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We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity.We analyze the
phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and
background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor.
So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.

1. Introduction

Recent astrophysical observations including Supernova Ia [1,
2], large scale structure [3, 4], the baryon acoustic oscillations
[5], and cosmic microwave background radiation [6–9] have
indicated that our universe is experiencing an accelerating
phase of expansion.

There are two ways to explain the current cosmic expan-
sion. The first one is to add extra terms in the gravitational
Lagrangian or modify gravity on large scales and the second
one is to introduce an unknown energy component, dubbed
as dark energy with negative pressure.

The simplest modification of general relativity is the so-
called 𝑓(𝑅) gravity in which one generalizes the Einstein-
Hilbert action to a general function of the Ricci scalar 𝑅 (for
reviews see [10–13]). In the other side the simplest candidate
of dark energy is the vacuum energy or the cosmological
constant Λ with a constant equation of state parameter
𝜔 = −1. However, the cosmological constant suffers from
serious problems such as huge amount of fine tuning required
for its magnitude and lack of dynamics [14–17]. Due to
these problems numerous dynamical dark energy models
have beenproposed.Quintessence [18–22], phantom [23–29],
tachyon [30, 31], and the combination of quintessence and
phantom in a unifiedmodel named quintom [32–38] arewell-
known examples of dark energy models (for reviews on dark
energy models, see [39, 40]).

Although usually the scalar fields are minimally coupled
to gravity, there are compelling reasons (e.g., quantum cor-
rections and renormalizability of the scalar field theory in
curved space) to include an explicit nonminimal coupling
between dark energy and gravity in the action [41–48]. Also,
a possible coupling between dark energy and dark matter can
be included in generalized versions of the aforementioned
models [49, 50]. Because of this possibility, various forms
of interacting dark energy models have been constructed
hitherto [51–65].

Furthermore, an equivalent form of classical gravity is the
so-called teleparallel gravity, in which, instead of using the
torsionless Levi-Civita connection, one uses the curvatureless
Weitzenbock one. In this theory, the dynamical variables
are a set of four tetrad (or vierbein) fields that form the
pseudoorthogonal bases for the tangent space at each point of
spacetime [66–68].The teleparallel Lagrangian density 𝑇 can
be constructed from torsion tensor and only differs with the
Ricci scalar by a total divergence.Thus, apart from some con-
ceptual differences, general relativity and teleparallel gravity
are dynamically equivalent theories and indistinguishable
from general relativity at the level of field equations [67, 68].
Recently,𝑓(𝑅) inspired teleparallel gravity, the so-called𝑓(𝑇)
gravity, has attracted much attention [69–83].

Teleparallel dark energy is a recently proposed scenario
in which a nonminimal coupling between quintessence and
gravity in the framework of teleparallel gravity was consid-
ered [84, 85].This theory has a rich structure and its dynamics
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was studied in [86–88]. Tachyonic teleparallel dark energy
is a generalization of teleparallel dark energy by inserting a
noncanonical scalar field instead of quintessence in the action
[89]. Phase-space analysis of this model has been investigated
in [90]. In this paper we study the dynamics of interacting
tachyonic teleparallel dark energy. We find stable solutions
of the model which are late-time accelerated attractors and
correspond to dark energy dominated solutions. Thus, coin-
cidence problem cannot be solved in interacting tachyonic
teleparallel dark energy model.

An outline of the present letter is as follows. In Section 2
we briefly review teleparallel gravity. In Section 3 we present
tachyonic teleparallel dark energy and obtain energy density,
pressure, and equation of state of the model. In Section 4
we study dynamics of the model in a system of autonomous
differential equations, find its fixed points, and study their
stabilities. Section 5 is devoted to conclusions.

