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Exclusive 𝐵∗
𝑐

→ 𝐷
𝑠
]] decay is studied in the framework of the three-point QCD sum rules approach. The two gluon condensate

contributions to the correlation function are calculated and the form factors of this transition are found.The decay width and total
branching ratio for this decay are also calculated.

1. Introduction

The standard model (SM) Higgs boson which is one of the
most important components of the SM has been discovered
by the ATLAS [1] and CMS [2] collaborations. Nowadays,
we aim to find out the new physics beyond the SM. Heavy
mesons with the different flavors like 𝐵

𝑐
and 𝐵

∗

𝑐
mesons

can provide a good testing benchmark not only for the
predictions of the SM but also for searching the new physics
beyond SM. The LHCb experiment has aimed to test the SM
predictions and discover the possible new physics signals. In
this regard, a lot of the experimental data are released by the
LHCb experiment [3].

The dominant decay mode of 𝐵
∗

𝑐
is 𝐵

∗

𝑐
→ 𝐵

𝑐
𝛾 [4].

Rare 𝐵
∗

𝑐
→ 𝐷

𝑠
]] proceeds FCNC transitions. This decay

is roughly of the same order as that of the 𝐵
∗

𝑐
→ 𝜂

𝑐
ℓ]
ℓ

[5]. In the SM framework, the rare 𝐵
∗

𝑐
→ 𝐷

𝑠
]] decay is

dominated by the Z-penguin and box diagrams involving top
quark exchanges. The theoretical uncertainties related to the
renormalization scale dependence of running quarkmass can
be essentially neglected after the inclusion of next-to-leading
order corrections [6]. This decay is theoretically very clean
process in comparison with the semileptonic decays like the
𝐵
∗

𝑐
→ 𝐷

𝑠
ℓ
+

ℓ
− decay and is also sensitive to the new physics

beyond the SM [7]. Moreover, this decay is complementary
to the 𝐵

∗

𝑐
→ 𝐷

𝑠
ℓ
+

ℓ
− decay. Note that the direct calculation

of physical observables such as form factors suffers from

sizable uncertainties. These can be greatly reduced through
a combined analysis of the rare 𝐵

∗

𝑐
→ 𝐷

𝑠
]] and 𝐵

∗

𝑐
→

𝐷
𝑠
ℓ
+

ℓ
− [8] decays.

These decays have not yet been measured by the LHCb.
There are no theoretical studies relevant to the form factors
and branching ratios of 𝐵

∗

𝑐
→ 𝐷

𝑠
]] decay. The form

factors of these decays can be evaluated with the different
approaches. Some of them are the light front, the constituent
quark models [9], and the QCD sum rules. In this study
the three-point QCD sum rules approach is used in the
calculation of form factors. It is worth mentioning that
the QCD sum rules have widely been utilized in calcula-
tion of the form factors (some of them can be found in
[10–17]).

The paper has 3 sections. In Section 2, the effective
Hamiltonian and the three-point QCD sum rules approach
are presented for completeness. In Section 3, the numerical
values of form factors are given and the sensitivity of the
branching ratio is studied and conclusion is presented.

2. Sum Rules for the 𝐵
∗

𝑐
→ 𝐷

𝑠
]] Transition

Form Factors

TheFCNC 𝑏 → 𝑠]] decay is describedwithin the framework
of the SM at the quark level by the effective Hamiltonian [18,
19]:
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Heff

=

𝐺
𝐹
𝛼

2√2𝜋sin2𝜃
𝑊

𝑉
𝑡𝑏
𝑉
∗

𝑡𝑠
𝑋(𝑥) 𝑏𝛾

𝜇

(1 − 𝛾
5
) 𝑠]𝛾

𝜇
(1 − 𝛾

5
) ],

(1)

where 𝐺
𝐹
is the Fermi constant, 𝜃

𝑊
is the Weinberg angle, 𝛼

is the fine structure coupling constant, and

𝑋 (𝑥) = 𝑋
0
(𝑥) +

𝛼
𝑠

4𝜋

𝑋
1
(𝑥) . (2)

The𝑋
0
(𝑥) is

𝑋
0
=

𝑥

8

[

𝑥 + 2

𝑥 − 1

+

3 (𝑥 − 2)

(𝑥 − 1)
2
ln𝑥] , (3)

where 𝑥 = 𝑚
2

𝑡
/𝑚

2

𝑊
. The explicit form of 𝑋

1
(𝑥) is given in

[18–20]. Note that 𝑋
1
(𝑥) gives about 3% contribution to the

𝑋
0
(𝑥) term [21].
The Wilson coefficients (in our case 𝑋

0
(𝑥) and 𝑋

1
(𝑥))

can be calculated in any gauge and they are gauge inde-
pendent and the results should be gauge invariant. The
Wilson coefficients are calculated in 𝑅

𝜉
gauge. It is worth

mentioning that local operators in the considered problem
have anomalous dimensions. We have checked that taking
into account anomalous dimensions can change numerical
results at most 10%.

The matrix element of the exclusive 𝐵
∗

𝑐
→ 𝐷

𝑠
]] decays

is found by inserting initial meson state 𝐵
∗

𝑐
and final meson

state𝐷
𝑠
in (1):

𝑀 =

𝐺
𝐹
𝛼

2√2𝜋sin2𝜃
𝑊

𝑉
𝑡𝑏
𝑉
∗

𝑡𝑠
𝑋(𝑥)

× ⟨𝐷
𝑠
(𝑝
𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠𝛾
𝜇
(1 − 𝛾

5
) 𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
𝐵
∗

𝑐
(𝑝
𝐵
, 𝜀)⟩ ]𝛾

𝜇
(1 − 𝛾

5
) ],
(4)

where 𝜀 is the polarization vector of 𝐵
∗

𝑐
meson, 𝑝

𝐵
is the

momentum of the𝐵∗
𝑐
, and𝑝

𝐷
is themomentum of𝐷

𝑠
meson.

The matrix element of (4) is written in terms of the form
factors as follows:

⟨𝐷
𝑠
(𝑝
𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑠𝛾
𝜇
(1 − 𝛾

5
) 𝑏

󵄨
󵄨
󵄨
󵄨
󵄨
𝐵
∗

𝑐
(𝑝
𝐵
, 𝜀)⟩

=

𝐴
𝑉
(𝑞
2

)

𝑚
𝐵
∗

𝑐

𝜀
𝜇]𝛼𝛽𝜀

∗]
𝑝
𝛼

𝐵
𝑝
𝛽

𝐷
− 𝑖𝐴

0
(𝑞
2

)𝑚
𝐵
∗

𝑐

𝜀
∗

𝜇

− 𝑖

𝐴
+
(𝑞
2

)

𝑚
𝐵
∗

𝑐

(𝜀
∗

𝑝
𝐷
) 𝑃
𝜇
− 𝑖

𝐴
−
(𝑞
2

)

𝑚
𝐵
∗

𝑐

(𝜀
∗

𝑝
𝐷
) 𝑞
𝜇
.

