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It is known that the nonstrictly thermal character of theHawking radiation spectrumharmonizesHawking radiationwith black hole
(BH) quasi-normal modes (QNM).This paramount issue has been recently analyzed in the framework of both Schwarzschild BHs
(SBH) and Kerr BHs (KBH). In this assignment, we generalize the analysis to the framework of nonextremal Reissner-Nordström
BHs (RNBH). Such a generalization is important because in both Schwarzschild and Kerr BHs an absorbed (emitted) particle
has only mass. Instead, in RNBH the particle has charge as well as mass. In doing so, we expose that, for the RNBH, QNMs can be
naturally interpreted in terms of quantum levels for both particle emission and absorption. Conjointly, we generalize some concepts
concerning the RNBH’s “effective states.”

1. Introduction

A RNBH of mass𝑀 is identical to a SBH of mass𝑀 except
that a RNBHhas the nonzero charge quantity𝑄. In this paper,
we are interested in RNBHs with the nonextremal constraint
𝑀 > 𝑄 [1]. The quantity 𝑄 is the physical mechanism for the
RNBH’s dual horizons from (1) in [1]:

𝑟
±
= 𝑅
±RNBH

(𝑀,𝑄) = 𝑀 ± √𝑀2 − 𝑄2, (1)

because the RNBHouter (event) horizon radius𝑅
+RNBH

(𝑀,𝑄)

and the RNBH inner (Cauchy) horizon radius 𝑅
−RNBH

(𝑀,𝑄)

are clearly functions of both𝑀 and 𝑄, not just𝑀, as in the
well known case of the SBH horizon radius

𝑟
𝑠
= 𝑅SBH (𝑀) = 2𝑀. (2)

Energy conservation plays a fundamental role in BH radiance
[2] because the emission or absorption of Hawking quanta
with mass 𝑚 and energy-frequency 𝜔 causes a BH of mass
𝑀 to undergo a transition between discrete energy spectrum
levels [3–7], where

𝐸 = 𝑚 = 𝜔 = Δ𝑀 (3)

for 𝐺 = 𝑐 = 𝑘
𝐵
= ℎ = 1/4𝜋𝜖

0
= 1 (Planck units).

Given that emission and absorption are reverse processes
for the quantized energy spectrum conservation [3–7], we
consider this pair of transitions as being equal in magnitude
but opposite in direction from the neutral radius perspective
of 𝑟
0
= (𝑟
+
+ 𝑟
−
)/2.

It is known that the countable character of successive
emissions of Hawking quanta which is a consequence of
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the nonstrictly thermal character of the Hawking radiation
spectrum (see [3–12]) generates a natural correspondence
between Hawking radiation and BH QNMs [3–7]. Moreover,
it has also been shown that QNMs can be naturally inter-
preted in terms of quantum levels, where the emission or
absorption of a particle is interpreted as a transition between
two distinct levels on the discrete energy spectrum [3–7].The
thermal spectrum correction is an imperative adjustment to
the physical interpretation of BHQNMs because these results
are important to realize the underlying unitary quantum
gravity theory [3–7].Hod’s intriguingworks [13, 14] suggested
that BH QNMs carry principle information regarding a BH’s
horizon area quantization. Hod’s influential conjecture was
later refined and clarified by Maggiore [15]. Moreover, it is
also believed that QNMs delve into the microstructure of
spacetime [16].

To make sense of the state space for the energy spectrum
states and the underlying BH perturbation field states, an
effective framework based on the nonstrictly thermal behavior
of Hawking’s framework began to emerge [3–7]. In the midst
of this superceding BH effective framework [3–7], the BH
effective state concept was originally introduced for KBHs
in [6] and subsequently applied through Hawking’s period-
icity arguments [17, 18] to the BH tunneling mechanism’s
nonstrictly black body spectrum [7]. The effective state is
meaningful to BH physics and thermodynamics research
because one needs additional features and knowledge to
consider in future experiments and observations.

In this paper, our objective is to apply the nonstrictly
thermal BH effective framework of [3–7] to nonextremal
RNBHs. Thus, upon recalling that a RNBH of mass 𝑀 is
identical to a SBH of mass 𝑀 except that a RNBH has the
charge 𝑄, we prepare for our BH QNM investigation by
reviewing relevant portions of the SBH effective framework
[3–7] for quantities related to SBH states and transitions in
Section 2. Then in Section 3, we launch our RNBH QNM
exploration by introducing a RNBH effective framework
for quantities pertaining to RNBH states and transitions.
Finally, we conclude with a brief comparison between the
fundamental SBH and RNBH results in Section 4 followed by
the recapitulation in Section 5.