2. Teleparallel Gravity

Let us start with a brief review of the key ingredients of
teleparallel gravity [66–72]. In this theory, the metric tensor
is obtained from the dual vierbein as

𝑔𝜇] = 𝜂𝑖𝑗𝑒
𝑖

𝜇
𝑒𝑗], (1)

where Latin 𝑖, 𝑗 are indices running over 0, 1, 2, 3 for the tan-
gent space at each point 𝑥𝜇 of the manifold and Greek 𝜇 and
] are coordinate indices on the manifold, taking the values
0, 1, 2, 3. Furthermore, the torsion tensor of theWeitzenbock
connection Γ𝜌]𝜇 [91] reads

𝑇𝜌
𝜇] = Γ

𝜌

]𝜇 − Γ
𝜌

𝜇] = 𝑒
𝜌

𝑖
(𝜕𝜇𝑒
𝑖

] − 𝜕]𝑒
𝑖

𝜇
) . (2)

In the present formalism all the information concerning
the gravitational field is included in the torsion tensor
𝑇𝜌
𝜇]. The corresponding teleparallel Lagrangian can be con-

structed from this torsion tensor under the assumptions of
invariance under general coordinate transformation, global
Lorentz transformations, and the parity operation, alongwith
requiring the Lagrangian density to be second order in the
torsion tensor [92].The starting action in a universe governed
by teleparallel gravity is

𝑆 = ∫𝑑4𝑥𝑒 [
𝑇

2𝜅2
+L𝑚] , (3)

where 𝑒 = det(𝑒𝑖
𝜇
) = √−𝑔 and 𝑇 is the torsion scalar given by

L = 𝑇 =
1

4
𝑇𝜌𝜇]𝑇𝜌𝜇] +

1

2
𝑇𝜌𝜇]𝑇]𝜇𝜌 − 𝑇

𝜌

𝜌𝜇
𝑇]𝜇] . (4)

Variation with respect to the vierbein fields yields to the
equations of motion which are exactly the same as those of
general relativity for every geometry choice. Since the action
(3) in a Friedmann-Robertson-Walker (FRW) background is
equivalent to a matter domination universe in the framework
of general relativity, hence it cannot be accelerated. So, we
should generalize action (3) either by replacing 𝑇 with 𝑓(𝑇)

[69–83] or by adding a scalar field responsible for dark energy
in teleparallel gravity. On the other hand, one can easily find
that dark energy in the framework of teleparallel gravity is
completely identical to the one in the framework of general
relativity, and hence there is nothing new. Recently Geng et
al. [84] have proposed to modify action (3) by including a
nonminimal coupling between quintessence and gravity in
the framework of teleparallel gravity and named it teleparallel
dark energy. Here we generalize teleparallel dark energy
model by replacing canonical scalar field (quintessence) by
a noncanonical scalar field. The noncanonical scalar field
is tachyon field and the model has been called tachyonic
teleparallel dark energy.

3. Interacting Tachyonic Teleparallel
Dark Energy

The action of teleparallel dark energy with a nonminimal
coupling between tachyon field and teleparallel gravity reads

𝑆 = ∫𝑑4𝑥𝑒 [
𝑇

2𝜅2
+ 𝜉𝑓 (𝜑) 𝑇 − 𝑉 (𝜑)√1 − 2𝑋 +L𝑚] , (5)

where 𝜉 is a dimensionless constant and 𝑓(𝜑) is an arbitrary
function of scalar field and it is responsible for nonminimal
coupling between dark energy and gravity. 𝑉(𝜑) is the
tachyonic potential and𝑋 = (1/2)𝜕𝜇𝜑𝜕

𝜇𝜑 (we use the metric
signature (+, −, −, −)). We should emphasize that in torsion
formulation of general relativity the only scalar is the torsion
scalar and hence the nonminimal coupling will be between 𝑇
and tachyon field in analogy with the standard nonminimal
tachyon cosmology in general relativity where the scalar field
couples to the Ricci scalar.

Phase-space analysis of tachyon field in the framework
of general relativity has been studied in several papers (see,
e.g., [93–95]). To obtain a closed autonomous system of
ordinary differential equations out of the cosmological field
equations [96] has proposed the following transformation of
the tachyon field:

𝜑 󳨀→ 𝜙 = ∫𝑑𝜑√𝑉 (𝜑) ⇐⇒ 𝜕𝜑 =
𝜕𝜙

√𝑉 (𝜙)
. (6)

It is shown that the preceding transformation can help us
study tachyon dynamics for a wide class of self-interaction
potentials beyond the inverse square one. It is revealed that
for power law potentials the late-time attractor is always the
de Sitter solution while for 𝑠𝑖𝑛ℎ-like potentials the late-time
attractor can be either the inflationary tachyon dominated
solution or the matter scaling phase.