(5)

Here, Lorentz invariant and parity conservation are consid-
ered. Also, 𝐴

𝑖
(𝑞
2

), where 𝑖 = 𝑉, 0, +, − are the dimensionless
transition form factors. 𝑃

𝜇
= (𝑝

𝐵
+ 𝑝

𝐷
)
𝜇
and 𝑞

𝜇
= (𝑝

𝐵
− 𝑝

𝐷
)
𝜇

is the transfer momentum or the momentum of the𝑍 boson.

The matrix element in terms of the form factors is as

𝑀 =

𝐺
𝐹
𝛼

2√2𝜋sin2𝜃
𝑊

𝑉
𝑡𝑏
𝑉
∗

𝑡𝑠
𝑋 (𝑥)

× [𝑖

𝐴
1
(𝑞
2

)

𝑚
𝐵
∗

𝑐

𝜀
𝜇]𝛼𝛽𝜀

∗]
𝑝
𝛼

𝐵
𝑝
𝛽

𝐷
− 𝑖𝐴

0
(𝑞
2

)𝑚
𝐵
∗

𝑐

𝜀
∗

𝜇

−𝑖

𝐴
+
(𝑞
2

)

𝑚
𝐵
∗

𝑐

(𝜀
∗

𝑝
𝐷
) 𝑃
𝜇
− 𝑖

𝐴
−
(𝑞
2

)

𝑚
𝐵
∗

𝑐

(𝜀
∗

𝑝
𝐷
) 𝑞
𝜇
]

× ]𝛾
𝜇
(1 − 𝛾

5
) ],

(6)

where 𝐴
1
= −𝑖𝐴

𝑉
.

We try to calculate the aforementioned form factors by
means of the QCD sum rules.TheQCD sum rules begin with
the following correlation functions:

Π
𝑉−𝐴𝑉

𝜇] (𝑝
2

𝐵
, 𝑝
2

𝐷
, 𝑞
2

) = 𝑖
2

∫𝑑
4

𝑥𝑑
4

𝑦𝑒
−𝑖𝑝
𝐵
𝑥

𝑒
𝑖𝑝
𝐷
𝑦

×⟨0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇 [𝐽

𝐷
𝑠

(𝑦) 𝐽
𝑉−𝐴𝑉

𝜇
(0) 𝐽]𝐵∗

𝑐

(𝑥)]

󵄨
󵄨
󵄨
󵄨
󵄨
0⟩ ,

(7)

where the interpolating currents are 𝐽
𝐷
𝑠

(𝑦) = 𝑐𝛾
5
𝑠 and

𝐽]𝐵∗
𝑐

(𝑥) = 𝑏𝛾]𝑐 the 𝐷
𝑠
and the 𝐵

∗

𝑐
meson states, respectively.

𝐽
𝑉−𝐴𝑉

𝜇
= 𝑠𝛾

𝜇
(1−𝛾

5
)𝑏 consists of the vector (𝑉) and axial vector

(𝐴𝑉) transition currents. After inserting the two complete
sets of the 𝐵∗

𝑐
and 𝐷

𝑠
meson, the correlation functions in (7)

are written as follows:

Π
𝑉−𝐴𝑉

𝜇] (𝑝
2

𝐵
, 𝑝
2

𝐷
, 𝑞
2

)

= − (⟨0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽
𝐷
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑠
(𝑝
𝐷
)⟩ ⟨𝐷

𝑠
(𝑝
𝐷
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽
𝑉−𝐴𝑉

𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
𝐵
∗

𝑐
(𝑝
𝐵
, 𝜀)⟩

× ⟨𝐵
∗

𝑐
(𝑝
𝐵
, 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽]𝐵∗
𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
0⟩)

× ((𝑝
2

𝐷
− 𝑚

2

𝐷
𝑠

) (𝑝
2

𝐵
− 𝑚

2

𝐵
∗

𝑐

))

−1

+ ⋅ ⋅ ⋅ ,

(8)

where “⋅ ⋅ ⋅ ” shows the contributions come from higher states
and continuum of the currents with the same quantum
numbers.

The ⟨0|𝐽
𝐷
𝑠

|𝐷
𝑠
(𝑝
𝐷
)⟩ and ⟨𝐵

∗

𝑐
(𝑝
𝐵
, 𝜀)|𝐽]𝐵∗

𝑐

|0⟩ matrix ele-
ments are defined as follows:

⟨0

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽
𝐷
𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
𝐷
𝑠
(𝑝
𝐷
)⟩ = −𝑖

𝑓
𝐷
𝑠

𝑚
2

𝐷
𝑠

𝑚
𝑠
+ 𝑚

𝑐

,

⟨𝐵
∗

𝑐
(𝑝
𝐵
, 𝜀)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐽]𝐵∗
𝑐

󵄨
󵄨
󵄨
󵄨
󵄨
0⟩ = 𝑓

𝐵
∗

𝑐

𝑚
𝐵
∗

𝑐

𝜀],

(9)

where 𝑓
𝐵
𝑐

and 𝑓
𝐷
𝑠

are the leptonic decay constants of 𝐵
∗

𝑐

and 𝐷
𝑠
mesons, respectively. Using these equations and
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Figure 1: The bare-loop and light quarks condensates contributions to 𝐵
∗

𝑐
→ 𝐷

𝑠
𝑙
+

𝑙
− transitions.

calculating the summation over the polarization of the vector
meson 𝐵

∗

𝑐
, (8) is as follows:

Π
𝑉−𝐴𝑉

𝜇] (𝑝
2

𝐵
, 𝑝
2

𝐷
, 𝑞
2

)

= −

𝑓
𝐷
𝑠

𝑚
2

𝐷
𝑠

(𝑚
𝑐
+ 𝑚

𝑠
)

𝑓
𝐵
∗

𝑐

𝑚
𝐵
∗

𝑐

(𝑝
2

𝐷
− 𝑚

2

𝐷
𝑠

) (𝑝
2

𝐵
− 𝑚

2

𝐵
∗

𝑐

)

× [𝐴
0
(𝑞
2

)𝑚
𝐵
∗

𝑐

𝑔
𝜇] +

𝐴
+
(𝑞
2

)

𝑚
𝐵
∗

𝑐

𝑃
𝜇
𝑝
𝐵]

+

𝐴
−
(𝑞
2

)

𝑚
𝐵
∗

𝑐

𝑞
𝜇
𝑝
𝐵] + 𝑖

𝐴
1
(𝑞
2

)

𝑚
𝐵
∗

𝑐

𝜀
𝜇]𝛼𝛽𝑝

𝛼

𝐵
𝑝
𝛽

𝐷
]

+ excited states.

(10)

This correlation function is calculated in terms of the quarks
and gluons parameters by means of the operator product
expansion (OPE) as

Π
𝑉−𝐴𝑉

𝜇] (𝑝
2

𝐵
, 𝑝
2

𝐷
, 𝑞
2

) = Π
𝑉−𝐴𝑉

0
𝑚
𝐵
∗

𝑐

𝑔
𝜇] +

Π
𝑉−𝐴𝑉

+

𝑚
𝐵
∗

𝑐

𝑃
𝜇
𝑝
𝐵]

+

Π
𝑉−𝐴𝑉

−

𝑚
𝐵
∗

𝑐

𝑞
𝜇
𝑝
𝐵] + 𝑖

Π
𝑉−𝐴𝑉

1

𝑚
𝐵
∗

𝑐

𝜀
𝜇]𝛼𝛽𝑝

𝛼

𝐵
𝑝
𝛽

𝐷
.