2. Schwarzschild Black Hole Framework:
Background and Review

2.1. Schwarzschild Black Hole States and Transitions. Here, we
recall some quantities that characterize the SBH.

First, consider a SBH of initial mass 𝑀, when the SBH
emits or absorbs a quantum of energy-frequency 𝜔 (for
particlemass𝑚 and SBHmass changeΔ𝑀, such that𝑚 = 𝜔 =

Δ𝑀) to achieve a finalmass of𝑀−𝜔 or𝑀+𝜔, respectively, for
the SBHmass-energy transition between states in state space.
Thus, we follow [3–5], where the SBH initial and final horizon
area are

𝐴SBH (𝑀) = 16𝜋𝑀
2
= 4𝜋𝑅

2

SBH (𝑀) ,

𝐴SBH (𝑀 ± 𝜔) = 16𝜋(𝑀 ± 𝜔)
2
= 4𝜋𝑅

2

SBH (𝑀 ± 𝜔) ,

(4)

respectively, for the SBH area quanta number

𝑁SBH (𝑀, 𝜔) =
𝐴SBH (𝑀)

󵄨󵄨󵄨󵄨Δ𝐴SBH (𝑀, 𝜔)
󵄨󵄨󵄨󵄨

, (5)

such that the SBH horizon area change for the corresponding
mass change Δ𝑀 is

Δ𝐴SBH (𝑀, 𝜔) = 𝐴SBH (𝑀 ± 𝜔) − 𝐴SBH (𝑀)

= 32𝜋𝑀𝜔 + 𝑂(𝜔
2
) ∼ 32𝜋𝑀Δ𝑀

= 32𝜋𝑀Δ𝐸,

(6)

because the transition’s minus (−) and plus (+) signs depend
on emission and absorption, respectively. Next, in [3–5], the
Bekenstein-Hawking SBH initial and final entropy are

𝑆SBH (𝑀) =
𝐴SBH (𝑀)

4
,

𝑆SBH (𝑀 ± 𝜔) =
𝐴SBH (𝑀 ± 𝜔)

4
,

(7)

respectively, where the corresponding SBH entropy change is

Δ𝑆SBH (𝑀, 𝜔) =
Δ𝐴SBH (𝑀, 𝜔)

4
. (8)

Subsequently, the SBH initial and final total entropy are [3–5]

𝑆SBH−total (𝑀) = 𝑆SBH (𝑀) − ln 𝑆SBH (𝑀)

+
3

2𝐴SBH (𝑀)
,

𝑆SBH−total (𝑀 ± 𝜔) = 𝑆SBH (𝑀 ± 𝜔) − ln 𝑆SBH (𝑀 ± 𝜔)

+
3

2𝐴SBH (𝑀 ± 𝜔)
,

(9)

respectively. Additionally, the SBH initial and final Hawking
temperature are [3–5]

𝑇
𝐻SBH

(𝑀) =
1

8𝜋𝑀
,

𝑇
𝐻SBH

(𝑀 ± 𝜔) =
1

8𝜋 (𝑀 ± 𝜔)
,

(10)

respectively. Therefore, the quantum transition’s SBH emis-
sion tunneling rate is [3–5]

ΓSBH (𝑀, 𝜔) ∼ exp [−8𝜋𝑀𝜔(1 −
𝜔

2𝑀
)]

∼ exp[− 𝜔

𝑇
𝐻SBH

(𝑀)
(1 −

𝜔

𝑅SBH (𝑀)
)]

∼ exp [+Δ𝑆SBH (𝑀, 𝜔)] .

(11)



Advances in High Energy Physics 3

2.2. Schwarzschild Black Hole Effective States and Transitions.
Here, we recall some effective quantities that characterize the
SBH.

Given that 𝑀 is the mass state before and 𝑀 ± 𝜔 is the
mass state after the quantum transition, the SBHeffectivemass
and SBH effective horizon are, respectively, identified in [3–5]
as

𝑀
𝐸
(𝑀, 𝜔) =

𝑀 + (𝑀 ± 𝜔)

2
= 𝑀 ±

𝜔

2
,

𝑅
𝐸SBH

(𝑀, 𝜔) = 2𝑀
𝐸
(𝑀, 𝜔) ,

(12)

which are average quantities between the two states before and
after the process [3–5]. Consequently, using (4) and (12) we
define the SBH effective horizon area as

𝐴
𝐸SBH

(𝑀, 𝜔) ≡
𝐴SBH (𝑀) + 𝐴SBH (𝑀 ± 𝜔)

2

= 16𝜋𝑀
2

𝐸
(𝑀, 𝜔) = 4𝜋𝑅

2

𝐸SBH
(𝑀, 𝜔) ,

(13)

which is the average of the SBH’s initial and final horizon
areas. Subsequently, utilizing (7), the Bekenstein-Hawking
SBH effective entropy is defined as

𝑆
𝐸SBH

(𝑀, 𝜔) ≡
𝑆SBH (𝑀) + 𝑆SBH (𝑀 ± 𝜔)

2
, (14)

and consequently employs (13) and (14) to define the SBH
effective total entropy as

𝑆
𝐸SBH−total

(𝑀, 𝜔)

≡ 𝑆
𝐸SBH

(𝑀, 𝜔) − ln 𝑆
𝐸SBH

(𝑀, 𝜔) +
3

2𝐴
𝐸SBH

(𝑀, 𝜔)
.