In this paper we also use the field redefinition (6) to study
the dynamics of the interacting tachyon field nonminimally
coupled with gravity in the framework of teleparallel gravity.
Therefore, our starting action is obtained using (6) in (5):

𝑆 = ∫𝑑4𝑥𝑒 [
𝑇

2𝜅2
+ 𝜉𝑓 (𝜙) 𝑇 − 𝑉 (𝜙)√1 −

2𝑋

𝑉 (𝜙)
+L𝑚] .

(7)
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Also we consider a possible interaction between dark
energy and darkmatter because there is no physical argument
to exclude the interaction between them.

In a spatially flat FRW space-time,

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑡) (𝑑𝑟
2 + 𝑟2𝑑Ω2) , (8)

and a vierbein choice of the form 𝑒𝑖
𝜇
= diag(1, 𝑎, 𝑎, 𝑎), the

equation of motion of the scalar field can be obtained by
variation of the action (7) with respect to 𝜙:

̈𝜙 + 3𝜇−2𝐻 ̇𝜙 + (1 −
3𝑋

𝑉 (𝜙)
)𝑉,𝜙 + 6𝜉𝜇

−3𝐻2𝑓,𝜙 = −
𝑄

̇𝜙
, (9)

with 𝑄 being a general interaction coupling term between
dark energy and dark matter. Furthermore, the effective
energy density and pressure of tachyonic dark energy read

𝜌𝜙 = 𝜇𝑉 (𝜙) − 6𝜉𝐻
2𝑓 (𝜙) ,

𝑃𝜙 = − 𝜇
−1𝑉 (𝜙) + 2𝜉 (3𝐻2 + 2𝐻̇) 𝑓 (𝜙) + 4𝜉𝐻𝑓,𝜙

̇𝜙,
(10)

where 𝑓,𝜙 = 𝑑𝑓/𝑑𝜙 and 𝜇 = 1/√1 − 2𝑋/𝑉.
In (9) and (10) we have used the useful relation,

𝑇 = −6𝐻2, (11)

which simply arises from the calculation of (4) for the
FRW metric (8). The scalar field evolution (9) expresses the
continuity equation for the field and matter as follows:

̇𝜌𝜙 + 3𝐻(1 + 𝜔𝜙) 𝜌𝜙 = −𝑄,

̇𝜌𝑚 + 3𝐻 (1 + 𝜔𝑚) 𝜌𝑚 = 𝑄,
(12)

where 𝜔𝜙 = 𝑃𝜙/𝜌𝜙 is the equation of state parameter of dark
energy which is attributed to the scalar field 𝜙.The barotropic
index is defined by 𝛾 ≡ 1 + 𝜔𝑚 with 0 < 𝛾 < 2.

In FRW background (8) the corresponding Friedmann
equations are given by

𝐻2 =
𝜅2

3
(𝜌𝜙 + 𝜌𝑚) ,

𝐻̇ = −
𝜅2

2
(𝜌𝜙 + 𝑃𝜙 + 𝜌𝑚 + 𝑃𝑚) ,

(13)

where 𝐻 = ̇𝑎/𝑎 is the Hubble parameter and a dot stands
for the derivative with respect to the cosmic time 𝑡. In these
equations, 𝜌𝑚 and 𝑃𝑚 are the matter energy density and the
pressure, respectively.

Tachyonic teleparallel dark energy has been studied in
[89]. It is shown that such a scenario can realize phantom
divide crossing during its evolution and so it exhibits very
interesting cosmological behavior. Therefore, it seems nec-
essary to perform a phase-space analysis of such theory. In
phase-space analysis we investigate late-time solutions that
are independent from the initial conditions and the specific
universe evolution.