(11)

Each Π
𝑖
with 𝑖 = 0, +, − and 1 contains the perturbative and

nonperturbative parts as in the following:

Π
𝑖
= Π

pert
𝑖

+ Π
nonpert
𝑖

. (12)

Thebare-loopdiagramgiven in Figure 1(a) is the contribution
of the perturbative part. The nonperturbative part consists
of the two gluon condensates diagrams {see Figures 2(a)–
2(f)}. Hence, contributions of the light quark condensates
{diagrams shown in Figures 1(b), 1(c), and 1(d)} vanish by
applying the double Borel transformations [16].

The following double dispersion integrals are the contri-
butions of the bare-loop diagrams in the correlation function:

Π
per
𝑖

= −

1

(2𝜋)
2
∫𝑑𝑢∫𝑑𝑠

𝜌
𝑖
(𝑠, 𝑢, 𝑞

2

)

(𝑠 − 𝑝
2

𝐵
) (𝑢 − 𝑝

2

𝐷
)

+ subtraction terms.

(13)

One of the basic methods to solve the Feynman Integrals in
order to calculate the spectral densities 𝜌

𝑖
(𝑠, 𝑢, 𝑞

2

) is Cutkosky
ruleswhere the quark propagators are replaced byDiracDelta
Functions: 1/(𝑝2 − 𝑚

2

) → −2𝜋𝑖𝛿(𝑝
2

− 𝑚
2

), which indicates
that all quarks are on-shell.
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Figure 2: Gluon condensate contributions to 𝐵
∗

𝑐
→ 𝐷

𝑠
]+]− transitions.
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Three delta functions appear as a result of the applying
Cutkosky rules. These delta functions have to vanish at the
same time. Therefore, we get the following inequality from
the arguments of the delta functions:

−1 ≤

2𝑠𝑢 + (𝑠 + 𝑢 − 𝑞
2

) (𝑚
2

𝑏
− 𝑠 − 𝑚

2

𝑐
) + (𝑚

2

𝑐
− 𝑚

2

𝑠
) 2𝑠

𝜆
1/2

(𝑚
2

𝑏
, 𝑠, 𝑚

2

𝑐
) 𝜆

1/2
(𝑠, 𝑢, 𝑞

2
)

≤ +1,

(14)

where 𝜆(𝑎, 𝑏, 𝑐) = 𝑎
2

+ 𝑏
2

+ 𝑐
2

− 2𝑎𝑐 − 2𝑏𝑐 − 2𝑎𝑏.
Following the standard calculations, the spectral densities

are evaluated as

𝜌
𝑉−𝐴𝑉

1
=𝑁

𝑐
𝐼
0
(𝑠, 𝑢, 𝑞

2

) {𝐶
1
(𝑚

𝑏
− 𝑚

𝑐
)− (𝐶

2
+ 1)𝑚

𝑐
+𝐶

2
𝑚
𝑠
} ,

𝜌
𝑉−𝐴𝑉

0

=

𝑁
𝑐

2

𝐼
0
(𝑠, 𝑢, 𝑞

2

)

× {−2𝑚
3

𝑐
+ 2𝑚

𝑠
𝑚
2

𝑐

− [(𝐶
1
+ 𝐶

2
+ 1) (−𝑞

2

+ 𝑠 + 𝑢) + 2𝐶
1
𝑠 + 2𝐶

2
𝑢]𝑚

𝑐

+ 𝑚
𝑏
[2𝑚

2

𝑐
− 2𝑚

𝑠
𝑚
𝑐
+ 2𝐶

2
𝑢 + 𝐶

1
(−𝑞

2

+ 𝑠 + 𝑢)]

+𝑚
𝑠
[2𝐶

1
𝑠 + 𝐶

2
(−𝑞

2

+ 𝑠 + 𝑢)]} ,

𝜌
𝑉−𝐴𝑉

+
=

𝑁
𝑐

2

𝐼
0
(𝑠, 𝑢, 𝑞

2

)

× {𝐶
1
(𝑚

𝑏
− 2𝐶

2
𝑚
𝑐
− 𝑚

𝑐
+ 2𝐶

2
𝑚
𝑠
)

− (2𝐶
2
+ 1) (𝐶

2
𝑚
𝑐
+ 𝑚

𝑐
− 𝐶

2
𝑚
𝑠
)} ,

𝜌
𝑉−𝐴𝑉

−
=

𝑁
𝑐

2

𝐼
0
(𝑠, 𝑢, 𝑞

2

)

× {(2𝐶
2
− 1) (𝐶

2
𝑚
𝑐
+ 𝑚

𝑐
− 𝐶

2
𝑚
𝑠
)

+𝐶
1
(𝑚

𝑏
− 2𝐶

2
𝑚
𝑐
− 𝑚

𝑐
+ 2𝐶

2
𝑚
𝑠
)} ,

(15)

where

𝐼
0
(𝑠, 𝑢, 𝑞

2

) =

1

4𝜆
1/2

(𝑠, 𝑢, 𝑞
2
)

,

𝐶
1

=

𝑚
2

𝑐
(𝑠 − 𝑢 − 𝑞

2

) + 𝑢 (2𝑚
2

𝑏
− 𝑠 + 𝑢 − 𝑞

2

) − 𝑚
2

𝑠
(𝑠 + 𝑢 − 𝑞

2

)

𝜆 (𝑠, 𝑢, 𝑞
2
)

𝐶
2

=

𝑠 (2𝑚
2

𝑠
+ 𝑠 − 𝑢 − 𝑞

2

) − 𝑚
2

𝑏
(𝑠 + 𝑢 − 𝑞

2

) − 𝑚
2

𝑐
(𝑠 − 𝑢 + 𝑞

2

)

𝜆 (𝑠, 𝑢, 𝑞
2
)

𝑁
𝑐
= 3.

(16)

Now, it is aimed to calculate the nonperturbative part of (12)
which consists of the gluon condensates diagrams shown in
Figure 2. The gluon condensate contributions are calculated
in Fock-Schwinger gauge because in this gauge the gluon field
is expressed in terms of gluon field strength tensor directly.
The following type of the integrals has to be calculated in
order to get the results of the gluon condensate diagrams
[15, 22]:

𝐼
0
[𝑎, 𝑏, 𝑐]

= ∫

𝑑
4

𝑘

(2𝜋)
4

1

[𝑘
2
− 𝑚

2

𝑏
]
𝑎

[(𝑝
𝐵
+ 𝑘)

2

− 𝑚
2

𝑐
]

𝑏

[(𝑝
𝐷
+ 𝑘)

2

− 𝑚
2

𝑠
]

𝑐

,

𝐼
𝜇
[𝑎, 𝑏, 𝑐]

= ∫

𝑑
4

𝑘

(2𝜋)
4

𝑘
𝜇

[𝑘
2
− 𝑚

2

𝑏
]
𝑎

[(𝑝
𝐵
+ 𝑘)

2

− 𝑚
2

𝑐
]

𝑏

[(𝑝
𝐷
+ 𝑘)

2

− 𝑚
2

𝑠
]

𝑐

,

𝐼
𝜇] [𝑎, 𝑏, 𝑐]

= ∫

𝑑
4

𝑘

(2𝜋)
4

𝑘
𝜇
𝑘]

[𝑘
2
− 𝑚

2

𝑏
]
𝑎

[(𝑝
𝐵
+ 𝑘)

2

− 𝑚
2

𝑐
]

𝑏

[(𝑝
𝐷
+ 𝑘)

2

− 𝑚
2

𝑠
]

𝑐

,

(17)

where 𝑘 is the momentum of the spectator quark 𝑐. The
generic solutions for these integrals can be seen in [22, 23].
A part of our results for the contributions of the gluon
condensate diagrams following similar methods shown in
[22, 23] is given in the Appendix.