(15)

Thus, employing (3) and (10), the SBH effective temperature is
[3–5]

𝑇
𝐸SBH

(𝑀, 𝜔) = (

𝑇
−1

𝐻SBH
(𝑀) + 𝑇

−1

𝐻SBH
(𝑀 ± 𝜔)

2
)

−1

= (8𝜋 [
𝑀 +𝑀 ± 𝜔

2
])

−1

=
1

4𝜋 (2𝑀 ± 𝜔)
=

1

8𝜋𝑀
𝐸
(𝑀, 𝜔)

,

(16)

which is the inverse of the average value of the inverses of
the initial and final Hawking temperatures. Consequently,
(16) lets one rewrite (11) to define the SBH effective emission
tunneling rate (in the Boltzmann-like form) as [3–5]

Γ
𝐸SBH

(𝑀, 𝜔) ∼ exp[− 𝜔

𝑇
𝐸SBH

(𝑀, 𝜔)
]

= exp [+Δ𝑆
𝐸SBH

(𝑀, 𝜔)] ,

(17)

such that (14) defines the SBH effective entropy change as

Δ𝑆
𝐸SBH

(𝑀, 𝜔) = 𝑆SBH (𝑀 ± 𝜔) − 𝑆SBH (𝑀) =

Δ𝐴
𝐸SBH

(𝑀, 𝜔)

4

(18)

because the SBH effective horizon area change is

Δ𝐴
𝐸SBH

(𝑀, 𝜔) = 16𝜋𝑀
𝐸
(𝑀, 𝜔) 𝜔 (19)

and the SBH effective area quanta number is

𝑁
𝐸SBH

(𝑀, 𝜔) =

𝐴
𝐸SBH

(𝑀, 𝜔)

Δ𝐴
𝐸SBH

(𝑀, 𝜔)
. (20)

2.3. Effective Application of Quasi-Normal Modes to the
Schwarzschild Black Hole. Here, we recall how the SBH
perturbation field QNM states can be applied to the SBH
effective framework.

The quasi-normal frequencies (QNFs) are typically
labeled as 𝜔

𝑛𝑙
, where 𝑙 is the angular momentum quantum

number [3–5, 15, 19]. Thus, for each 𝑙, such that 𝑙 ≥ 2 for
gravitational perturbations, there is a countable sequence of
QNMs labeled by the overtone number 𝑛, which is a natural
number [3–5, 15].

Now |𝜔
𝑛
| is the damped harmonic oscillator’s proper

frequency that is defined as [3–5, 15]

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 = (𝜔0)𝑛

= √𝜔2
𝑛R
+ 𝜔2
𝑛I
. (21)

Maggiore [15] articulated that the establishment |𝜔
𝑛
| = 𝜔
𝑛R

is
only correct for the very long-lived and lowly excited QNMs
approximation |𝜔

𝑛
| ≫ 𝜔

𝑛I
, whereas for a lot of BH QNMs,

such as those that are highly excited, the opposite limit is
correct [3–5, 15]. Therefore, the 𝜔 parameter in (12)–(20) is
substituted for the |𝜔

𝑛
| parameter [3–5] because we wish to

employ BH QNFs. When 𝑛 is large, the SBH QNFs become
independent of 𝑙 and thereby exhibit the nonstrictly thermal
structure [3–5]

𝜔
𝑛
= ln 3 × 𝑇

𝐸SBH
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) + 2𝜋𝑖 (𝑛 +

1

2
) × 𝑇
𝐸SBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨)

+ O (𝑛
−1/2

) =
ln 3

4𝜋 [2𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨]
+

2𝜋𝑖

4𝜋 [2𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨]

× (𝑛 +
1

2
) + O (𝑛

−1/2
) =

ln 3
8𝜋𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨)

+
2𝜋 (𝑛 + 1/2)

8𝜋𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨)
𝑖 + O (𝑛

−1/2
) ,

(22)

where

𝑚
𝑛
≡ 𝜔
𝑛R
=

ln 3
8𝜋𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨)
,

𝑝
𝑛
≡ 𝜔
𝑛I
=

2𝜋

8𝜋𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨)
(𝑛 +

1

2
) .

