

where myg is mass of either x,, or x;, meson and my;, is either
mass of J/y or Y meson. The decay width for y., — J/yy
decays is

r < Xeo — #) = (142737) x 10°GeV.  (26)



The branching ratio of y,, — J/yy can be evaluated with
(26) and using the experimental total width that is

B, < Yoo — #) = (1.3675%) x 107, (27)

This result is in good agreement with the experimental
measurement [32] and the result of the potential model given
in [8, 9], which are

J 2
ggr( : —»—):(1.1710.08)x10 . (28)
o ™y

B, (Xco — #) = (128+0.11)x 1072, (29)

respectively.
We get F(0) = 0.41 + 0.13GeV ™" for y,, — Yy decays.
Using this value we calculate the decay width as follows:

T ()0 — Yy) = (7.4735) x 107° GeV. (30)

This decay width and the measured branching ratio %8,(x, —
Yy) = (1.76 + 0.30) x 1072 [17] allow us to evaluate
the total width of y,,. We estimate that the full width
Tot(Xpo(1P)) = 4.2732% MeV, which is consistent with the
experimental results that indicate the full width I}, < 6 MeV
(17].
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