The Borel transformations are applied for both phe-
nomenological and QCD side {see (11)} in order to suppress
the contributions of higher states and continuum. The QCD
sum rules for the form factors (𝐴

𝑉
, 𝐴

0
, 𝐴

+
, and 𝐴

−
) are

obtained by equalizing the Borel transformed forms of the
physical side. The result is in the following formula:

𝐴
𝑖
(𝑞
2

)

=

(𝑚
𝑠
+ 𝑚

𝑐
) 𝑒
𝑚
2

𝐵
∗

𝑐

/𝑀
2

1

𝑒
𝑚
2

𝐷
𝑠

/𝑀
2

2

𝑓
𝐵
∗

𝑐

𝑚
𝐵
∗

𝑐

𝑓
𝐷
𝑠

𝑚
2

𝐷
𝑠

× [

1

(2𝜋)
2
∫

𝑢
0

𝑢min

𝑑𝑢∫

𝑠
0

𝑠min

𝑑𝑠𝜌
𝑉−𝐴𝑉

𝑖
(𝑠, 𝑢, 𝑞

2

) 𝑒
−𝑠/𝑀

2

1
−𝑢/𝑀

2

2

+ 𝑖

1

24𝜋
2

𝐶
𝐴
𝑖

⟨

𝛼
𝑠

𝜋

𝐺
2

⟩] .

(18)

Note that the contributions of the gluon condensates (𝐶𝐴𝑖)
are already considered in the numerical analysis. However,
each of these explicit expressions is extremely long; it is found
unnecessary to show all of them in this study. Therefore, one
of these expressions (𝐶𝐴𝑉) is shown as a sample in Appendix.
The 𝑠

0
and 𝑢

0
are the continuum thresholds in 𝑠 and 𝑢

channels, respectively. Also 𝑠min = (𝑚
𝑏
+ 𝑚

𝑐
)
2 and 𝑢min =

(𝑚
𝑠
+ 𝑚

𝑐
)
2.
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3. Numerical Analysis

Having known the matrix element, that is, (6), the decay rate
for 𝐵∗

𝑐
→ 𝐷

𝑠
]] decay is evaluated as follows:

𝑑Γ

𝑑𝑞
2

=

𝛼
2

𝐺
2

𝑓
𝜆
1/2

(𝑚
2

𝐵
∗

𝑐

, 𝑚
2

𝐷
𝑠

, 𝑞
2

)
󵄨
󵄨
󵄨
󵄨
𝑉
𝑡𝑏
𝑉
∗

𝑡𝑠

󵄨
󵄨
󵄨
󵄨

2V𝑋2 (𝑥)

3072𝜋
5
𝑚
3

𝐵
∗

𝑐

sin4𝜃
𝑊

×

{

{

{

󵄨
󵄨
󵄨
󵄨
𝐴
0

󵄨
󵄨
󵄨
󵄨

2

(𝑚
4

𝐵
∗

𝑐

− 2𝑚
2

𝐵
∗

𝑐

(𝑚
2

𝐷
𝑠

− 5𝑞
2

) + (𝑚
2

𝐷
𝑠

− 𝑞
2

)

2

)

− 2Re [𝐴
+
𝐴
∗

0
]

× ((𝑚
6

𝐵
∗

𝑐

− (𝑚
2

𝐷
𝑠

− 𝑞
2

)

3

− 𝑚
4

𝐵
∗

𝑐

(3𝑚
2

𝐷
𝑠

+ 𝑞
2

)

+ 𝑚
2

𝐵
∗

𝑐

(3𝑚
4

𝐷
𝑠

− 2𝑚
2

𝐷
𝑠

𝑞
2

− 𝑞
4

)) × (𝑚
2

𝐵
∗

𝑐

)

−1

)

+ 2
󵄨
󵄨
󵄨
󵄨
𝐴
1

󵄨
󵄨
󵄨
󵄨

2

𝑞
2

𝜆 (𝑚
2

𝐵
∗

𝑐

, 𝑚
2

𝐷
𝑠

, 𝑞
2

)

𝑚
2

𝐵
∗

𝑐

+
󵄨
󵄨
󵄨
󵄨
𝐴
+

󵄨
󵄨
󵄨
󵄨

2
𝜆
2

(𝑚
2

𝐵
∗

𝑐

, 𝑚
2

𝐷
𝑠

, 𝑞
2

)

𝑚
4

𝐵
∗

𝑐

}

}

}

.

(19)

The expression for the decay rate shows that we need to
know the input parameters shown in Table 1, taken from [24].

Moreover, the values of the leptonic decay constants
𝑓
𝐵
∗

𝐶

= 0.415 ± 0.031GeV [25] and the gluon condensate
⟨(𝛼

𝑠
/𝜋)𝐺

2

⟩ = 0.012GeV4 [26] are necessary for the evalua-
tion of the form factors. In addition, the form factors contain
four auxiliary parameters: the Borel mass squares𝑀2

1
and𝑀

2

2

and the continuum threshold 𝑠
0
and 𝑢

0
. The form factors are

assumed to be independent of or weakly dependent on these
auxiliary parameters in the suitable chosen regions named as
“working regions.”

The contributions proportional to the highest power
of 1/𝑀

2

1,2
are supposed to be less than about 30% of the

contributions proportional to the highest power of𝑀2

1,2
. The

lower bound of the 𝑀
2

1
and 𝑀

2

2
can be determined by the

above condition. In addition, the contributions of continuum
must be less than that of the first resonance. This helps us to
fix the upper bound of the𝑀2

1
and𝑀

2

2
.Therefore, we find the

suitable region for the Borel mass parameters in the following
intervals; 10GeV2 ≤ 𝑀

2

1
≤ 25GeV2 and 4GeV2 ≤ 𝑀

2

2
≤

10GeV2.
The numerical value of the 𝑠

0
and 𝑢

0
is supposed to be less

than themass squared of the first excited statemesonwith the
same quantum numbers. In other words, the 𝑠

0
and 𝑢

0
are

between mass squared of the ground sate meson and excited
state meson with the same quantum numbers. The following
regions for the 𝑠

0
and 𝑢

0
are chosen: (𝑚

𝐵
∗

𝑐

+ 0.3)
2

≤ 𝑠
0

≤

(𝑚
𝐵
∗

𝑐

+ 0.7)
2 and (𝑚

𝐷
𝑠

+ 0.3)
2

≤ 𝑢
0
≤ (𝑚

𝐷
𝑠

+ 0.7)
2.