(23)
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Thus, when referring to highly excited QNMs one gets
|𝜔
𝑛
| ≈ 𝑝

𝑛
[3–5], where the quantized levels differ from [15]

because they are not equally spaced in exact form.Therefore,
according to [3–5], we have

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 =

√(ln 3)2 + 4𝜋2(𝑛 + 1/2)2

8𝜋𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨)

= 𝑇
𝐸SBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨)
√(ln 3)2 + 4𝜋2(𝑛 + 1

2
)

2

,

(24)

which is solved to yield

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 = 𝑀 −

√
𝑀2 −

√(ln 3)2 + 4𝜋2(𝑛 + 1/2)2

4𝜋

(25)

when we obey |𝜔
𝑛
| < 𝑀 because a BH cannot emit more

energy than its total mass.

3. Reissner-Nordström Black Hole
Framework: An Introduction

We note that for this framework we consider the RNBH event
horizon features, which are derived from the 𝑅

+RNBH
(𝑀,𝑄) in

(1).

3.1. Reissner-Nordström Black Hole States and Transitions.
Here, we recall some quantities that characterize the RNBH.

First, consider a RNBH of initial mass 𝑀 and initial
charge𝑄. Using (1), we define the RNBH initial event horizon
area as

𝐴
+RNBH

(𝑀,𝑄) = 4𝜋(𝑀 + √𝑀2 − 𝑄2)

2

= 4𝜋𝑅
2

+RNBH
(𝑀,𝑄) ,

(26)

the Bekenstein-Hawking RNBH initial entropy as

𝑆
+RNBH

(𝑀,𝑄) =

𝐴
+RNBH

(𝑀,𝑄)

4
, (27)

and the RNBH initial electrostatic potential as

Φ
+
(𝑀,𝑄) =

𝑄

4𝜋𝑅
+RNBH

(𝑀,𝑄)
=

𝑄

4𝜋 (𝑀 + √𝑀2 − 𝑄2)

.

(28)

Consequently, (17) of [2] identifies the RNBH initial Hawking
temperature as

𝑇
+𝐻RNBH

(𝑀,𝑄) =
√𝑀2 − 𝑄2

2𝜋(𝑀 + √𝑀2 − 𝑄2)
2

=

𝑅
+RNBH

(𝑀,𝑄) − 𝑅
−RNBH

(𝑀,𝑄)

𝐴
+RNBH

(𝑀,𝑄)
.

(29)

Second, consider when the RNBH emits or absorbs a quan-
tum of energy-frequency 𝜔 with charge 𝑞 to achieve a final

mass of𝑀−𝜔 or𝑀+𝜔 and a final charge of 𝑄 − 𝑞 or 𝑄 + 𝑞,
respectively, for the RNBH mass-energy transition between
states in state space. For this, all we need to do is replace the
RNBH’s mass and charge parameters in (26) and (29). Thus,
(26) establishes the RNBH final event horizon area as

𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

= 4𝜋𝑅
2

+RNBH
(𝑀 ± 𝜔,𝑄 ± 𝑞)

= 4𝜋((𝑀 ± 𝜔) + √(𝑀 ± 𝜔)
2
− (𝑄 ± 𝑞)

2

)

2

.

(30)

Equation (27) presents the Bekenstein-Hawking RNBH final
entropy as

𝑆
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞) =

𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

4
, (31)

and (28) defines the RNBH final electrostatic potential as

Φ
+
(𝑀 ± 𝜔,𝑄 ± 𝑞)

=
𝑄

4𝜋𝑅
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

=
𝑄

4𝜋((𝑀 ± 𝜔) + √(𝑀 ± 𝜔)
2
− (𝑄 ± 𝑞)

2

)

(32)

for usage in (29) of [20], where it is proposed that the RNBH
adiabatic invariant is

𝐼
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) = ∫
𝜔 − Φ

+
(𝑀 ± 𝜔,𝑄) 𝑞

𝜔

= ∫
Δ𝑀 − Φ

+
(𝑀 ± Δ𝑀,𝑄)Δ𝑄

Δ𝑀

(33)

because Δ𝑄 = 𝑞. Hence, (29) identifies the RNBH final
Hawking temperature as

𝑇
+𝐻RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

=

𝑅
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞) − 𝑅
−RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

=

√(𝑀 ± 𝜔)
2
− (𝑄 ± 𝑞)

2

2𝜋((𝑀 ± 𝜔) + √(𝑀 ± 𝜔)
2
− (𝑄 ± 𝑞)

2

)

2
.