4. Phase-Space Analysis

In order to study the phase-space and stability of the model
(7), we should translate the evolution equations in the lan-
guage of the autonomous dynamical system 𝑋󸀠 = 𝑓(𝑋) [97–
100], where 𝑋 is the column vector constituted by suitable
auxiliary variables, 𝑓(𝑋) is the corresponding column vector
of the autonomous equations, and prime denotes derivative
with respect to the logarithm of the scale factor 𝑁 = ln 𝑎.
The critical points𝑋𝑐 are extracted from𝑋

󸀠 = 0 and in order
to determine the stability properties of these critical points
we expand around𝑋𝑐, setting𝑋 = 𝑋𝑐 +𝑈 with𝑈 the pertur-
bations of the variables considered as column vector. Thus,
up to the first order we acquire𝑈󸀠 = 𝑀 ⋅𝑈, where the matrix
𝑀 contains the coefficients of the perturbation equations. For
each critical point, the eigenvalues of 𝑀 determine its type
and stability.

Now, let us transform the cosmological equations into
an autonomous dynamical system. To this end following,
for example, [101–106] we introduce the following auxiliary
variables:

𝑥 ≡
̇𝜙

√𝑉
, 𝑦 ≡

𝜅√𝑉

√3𝐻
, 𝑢 ≡ 𝜅√𝑓. (14)

The auxiliary variables allow us to straightforwardly
obtain the density parameter of dark energy and dark matter:

ΩDE ≡
𝜅2𝜌DE
3𝐻2

= 𝜇𝑦2 − 2𝜉𝑢2, (15)

Ω𝑚 ≡
𝜅2𝜌𝑚
3𝐻2

= 1 − ΩDE, (16)

while the equation of state of the field reads

𝜔DE ≡ 𝜔𝜙 =
𝑃𝜙

𝜌𝜙

=
−𝜇−1𝑦2 + 2𝜉𝑢 [(2√3/3) 𝛼𝑥𝑦 + 𝑢 (1 − (2/3) 𝑠)]

𝜇𝑦2 − 2𝜉𝑢2
,

(17)

where 𝛼 ≡ 𝑓,𝜙/√𝑓 and

𝑠 = −
𝐻̇

𝐻2
=
4√3𝛼𝜉𝑢𝑥𝑦 + 3𝜇 (𝑥2 − 𝛾) 𝑦2

2 (2𝜉𝑢2 + 1)
+
3𝛾

2
. (18)

Other quantities with great physical significance, namely,
the total equation of state parameter and the deceleration
parameter, are given by

𝜔tot ≡
𝑃𝜙 + 𝑃𝑚

𝜌𝜙 + 𝜌𝑚

= 𝜇𝑦2 (𝑥2 − 𝛾) + 2𝜉𝑢 [
2√3

3
𝛼𝑥𝑦 + 𝑢(𝛾 −

2

3
𝑠)] + 𝛾 − 1,
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Table 1: Location and existence conditions of the critical points and the corresponding values of the dark energy equation of state parameter
𝜔DE, of the total equation of state parameter 𝜔tot, and of the deceleration parameter 𝑞.

Label Location of (𝑥
𝑐
, 𝑦
𝑐
, 𝑢
𝑐
) 𝜔DE 𝜔tot 𝑞 Existence

𝐴 0, 1, 0 −1 −1 −1 𝜆 = 0

𝐵 0, −1, 0 −1 −1 −1 𝜆 = 0

𝐶 0,√
𝛼

𝜆2
(𝛼𝜉 + √𝜉 (𝛼2𝜉 − 2𝜆2)),

𝛼𝜉 + √𝜉(𝛼2𝜉 − 2𝜆2)

2𝜉𝜆
−1 −1 −1

𝜉 ≥
2𝜆2

𝛼2
and 𝜆

𝛼
> 0

or
𝜉 < 0, 𝛼 > 0 and 𝜆 < 0

𝐷 0,√
𝛼

𝜆2
(𝛼𝜉 − √𝜉 (𝛼2𝜉 − 2𝜆2)),

𝛼𝜉 − √𝜉(𝛼2𝜉 − 2𝜆2)

2𝜉𝜆
−1 −1 −1

𝜉 ≥
2𝜆2

𝛼2
and 𝜆

𝛼
> 0

or
𝜉 < 0, 𝛼 < 0 and 𝜆 > 0

𝑞 ≡ −1 −
𝐻̇

𝐻2
=
1

2
+
3

2
𝜔tot

=
3

2
𝜇𝑦2 (𝑥2 − 𝛾) + 𝜉𝑢 [2√3𝛼𝑥𝑦 + 𝑢 (3𝛾 − 2𝑠)]

+
3𝛾

2
− 1.