Table 1: The values of the input parameters [24].

|𝑉
𝑡𝑏
| 0.77

+0.18

−0.24

|𝑉
𝑡𝑠
| (40.6 ± 2.7) × 10

−3

𝜏
𝐵
∗

𝑐

(0.452 ± 0.033) × 10
−12 s

𝛼(𝑚
2

𝑤
) 1/128

sin2𝜃
𝑊

0.2315

𝑚
𝑡

173.07 ± 0.52 ± 0.72GeV
𝑚
𝑊

80.385 ± 0.015GeV
𝑚
𝐵
∗

𝑐

6.2745 ± 0.0018GeV
𝑚
𝐷
𝑠

1968.30 ± 0.11MeV
𝑓
𝐷
𝑠

(206.7 ± 8.5 ± 2.5)MeV
𝑚
𝑏

(4.18 ± 0.03)GeV
𝑚
𝑐
(𝜇 = 𝑚

𝑐
) 1.275 ± 0.015GeV

Table 2: Parameters appearing in the form factors of the 𝐵
∗

𝑐
→

𝐷
𝑠
]] decay in a four-parameter fit, for𝑀2

1
= 15GeV2,𝑀2

2
= 6GeV2,

𝑠
0
= 46GeV2, and 𝑢

0
= 6GeV2.

𝑚fit 𝑎 𝑏

𝐴
1
(𝑞
2

) 5.01 ± 1.1 −0.14 ± 0.04 0.26 ± 0.08

𝐴
0
(𝑞
2

) 6.44 ± 1.4 −0.11 ± 0.03 0.17 ± 0.06

𝐴
+
(𝑞
2

) 5.00 ± 1.08 −0.14 ± 0.04 0.28 ± 0.08

𝐴
−
(𝑞
2

) 4.98 ± 1.07 −0.14 ± 0.04 0.28 ± 0.08

The form factors depend on the 𝑞
2. The detail of the

dependence is complicated. We fit them to the following
function:

𝐹 (𝑞
2

) =

𝑎

1 − 𝑞
2
/𝑚

2

fit
+

𝑏

(1 − 𝑞
2
/𝑚

2

fit)
2

. (20)

The 𝑎, 𝑏, and𝑚fit are given in Table 2.
The origin of the errors in Table 2 is the variation of 𝑠

0
, 𝑢
0
,

and 𝑀
1,2

in the chosen intervals and the uncertainties of the
input parameters.

In order to evaluate the branching ratio of the 𝐵
∗

𝑐
→

𝐷
𝑠
]] decay, the mean life time of the 𝐵

∗

𝑐
meson is needed.

For the time being there is no experimental data on the mean
life time of this meson. We follow the theoretical methods
like Bethe-Salpeter model [27] and potential model [28] and
estimate that themean life time of the𝐵∗

𝑐
meson is in the order

of themean life time of the𝐵
𝑐
meson.We assume that the total

life time 𝜏
𝐵
𝑐

≈ 𝜏
𝐵
𝑐

= 0.452 × 10
−12 s [24]. Using the mean life

time and the 𝑞2 dependence of the form factors given by (20)
in the kinematical allowed region [0 ≤ 𝑞

2

≤ (𝑚
𝐵
∗

𝑐

− 𝑚
𝐷
𝑠

)
2

]

we study the branching ratios for 𝐵
∗

𝑐
→ 𝐷

𝑠
]] decay. Our

results for three different values of the 𝑞
2

= (1, 6, 12)GeV2
are presented in Table 3. In addition, Figure 3 depicts the
dependence of the branching ratio on 𝑞

2 for full kinematical
allowed region.

Finally, we calculate the integrated branching ratio for
𝐵
∗

𝑐
→ 𝐷

𝑠
]] decay as follows:

B
𝑟
= ∫

(𝑚
𝐵
∗

𝑐

−𝑚
𝐷
𝑠

)
2

0

B
𝑟
(𝑞
2

) 𝑑𝑞
2

= (5.47 ± 1.30) × 10
−8

. (21)
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Figure 3: The dependence of the branching ratio on 𝑞
2 for 𝐵∗

𝑐
→

𝐷
𝑠
𝜇
+

𝜇
− transitions.

Table 3: Values for the branching ratio of the 𝐵∗
𝑐

→ 𝐷
𝑠
]] decay at

three different values of the dileptonic invariant mass.

𝑞
2 (GeV2) B

𝑟
(𝑞
2

)(𝐵
∗

𝑐
→ 𝐷

𝑠
]])

1 1.83 × 10
−10

6 9.68 × 10
−10

12 3.99 × 10
−9

To sum up, we investigated the branching ratio and decay
rate of the 𝐵

∗

𝑐
→ 𝐷

𝑠
]] decay. The form factors of this

decay were found in the framework of the QCD sum rules.
In addition, the contributions of the two gluon condensates
diagrams to the correlations function were obtained.

Appendix

In this section, we present the explicit expression for the
coefficients 𝐶

𝐴
𝑉 corresponding to the gluon condensates

contributions of 𝑔
𝜇] structure entering to the expression for

the form factors in (18):

𝐶
𝐴
𝑉

= (8𝑚
𝑏
+ 16𝑚

𝑐
) 𝐼 (1, 1, 2)

− (32𝑚
3

𝑐
+ 16𝑚

𝑏
𝑚
2

𝑐
+ 8𝑚

𝑐
𝑞
2

) 𝐼 (1, 1, 3)

− (16𝑚
3

𝑐
+ 8𝑚

𝑏
𝑚
2

𝑐
+ +8𝑚

𝑐
𝑞
2

) 𝐼 (1, 2, 2)

+ (8𝑚
5

𝑐
− 16𝑚

𝑏
𝑚
4

𝑐
− 8𝑚

3

𝑐
𝑞
2

) 𝐼 (1, 2, 3)

+ (−24𝑚
𝑏
𝑚
2

𝑐
− 24𝑚

2

𝑏
𝑚
𝑐
) 𝐼 (1, 3, 1)

− 24𝑚
𝑏
𝑚
4

𝑐
𝐼 (1, 3, 2) − 8𝑚

𝑏
𝑚
6

𝑐
𝐼 (1, 3, 3)

+ 8𝑚
𝑐
𝐼 (2, 1, 1)

+ (−16𝑚
3

𝑏
− 8𝑚

𝑐
𝑚
2

𝑏
− 8𝑞

2

𝑚
𝑏
) 𝐼 (2, 2, 1)

− 24𝑚
4

𝑏
𝑚
𝑐
𝐼 (2, 3, 1)

+ (32𝑚
3

𝑏
− 16𝑚

𝑐
𝑚
2

𝑏
− 8𝑞

2

𝑚
𝑏
) 𝐼 (3, 1, 1)

− (8𝑚
5

𝑏
+ 16𝑚

𝑐
𝑚
4

𝑏
+ 8𝑞

2

𝑚
3

𝑏
) 𝐼 (3, 2, 1)

− 8𝑚
6

𝑏
𝑚
𝑐
𝐼 (3, 3, 1) + (8𝑚

𝑏
𝑞
2

− 8𝑚
𝑐
𝑞
2

) 𝐼
1
(1, 1, 3)