(34)

Next, upon generalizing (16) in [2] and the work [21], we
define the RNBH tunneling rate as

Γ
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

∼ exp [−4𝜋 (2𝜔(𝑀 ±
𝜔

2
)

− (𝑀 ± 𝜔)√(𝑀 ± 𝜔)
2
− (𝑄 ± 𝑞)

2

+𝑀√𝑀2 − 𝑄2)]

∼ exp [Δ𝑆
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)] ,

(35)
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wherewe utilize (30) to define theBekenstein-Hawking RNBH
entropy change as

Δ𝑆
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) =

Δ𝐴
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

4
, (36)

such that the RNBH event horizon area change is

Δ𝐴
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) = 𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

− 𝐴
+RNBH

(𝑀,𝑄)

(37)

so we can define theRNBH event horizon area quanta number
as

𝑁
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) =

𝐴
+RNBH

(𝑀,𝑄)

󵄨󵄨󵄨󵄨󵄨
Δ𝐴
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)
󵄨󵄨󵄨󵄨󵄨

. (38)

3.2. Reissner-Nordström Black Hole Effective States and Tran-
sitions. Here, we define some effective quantities that charac-
terize the RNBH.

TheRNBH effectivemass is equivalent to the SBH effective
mass component of (12), which is

𝑀
𝐸
(𝑀, 𝜔) ≡

𝑀 + (𝑀 ± 𝜔)

2
. (39)

Next, we define the RNBH effective charge as

𝑄
𝐸
(𝑄, 𝑞) ≡

𝑄 + (𝑄 ± 𝑞)

2
, (40)

which is the average of the RNBH’s initial charge 𝑄 and final
charge 𝑄 ± 𝑞. From this, (1), (39), and (40) are used to define
the corresponding RNBH effective event horizon and RNBH
effective Cauchy horizon as

𝑟
±𝐸
≡ 𝑅
±𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡ 𝑀
𝐸
(𝑀, 𝜔)

± √𝑀
2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞),

(41)

with respect to the energy conservation and pair production
neutrality of (39). Next, we employ (26), (39), and (41) to
define the RNBH effective event horizon area as

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡ 4𝜋𝑅
2

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞)

≡ 4𝜋(𝑀
𝐸
(𝑀, 𝜔) + √𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

,

(42)

which is then used to define the RNBH effective entropy as

𝑆
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

4
. (43)

Afterwards, we use (28) and (42) to define the RNBH effective
electrostatic potential as

Φ
+𝐸
(𝑀, 𝜔, 𝑄, 𝑞)

≡
𝑄
𝐸
(𝑄, 𝑞)

4𝜋𝑅
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡
𝑄
𝐸
(𝑄, 𝑞)

4𝜋 (𝑀
𝐸
(𝑀, 𝜔) + √𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞))

(44)

so we can utilize the 𝑇
𝐸SBH

(𝑀, 𝜔) in (16) along with (39), (40),
and (44) to define the RNBH effective adiabatic invariant as

𝐼
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡ ∫
𝑑𝑀
𝐸
(𝑀, 𝜔) − Φ

+𝐸
(𝑀, 𝜔, 𝑄, 𝑞) 𝑑𝑄

𝐸
(𝑄, 𝑞)

𝑇
𝐸SBH

(𝑀, 𝜔)
.

(45)

At this point, (16) and (35) let us introduce and define the
RNBH effective temperature as

𝑇
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡

√(𝑀 ± 𝜔/2)
2
− (𝑄 ± 𝑞/2)

2

2𝜋[(𝑀 ± 𝜔/2) + √(𝑀 ± 𝜔/2)
2
− (𝑄 ± 𝑞/2)

2

]

2

≡

√𝑀
2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀, 𝜔) + √𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

≡

𝑅
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) − 𝑅
−𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)
,

(46)

which authorizes us to exercise (36) and (46) to rewrite (35)
to define the RNBH effective tunneling rate as

Γ
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ∼ exp[ ±𝜔

𝑇
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)
]

∼ exp [Δ𝑆
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)] ,

(47)

such that the RNBH effective entropy change is defined as

Δ𝑆
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡

Δ𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

4

(48)

for the RNBH effective event horizon area change

Δ𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡
2𝜔𝑞 + 𝑄

3
𝜋

(𝑀2 − 𝑄2)
3/2

(49)

and the RNBH effective event horizon area quanta number

𝑁
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

󵄨󵄨󵄨󵄨󵄨
Δ𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)
󵄨󵄨󵄨󵄨󵄨

. (50)
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4. Effective Application of Quasi-Normal
Modes to the Reissner-Nordström
Black Hole

Here, we explain how the RNBH perturbation field QNM
states can be applied to the RNBH effective framework.