− 24𝑚
𝑏
𝑚
2

𝑐
𝑞
2

𝐼
1
(1, 1, 4) + 8𝑚

𝑏
𝑞
2

𝐼
1
(1, 3, 1)

+ (8𝑚
𝑏
𝑞
2

− 8𝑚
𝑐
𝑞
2

) 𝐼
1
(2, 1, 2)

+ (−16𝑚
𝑏
𝑞
4

+ 8𝑚
𝑐
𝑞
4

− 24𝑚
3

𝑐
𝑞
2

+ 24𝑚
𝑏
𝑚
2

𝑐
𝑞
2

+ 8𝑚
2

𝑏
𝑚
𝑐
𝑞
2

) 𝐼
1
(2, 1, 3) + 16𝑞

2

𝑚
3

𝑏
𝐼
1
(2, 3, 1)

− 16𝑚
𝑏
𝑞
2

𝐼
1
(3, 1, 1)

+ (−16𝑚
𝑏
𝑞
4

+ 24𝑚
3

𝑏
𝑞
2

+ 16𝑚
𝑏
𝑚
2

𝑐
𝑞
2

) 𝐼
1
(3, 1, 2)

+ (8𝑚
𝑏
𝑞
6

− 16𝑚
3

𝑏
𝑞
4

− 16𝑚
𝑏
𝑚
2

𝑐
𝑞
4

+ 8𝑚
5

𝑏
𝑞
2

+ 8𝑚
𝑏
𝑚
4

𝑐
𝑞
2

− 16𝑚
3

𝑏
𝑚
2

𝑐
𝑞
2

) 𝐼
1
(3, 1, 3)

+ 16𝑞
2

𝑚
3

𝑏
𝐼
1
(3, 2, 1)

+ 8𝑞
2

𝑚
5

𝑏
𝐼
1
(3, 3, 1) + 72𝑚

3

𝑏
𝑞
2

𝐼
1
(4, 1, 1)

− 16𝑚
𝑐
𝑞
2

𝐼
2
(1, 1, 3) − 24𝑚

3

𝑐
𝑞
2

𝐼
2
(1, 1, 4)

− 8𝑚
𝑐
𝑞
2

𝐼
2
(1, 2, 2) + 16𝑚

3

𝑐
𝑞
2

𝐼
2
(1, 2, 3)

+ 8𝑚
𝑐
𝑞
2

𝐼
2
(1, 3, 1) + 16𝑚

3

𝑐
𝑞
2

𝐼
2
(1, 3, 2)

+ 8𝑚
5

𝑐
𝑞
2

𝐼
2
(1, 3, 3) + (8𝑚

𝑐
𝑞
2

− 8𝑚
𝑏
𝑞
2

) 𝐼
2
(2, 1, 2)

+ (40𝑚
3

𝑐
𝑞
2

− 16𝑚
𝑐
𝑞
4

) 𝐼
2
(2, 1, 3)

+ (−8𝑚
𝑏
𝑞
2

− 40𝑚
𝑐
𝑞
2

) 𝐼
2
(3, 1, 1)

+ (8𝑚
𝑏
𝑞
4

− 16𝑚
𝑐
𝑞
4

− 8𝑚
3

𝑏
𝑞
2

+ 16𝑚
3

𝑐
𝑞
2

−8𝑚
𝑏
𝑚
2

𝑐
𝑞
2

+ 8𝑚
2

𝑏
𝑚
𝑐
𝑞
2

) 𝐼
2
(3, 1, 2)

+ (8𝑚
𝑐
𝑞
6

− 16𝑚
3

𝑐
𝑞
4

− 16𝑚
2

𝑏
𝑚
𝑐
𝑞
4

+ 8𝑚
5

𝑐
𝑞
2

−16𝑚
2

𝑏
𝑚
3

𝑐
𝑞
2

+ 8𝑚
4

𝑏
𝑚
𝑐
𝑞
2

) 𝐼
2
(3, 1, 3)

+ 72𝑚
2

𝑏
𝑚
𝑐
𝑞
2

𝐼
2
(4, 1, 1)

+ 𝐷
0

3
{(8𝑚

𝑐
− 8𝑚

𝑏
) 𝐼
1
(3, 3, 1)}

+ 𝐷
3

0
{8𝑚

𝑏
𝐼 (1, 3, 3) + 8𝑚

𝑐
𝐼
2
(1, 3, 3)}

+ 𝐷
2

0
{(−24𝑚

𝑏
+ 8𝑚

𝑐
) 𝐼 (1, 2, 3)

+ (8𝑚
𝑐
− 24𝑚

𝑏
) 𝐼 (1, 3, 2)

+ (8𝑚
3

𝑐
− 24𝑚

𝑏
𝑚
2

𝑐
− 8𝑞

2

𝑚
𝑐
) 𝐼 (1, 3, 3)

− 16𝑚
𝑐
𝐼
2
(1, 2, 3) − 8𝑚

𝑐
𝐼
2
(1, 3, 2)

− (16𝑚
3

𝑐
+ 8𝑞

2

𝑚
𝑐
) 𝐼
2
(1, 3, 3)}
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+ 𝐷
0

2
{𝐷

1

0
[8𝑚

𝑐
𝐼 (3, 3, 1) + (8𝑚

𝑐
− 8𝑚

𝑏
) 𝐼
1
(3, 3, 1)

+ (16𝑚
𝑐
− 16𝑚

𝑏
) 𝐼
2
(3, 3, 1)]

+ 8𝑚
𝑐
𝐼 (2, 3, 1) + (−16𝑚

𝑏
+ 8𝑚

𝑐
) 𝐼 (3, 2, 1)

+ (8𝑚
3

𝑐
−16𝑚

𝑏
𝑚
2

𝑐
+ 8𝑚

2

𝑏
𝑚
𝑐
− 8𝑞

2

𝑚
𝑐
) 𝐼 (3, 3, 1)

+ (16𝑚
𝑏
− 8𝑚

𝑐
) 𝐼
1
(2, 3, 1)

+ (8𝑚
𝑏
− 16𝑚

𝑐
) 𝐼
1
(3, 2, 1)

+ (16𝑚
3

𝑏
− 16𝑚

𝑐
𝑚
2

𝑏
+ 16𝑚

2

𝑐
𝑚
𝑏
+ 8𝑞

2

𝑚
𝑏

−16𝑚
3

𝑐
− 8𝑚

𝑐
𝑞
2

) 𝐼
1
(3, 3, 1)}

+ 𝐷
1

0
{𝐷

2

0
[8𝑚

𝑐
𝐼 (1, 3, 3) + 16𝑚

𝑐
𝐼
1
(1, 3, 3)

+8𝑚
𝑐
𝐼
2
(1, 3, 3)]

+ 𝐷
1

0
[−16𝑚

𝑐
𝐼 (1, 2, 3) − 16𝑚

𝑐
𝐼 (1, 3, 2)

− 16𝑚
3

𝑐
𝐼 (1, 3, 3) − 16𝑚

𝑐
𝐼 (2, 3, 1)