Similarly to SBH QNFs, the RNBH QNFs become inde-
pendent of 𝑙 for large 𝑛 [22]. Thus, for large 𝑛, we have two
families of the QNM:

𝜔
𝑛
= ln 3 × 𝑇

+𝐻SBH
(𝑀,𝑄) − 2𝜋 (𝑛 +

1

2
) 𝑖 × 𝑇

+𝐻SBH
(𝑀,𝑄)

+
𝑞𝑄

𝑅
+SBH

(𝑀,𝑄)
,

(51)

𝜔
𝑛
= ln 2 × 𝑇

+𝐻RNBH
(𝑀,𝑄) − 2𝜋 (𝑛 +

1

2
) 𝑖 × 𝑇

+𝐻RNBH
(𝑀,𝑄)

+
𝑞𝑄

𝑅
+RNBH

(𝑀,𝑄)
=

ln 2√𝑀2 − 𝑄2

2𝜋(𝑀 + √𝑀2 − 𝑄2)
2

−
(𝑛 + 1/2)√𝑀

2 − 𝑄2

(𝑀 + √𝑀2 − 𝑄2)
2
𝑖 +

𝑞𝑄

𝑅
+RNBH

(𝑀,𝑄)
.

(52)

Now the approximation of (51) and (52) is only relevant
under the assumption that the BH radiation spectrum is
strictly thermal [3–5] because they both use the Hawking
temperature 𝑇

+𝐻RNBH
in (29). Hence, to operate in compliance

with [3–5] and thereby account for the thermal spectrum
deviation of (35), we opt to select the (52) case and upgrade
it by effectively replacing its 𝑇

𝐻RNBH
in (29) with the 𝑇

+𝐸RNBH
in

(46).Therefore, the corrected expression for the RNBHQNFs
of (52) which encodes the nonstrictly thermal behavior of the
radiation spectrum is defined as

𝜔
𝑛
≡ ln 2 × 𝑇

+𝐸RNBH
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

− 2𝜋 (𝑛 +
1

2
) 𝑖 × 𝑇

+𝐸RNBH
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

+
𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡

ln 2√𝑀2
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) +

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

−

(𝑛 + 1/2)√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞)

(𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) +

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞))

2
𝑖

+
𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)
.

(53)

From (39), (41), and (46) we define the effective quantities
associated with the QNMs as

𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) ≡

𝑀 + (𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨)

2
, (54)

𝑟
±𝐸
≡ 𝑅
±𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞) =

= 𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) ±

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞),

(55)

𝑇
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡

√(𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 /2)
2

− (𝑄 − 𝑞/2)
2

2𝜋[(𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 /2)+
√(𝑀 −

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 /2)
2

− (𝑄 − 𝑞/2)
2

]

2

=

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) +

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

=

𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞) − 𝑅−𝐸RNBH
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

𝐴
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)
,

(56)

respectively, for the quantum overtone number 𝑛 in (53).
Hence, (53) lets us rewrite the SBH case of (23) to present
the RNBH case

𝑚
𝑛
≡ ln 2 × 𝑇

+𝐸RNBH
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

+
𝑒𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

=

ln 2√𝑀2
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨)+

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

+
𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)
,

𝑝
𝑛
≡ −2𝜋(𝑛 +

1

2
) × 𝑇
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

=−

(𝑛 + 1/2)√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞)

(𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨)+

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞))

2
.

(57)
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Thus, we recall that if |𝜔
𝑛
| ≈ 𝑝

𝑛
, then we are referring to

highly excited QNMs [3–5]. Therefore, the SBH case of (24)
becomes the RNBH case

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨

≡

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞)√(ln 2)2 − 4𝜋2(𝑛 + 1/2)2

2𝜋(𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) +

√𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

+
𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)
= 𝑇
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

× √(ln 2)2 − 4𝜋2(𝑛 + 1

2
)

2

+
𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)
.

(58)

Hence, upon considering (40) and (54), one can rewrite (58)
as

󵄨󵄨󵄨󵄨
𝜔
𝑛

󵄨󵄨󵄨󵄨
≡

√(𝑀−
󵄨󵄨󵄨󵄨
𝜔
𝑛

󵄨󵄨󵄨󵄨
/2)
2

− (𝑄− 𝑞/2)
2
√(ln 2)2 − 4𝜋2(𝑛 + 1/2)2

2𝜋[(𝑀−
󵄨󵄨󵄨󵄨
𝜔
𝑛

󵄨󵄨󵄨󵄨
/2) + √(𝑀−

󵄨󵄨󵄨󵄨
𝜔
𝑛

󵄨󵄨󵄨󵄨
/2)
2

− (𝑄− 𝑞/2)
2

]