+ (−8𝑚
𝑏
− 16𝑚

𝑐
) 𝐼 (3, 2, 1)

+ (−16𝑚
3

𝑐
− 16𝑚

2

𝑏
𝑚
𝑐
) 𝐼 (3, 3, 1)

−32𝑚
𝑐
𝐼
1
(1, 2, 3)−16𝑚

𝑐
𝐼
1
(1, 3, 2)

− 32𝑚
3

𝑐
𝐼
1
(1, 3, 3)

+ (16𝑚
𝑏
− 8𝑚

𝑐
) 𝐼
1
(2, 3, 1)

+ (8𝑚
𝑏
− 16𝑚

𝑐
) 𝐼
1
(3, 2, 1)

+ (16𝑚
3

𝑏
− 16𝑚

𝑐
𝑚
2

𝑏
+ 16𝑚

2

𝑐
𝑚
𝑏

−16𝑚
3

𝑐
) 𝐼
1
(3, 3, 1)

− 16𝑚
𝑐
𝐼
2
(1, 2, 3) − 8𝑚

𝑐
𝐼
2
(1, 3, 2)

− 16𝑚
3

𝑐
𝐼
2
(1, 3, 3)

+ (32𝑚
𝑏
− 16𝑚

𝑐
) 𝐼
2
(2, 3, 1)

+ (16𝑚
𝑏
− 32𝑚

𝑐
) 𝐼
2
(3, 2, 1)

+ (32𝑚
3

𝑏
− 32𝑚

𝑐
𝑚
2

𝑏
+ 32𝑚

2

𝑐
𝑚
𝑏

−32𝑚
3

𝑐
) 𝐼
2
(3, 3, 1)]

+ 8𝑚
𝑐
𝐼 (1, 1, 3) + 16𝑚

3

𝑐
𝐼 (1, 2, 3)

− 32𝑚
𝑐
𝐼 (1, 3, 1) + 24𝑚

3

𝑐
𝐼 (1, 3, 2)

+ 8𝑚
5

𝑐
𝐼 (1, 3, 3) − 24𝑚

3

𝑐
𝐼 (1, 4, 1)

+ (24𝑚
𝑏
− 16𝑚

𝑐
) 𝐼 (2, 2, 1)

+ (−16𝑚
3

𝑐
+ 32𝑚

𝑏
𝑚
2

𝑐
− 32𝑚

2

𝑏
𝑚
𝑐

+16𝑞
2

𝑚
𝑐
) 𝐼 (2, 3, 1)

+ (24𝑚
𝑏
− 64𝑚

𝑐
) 𝐼 (3, 1, 1)

+ (24𝑚
3

𝑏
− 32𝑚

𝑐
𝑚
2

𝑏
+ 56𝑚

2

𝑐
𝑚
𝑏

+ 8𝑞
2

𝑚
𝑏
−32𝑚

3

𝑐
+16𝑚

𝑐
𝑞
2

) 𝐼 (3, 2, 1)

+ (−16𝑚
5

𝑐
+ 32𝑚

𝑏
𝑚
4

𝑐
− 32𝑚

2

𝑏
𝑚
3

𝑐

+ 16𝑞
2

𝑚
3

𝑐
+ 32𝑚

3

𝑏
𝑚
2

𝑐

−16𝑚
4

𝑏
𝑚
𝑐
+ 16𝑚

2

𝑏
𝑞
2

𝑚
𝑐
) 𝐼 (3, 3, 1)

+ 72𝑚
2

𝑏
𝑚
𝑐
𝐼 (4, 1, 1)

+ (−8𝑚
𝑏
+ 16𝑚

𝑐
) 𝐼
1
(1, 1, 3)

− 16𝑚
𝑐
𝐼
1
(1, 2, 2) + 32𝑚

3

𝑐
𝐼
1
(1, 2, 3)

+ (−8𝑚
𝑏
− 72𝑚

𝑐
) 𝐼
1
(1, 3, 1)

+ 32𝑚
3

𝑐
𝐼
1
(1, 3, 2) + 16𝑚

5

𝑐
𝐼
1
(1, 3, 3)

+ (−72𝑚
3

𝑐
+ 24𝑚

𝑏
𝑚
2

𝑐
) 𝐼
1
(1, 4, 1)

+ 8𝑚
𝑏
𝐼
1
(2, 1, 2) + 16𝑚

𝑏
𝑞
2

𝐼
1
(2, 1, 3)

+ (−16𝑚
3

𝑏
+ 8𝑚

𝑐
𝑚
2

𝑏
− 8𝑚

2

𝑐
𝑚
𝑏

−16𝑞
2

𝑚
𝑏
+ 16𝑚

3

𝑐
+ 8𝑚

𝑐
𝑞
2

) 𝐼
1
(2, 3, 1)

+ (32𝑚
𝑏
− 136𝑚

𝑐
) 𝐼
1
(3, 1, 1)

− 8𝑚
3

𝑏
𝐼
1
(3, 1, 2)

+ (−8𝑚
5

𝑏
+ 16𝑞

2

𝑚
3

𝑏
− 8𝑞

4

𝑚
𝑏
) 𝐼
1
(3, 1, 3)

+ (−16𝑚
3

𝑏
+ 8𝑚

𝑐
𝑚
2

𝑏
− 8𝑚

2

𝑐
𝑚
𝑏

−8𝑞
2

𝑚
𝑏
+ 16𝑚

3

𝑐
+ 16𝑚

𝑐
𝑞
2

) 𝐼
1
(3, 2, 1)

+ (−8𝑚
5

𝑏
+ 8𝑚

𝑐
𝑚
4

𝑏
+ 16𝑚

2

𝑐
𝑚
3

𝑏

− 16𝑞
2

𝑚
3

𝑏
− 16𝑚

3

𝑐
𝑚
2

𝑏
+ 16𝑚

𝑐
𝑞
2

𝑚
2

𝑏

− 8𝑚
4

𝑐
𝑚
𝑏
− 16𝑚

2

𝑐
𝑞
2

𝑚
𝑏

+8𝑚
5

𝑐
+ 16𝑚

3

𝑐
𝑞
2

) 𝐼
1
(3, 3, 1)

+ (−72𝑚
3

𝑏
+ 216𝑚

𝑐
𝑚
2

𝑏
) 𝐼
1
(4, 1, 1)

+ 8𝑚
𝑐
𝐼
2
(1, 1, 3) − 8𝑚

𝑐
𝐼
2
(1, 2, 2)

+ 16𝑚
3

𝑐
𝐼
2
(1, 2, 3) − 24𝑚

𝑐
𝐼
2
(1, 3, 1)

+ 16𝑚
3

𝑐
𝐼
2
(1, 3, 2) + 8𝑚

5

𝑐
𝐼
2
(1, 3, 3)

− 24𝑚
3

𝑐
𝐼
2
(1, 4, 1) + 8𝑚

𝑏
𝐼
2
(2, 1, 2)
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+ (8𝑚
𝑏
− 48𝑚

𝑐
) 𝐼
2
(3, 1, 1)

+ (8𝑚
3

𝑏
− 8𝑞

2

𝑚
𝑏
) 𝐼
2
(3, 1, 2)