2

+

𝑞 (𝑄− 𝑞/2)

(𝑀−
󵄨󵄨󵄨󵄨
𝜔
𝑛

󵄨󵄨󵄨󵄨
/2) + √(𝑀− |𝜔

𝑛
|/2)
2

− (𝑄− 𝑞/2)
2

,

(59)

where the solution of (59) in terms of |𝜔
𝑛
| will be the answer

of |𝜔
𝑛
|. Therefore, given a quantum transition between the

levels 𝑛 and 𝑛 − 1, we define |Δ𝜔
𝑛,𝑛−1

| ≡ |𝜔
𝑛
− 𝜔
𝑛−1
| where

(41)–(45) are rewritten as

𝑟
±𝐸
≡ 𝑅
±𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡ 𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1
󵄨󵄨󵄨󵄨)

± √𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞),

𝐴
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡ 4𝜋𝑅
2

+𝐸RNBH
(𝑀,

󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1
󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡ 4𝜋 (𝑀
𝐸
(𝑀,

󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1
󵄨󵄨󵄨󵄨)

+ √𝑀
2

𝐸
(𝑀,

󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1
󵄨󵄨󵄨󵄨) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

,

𝑆
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞) ≡

𝐴
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

4
,

Φ
+𝐸

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡
𝑄
𝐸

(𝑄, 𝑞)

4𝜋𝑅
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡
𝑄
𝐸

(𝑄, 𝑞)

4𝜋 (𝑀
𝐸

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨) +
√𝑀
2

𝐸

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨) − 𝑄
2

𝐸

(𝑄, 𝑞))

,

𝐼
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

= ∫
𝑑𝑀
𝐸

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨) − Φ+𝐸 (𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞) 𝑑𝑄𝐸 (𝑄, 𝑞)

𝑇
𝐸SBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨)
,

(60)

and (47)–(50) become

Γ
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

∼ exp[
±
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨

𝑇
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)
]

∼ exp [Δ𝑆
+RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)] ,

Δ𝑆
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡

Δ𝐴
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

4
,

Δ𝐴
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞) ≡
2
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 𝑞 + 𝜋𝑄
3

(𝑀2 − 𝑄2)
3/2

,

𝑁
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

≡

𝐴
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)

󵄨󵄨󵄨󵄨󵄨
Δ𝐴
+𝐸RNBH

(𝑀,
󵄨󵄨󵄨󵄨Δ𝜔𝑛,𝑛−1

󵄨󵄨󵄨󵄨 , 𝑄, 𝑞)
󵄨󵄨󵄨󵄨󵄨

,

(61)

respectively.

5. A Brief Comparison

Here, we will show that the SBH results of Section 2 are in
fundamental agreement with the RNBH results of Section 3
for small 𝑄, where we recall that the RNBH of mass 𝑀 is
identical to a SBH of mass 𝑀 except that a RNBH has the
nonzero charge quantity 𝑄.

First, for small 𝑄, the SBH’s 𝑇
𝐸SBH

(𝑀, 𝜔) of (16) is related
to the RNBH’s 𝑇

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞) of (46) as

𝑇
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡ 𝑇
𝐸SBH

(𝑀, 𝜔) −
3𝑞
2
𝑄
2

8(2𝑚 ± 𝜔)
5
𝜋
+ O (𝑄

4
, 𝑞
4
) .

(62)
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Second, for small 𝑄, the SBH’s 𝐴
𝐸SBH

(𝑀, 𝜔) of (13) complies
with the RNBH’s 𝐴

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞) of (42) as

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡ 𝐴
𝐸SBH

(𝑀, 𝜔) − 8𝜋𝑄
2
+ O (𝑄

4
) .

(63)

Third, for small𝑄, the SBH’s 𝑆
𝐸SBH

(𝑀, 𝜔) of (14) corresponds
with the RNBH’s 𝑆

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞) of (43) as

𝑆
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡ 𝑆
𝐸SBH

(𝑀, 𝜔) − 2𝜋𝑄
2
+ O (𝑄

4
) . (64)

Fourth, for small 𝑄, the SBH’s QNF |𝜔
𝑛
| of (24) is consistent

with the RNBH’s QNF |𝜔
𝑛
| of (58) and (59) as

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨 ≡

√ln 22 − 4𝜋2(𝑛 + 1/2)2

4 (2𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨) 𝜋
+

𝑞𝑄

2𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨

= ( (3 (16𝜋𝑀
2
− 16𝜋

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨𝑀 + 4𝜋

󵄨󵄨󵄨󵄨𝜔𝑛
󵄨󵄨󵄨󵄨

2

+√− (ln 2 + 𝜋 + 2𝜋𝑛) (− ln 2 + 𝜋 + 2𝜋𝑛)))

×(8(2𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨)
5

𝜋)
−1

)𝑄
2
𝑞
2

=
𝑞
2

4𝑀 −
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨

+ O (𝑄
4
, 𝑞
4
) ,

(65)

which can be applied to (62)-(63) by replacing the 𝜔 param-
eter with the pertinent |𝜔

𝑛
|. Hence, (62)–(65) indicate that

in general the SBH results of Section 2 are fundamentally
consistent with the RNBH results of Section 3 for small 𝑄.
Moreover, in (65) for large 𝑛, the result is consistent with
the SBH because ln 2 is negligible, but for small 𝑛 there is an
argument between scientists regarding ln 2 and ln 3 because
these refer to the two distinct QNM families of (51) and (52).

Here, we provide the physical answer of (65) for the case
of emission by using the fact that𝑄 is small, so the termwhich
includes 𝑄2 is also very small and therefore negligible:

(𝜔
0
)
𝑛
≡
󵄨󵄨󵄨󵄨𝜔𝑛

󵄨󵄨󵄨󵄨 ≈ 𝑀

−
√
𝑀2 +

𝑞
2

2
− 𝑄𝑞 −

1

4𝜋

√ln 22 − 4𝜋2(𝑛 + 1

2
)

2

.

(66)

Thus, by setting (𝜔
0
)
𝑛
≡ |𝜔
𝑛
| we obtain

Δ𝑀
𝑛
≡ −Δ𝜔

𝑛,𝑛−1
= (𝜔
0
)
𝑛−1

− (𝜔
0
)
𝑛

≡
√
𝑀2 +

𝑞
2

2
− 𝑄𝑞 −

1

4𝜋

√(ln 2)2 + 4𝜋2(𝑛 + 1

2
)

2

−
√
𝑀2 +

𝑞
2

2
− 𝑄𝑞 −

1

4𝜋

√(ln 2)2 + 4𝜋2(𝑛 − 1

2
)

2

(67)

for an emission involving quantum levels 𝑛 and 𝑛 − 1, which
becomes

Δ𝑀
𝑛
≈ √𝑀2 +

𝑞
2

2
− 𝑄𝑞 −

1

2
(𝑛 +

1

2
)

− √𝑀2 +
𝑞
2

2
− 𝑄𝑞 −

1

2
(𝑛 −

1

2
)

(68)

for large 𝑛.

6. Conclusion Remarks

We began our paper by summarizing some basic similarities
and differences between SBHs and RNBHs in terms of charge
and horizon radii. Moreover, we briefly explored the Parikh-
Wilczek statement that explains how energy conservation and
pair production [2, 23] are fundamentally related to suchBHs.
For a BH’s discrete energy spectrum, the emission or absorp-
tion of a particle yields a transition between two distinct
levels, where particle emission and absorption are reverse
processes [3–7]. For this, we touched on the important issue
that the nonstrictly thermal character of Hawking’s radia-
tion spectrum generates a natural correspondence between
Hawking’s radiation and BHQNMs, because these structures
exemplify features of the BH’s energy spectrum [3–5], which
has been recently generalized to the emerging concept of a
BH’s effective state [6, 7].

Next, we prepared for our nonextremal RNBH QNM
investigation by first reviewing relevant portions of the SBH
effective framework [3–5] in Section 2. There, we listed the
noneffective and effective quantities for SBH states and tran-
sitions, with direct application to the QNM characterization
and framework of [3–5]. Subsequently, in Section 3, we iden-
tified some existing noneffective quantities and introduced
new effective quantities for RNBH states and transitions so
we could apply the BH framework of [3–5] to implement
a RNBH framework. These results are crucial because the
effective quantities in [3–5] have been achieved for the
stable four-dimensional RNBH solution in Einstein’s general
relativity—now effective frameworks exist for the SBH, KBH,
and (nonextremal) RNBH solutions.

Ultimately, the RNBH effective quantities permitted us to
utilize both the KBH’s effective state concept [6, 7] and the
BH QNMs [3–5] to construct a foundation for the RNBH’s
effective state in this developing BH effective framework.
The RNBH effective state concept is meaningful because,
as scientists who wish to demystify the BH paradigm, we
need additional features and knowledge to consider in future
experiments and observations.

Finally, we stress that the nonstrictly thermal behavior
of the Hawking radiation spectrum has been recently used
to construct two very intriguing proposals to solve the
BH information loss paradox. The first one received the
First Award in the 2013 Gravity Research Foundation Essay
Competition [12]. The latter won the Community Rating at
the 2013 FQXi Essay Contest—It from Bit or Bit from It [24].
We are working to extend this second approach to the RNBH
framework [25].
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