+72𝑚
2

𝑏
𝑚
𝑐
𝐼
2
(4, 1, 1)}

+ 𝐷
1

0
{−24𝑚

3

𝑐
𝐼 (1, 4, 1) + 72𝑚

2

𝑏
𝐼 (4, 1, 1)𝑚

𝑐

+ (24𝑚
𝑏
− 16𝑚

𝑐
) 𝐼 (1, 1, 3)

+ (16𝑚
𝑏
− 16𝑚

𝑐
) 𝐼 (1, 2, 2)

+ (−32𝑚
3

𝑐
+ 48𝑚

𝑏
𝑚
2

𝑐
+ 16𝑞

2

𝑚
𝑐
) 𝐼 (1, 2, 3)

+ (24𝑚
𝑏
− 32𝑚

𝑐
) 𝐼 (1, 3, 1)

+ (−16𝑚
3

𝑐
+ 40𝑚

𝑏
𝑚
2

𝑐

+16𝑞
2

𝑚
𝑐
) 𝐼 (1, 3, 2)

+ (−16𝑚
5

𝑐
+ 24𝑚

𝑏
𝑚
4

𝑐
+ 16𝑞

2

𝑚
3

𝑐
) 𝐼 (1, 3, 3)

+ (8𝑚
𝑏
+ 8𝑚

𝑐
) 𝐼 (2, 2, 1)

+ (24𝑚
3

𝑐
+ 16𝑚

2

𝑏
𝑚
𝑐
) 𝐼 (2, 3, 1)

+ (8𝑚
𝑏
− 40𝑚

𝑐
) 𝐼 (3, 1, 1)

+ (8𝑚
3

𝑏
+ 8𝑚

𝑐
𝑚
2

𝑏
+ 8𝑚

2

𝑐
𝑚
𝑏
+ 16𝑚

3

𝑐
)

× 𝐼 (3, 2, 1)

+ (8𝑚
5

𝑐
− 16𝑚

2

𝑏
𝑚
3

𝑐
+ 8𝑚

4

𝑏
𝑚
𝑐
) 𝐼 (3, 3, 1)

− 8𝑚
𝑏
𝐼
1
(1, 1, 3)

+ (−8𝑚
𝑏
− 24𝑚

𝑐
) 𝐼
1
(1, 3, 1)

+ (24𝑚
𝑏
𝑚
2

𝑐
− 24𝑚

3

𝑐
) 𝐼
1
(1, 4, 1)

− 8𝑚
𝑏
𝐼
1
(2, 1, 2) + 16𝑚

𝑏
𝑞
2

𝐼
1
(2, 1, 3)

+ (−16𝑚
3

𝑏
+ 8𝑚

𝑐
𝑚
2

𝑏
− 8𝑚

2

𝑐
𝑚
𝑏

+16𝑚
3

𝑐
) 𝐼
1
(2, 3, 1)

+ (16𝑚
𝑏
− 40𝑚

𝑐
) 𝐼
1
(3, 1, 1)

+ (−24𝑚
3

𝑏
+ 16𝑞

2

𝑚
𝑏
) 𝐼
1
(3, 1, 2)

+ (−8𝑚
5

𝑏
+ 16𝑞

2

𝑚
3

𝑏

−8𝑞
4

𝑚
𝑏
) 𝐼
1
(3, 1, 3)

+ (−16𝑚
3

𝑏
+ 8𝑚

𝑐
𝑚
2

𝑏

−8𝑚
2

𝑐
𝑚
𝑏
+ 16𝑚

3

𝑐
) 𝐼
1
(3, 2, 1)

+ (−8𝑚
5

𝑏
+ 8𝑚

𝑐
𝑚
4

𝑏
+ 16𝑚

2

𝑐
𝑚
3

𝑏

−16𝑚
3

𝑐
𝑚
2

𝑏
− 8𝑚

4

𝑐
𝑚
𝑏
+ 8𝑚

5

𝑐
) 𝐼
1
(3, 3, 1)

+ (72𝑚
2

𝑏
𝑚
𝑐
− 72𝑚

3

𝑏
) 𝐼
1
(4, 1, 1)

+ (−16𝑚
𝑏
+ 8𝑚

𝑐
) 𝐼
2
(1, 1, 3)

− 8𝑚
𝑐
𝐼
2
(1, 2, 2)

+ (16𝑚
3

𝑐
+ 16𝑞

2

𝑚
𝑐
) 𝐼
2
(1, 2, 3)

+ (−16𝑚
𝑏
− 72𝑚

𝑐
) 𝐼
2
(1, 3, 1)

+ (16𝑚
3

𝑐
+ 8𝑞

2

𝑚
𝑐
) 𝐼
2
(1, 3, 2)

+ (8𝑚
5

𝑐
+ 16𝑞

2

𝑚
3

𝑐
) 𝐼
2
(1, 3, 3)

+ (−72𝑚
3

𝑐
+ 48𝑚

𝑏
𝑚
2

𝑐
) 𝐼
2
(1, 4, 1)

− 8𝑚
𝑏
𝐼
2
(2, 1, 2)

+ 32𝑚
𝑏
𝑞
2

𝐼
2
(2, 1, 3)

+ (−32𝑚
3

𝑏
+ 16𝑚

𝑐
𝑚
2

𝑏

−16𝑚
2

𝑐
𝑚
𝑏
+ 32𝑚

3

𝑐
) 𝐼
2
(2, 3, 1)

+ (40𝑚
𝑏
− 128𝑚

𝑐
) 𝐼
2
(3, 1, 1)

+ (−40𝑚
3

𝑏
+ 24𝑞

2

𝑚
𝑏
) 𝐼
2
(3, 1, 2)

+ (−16𝑚
5

𝑏
+ 32𝑞

2

𝑚
3

𝑏

−16𝑞
4

𝑚
𝑏
) 𝐼
2
(3, 1, 3)

+ (−32𝑚
3

𝑏
+ 16𝑚

𝑐
𝑚
2

𝑏

−16𝑚
2

𝑐
𝑚
𝑏
+ 32𝑚

3

𝑐
) 𝐼
2
(3, 2, 1)

+ (−16𝑚
5

𝑏
+ 16𝑚

𝑐
𝑚
4

𝑏
+ 32𝑚

2

𝑐
𝑚
3

𝑏

−32𝑚
3

𝑐
𝑚
2

𝑏
− 16𝑚

4

𝑐
𝑚
𝑏
+ 16𝑚

5

𝑐
)

× 𝐼
2
(3, 3, 1)

+ (−144𝑚
3

𝑏
+216𝑚

𝑐
𝑚
2

𝑏
) 𝐼
2
(4, 1, 1)} ,

(A.1)

where

𝐷
𝑗

𝑖
[𝐼
𝑛
(𝑀

2

1
,𝑀

2

2
)]

=(𝑀
2

1
)

𝑖

(𝑀
2

2
)

𝑗 𝜕
𝑖

𝜕(𝑀
2

1
)
𝑖

𝜕
𝑗

𝜕(𝑀
2

2
)
𝑗

[(𝑀
2

1
)

𝑖

(𝑀
2

2
)

𝑗

𝐼
𝑛
(𝑀

2

1
,𝑀

2

2
)] .

(A.2)
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