(19)

We mention that relations (19) are always valid, that is,
independently of the specific state of the system (they are
valid in the whole phase-space and not only at the critical
points).

With the help of the auxiliary variables (14), the equations
ofmotion (9) and (13) can be rewritten as a dynamical system;
namely,

𝑥󸀠 =
√3

2
[𝜆𝑥2𝑦 + 𝜆 (2 − 3𝑥2) 𝑦 − 4𝛼𝜉𝑢𝜇−3𝑦−1 − 2√3𝑥𝜇−2]

− 𝑄,

𝑦󸀠 = (−
√3

2
𝜆𝑥𝑦 + 𝑠)𝑦,

𝑢󸀠 =
√3𝛼𝑥𝑦

2
,

(20)

where 𝑄 = 𝑄/ ̇𝜙𝐻√𝑉(𝜙) and 𝜆 ≡ −𝑉,𝜙/𝜅𝑉. Equations (20)
can be an autonomous system when interaction term 𝑄 is
chosen to be a suitable form. From now on we assume the
nonminimal coupling function to be 𝑓(𝜙) ∝ 𝜙2 such that
𝛼 is a constant. On the other hand the usual assumption
in the literatures is to consider an exponential potential of
the form 𝑉 = 𝑉0𝑒

−𝑘𝜆𝜙 [107–110]. Such a potential leads a
constant 𝜆. In fact 𝜆 = −𝑉,𝜙/𝑘𝑉 ≃ const is valid for arbitrary
but nearly flat potentials [111, 112]. Note that an exponential
potential of the form 𝑉 = 𝑉0𝑒

−𝑘𝜆𝜙 is equivalent to the inverse
square potential 𝑉(𝜙) ∝ 𝜙−2 in terms of untransformed
field 𝜙. Moreover, since the densities of dark energy and dark

matter are nearly equal today there may be some coupling or
interaction between them.Thus, various forms of interacting
dark energy models [113–115] have been constructed in order
to fulfil the observational requirements. In these models
different forms of the coupling between dark energy and
dark matter were proposed. Here we consider the most
familiar interaction term extensively considered in the liter-
ature 𝑄 = 𝛽𝜅𝜌𝑚 ̇𝜙 where 𝛽 is a constant [107, 108, 116]. Note
that an interaction between dark matter and dark energy is a
reasonable assumption but there is no reason to consider that
baryonic matter is also coupled.

Using the above mentioned points we have a three-
dimensional autonomous system as follows:

𝑥󸀠 =
√3

2
[𝜆𝑥2𝑦 + 𝜆 (2 − 3𝑥2) 𝑦 − 4𝛼𝜉𝑢𝜇−3𝑦−1 − 2√3𝑥𝜇−2]

− √3𝛽𝑦−1Ω𝑚,

𝑦󸀠 = (−
√3

2
𝜆𝑥𝑦 + 𝑠)𝑦,

𝑢󸀠 =
√3𝛼𝑥𝑦

2
.

(21)

Now, let us proceed to the phase-space analysis. The
critical or fixed points (𝑥𝑐, 𝑦𝑐, 𝑢𝑐) of the autonomous system
(21) are obtained by setting the left hand sides of the equations
to zero, namely, by imposing the conditions 𝑥󸀠 = 𝑦󸀠 = 𝑢󸀠 = 0.
One should note that we are interested in solutions which
imply expanding solution, nonnegative dimensionless energy
density parameters for the different species.

After some algebraic calculus, we find four critical points
(𝐴, 𝐵, 𝐶,𝐷) presented in Table 1. In the same table we have
provided the existence conditions of each point and the values
of 𝜔DE, 𝜔tot, and 𝑞 which can be used to discuss whether
there exists acceleration phase or not. To study the stability
of the critical points we substitute linear perturbations 𝑥 →
𝑥𝑐 + 𝛿𝑥, 𝑦 → 𝑦𝑐 + 𝛿𝑦, and 𝑢 → 𝑢𝑐 + 𝛿𝑢 about the
critical point (𝑥𝑐, 𝑦𝑐, 𝑢𝑐) into the autonomous system (21).The
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Table 2: The eigenvalues of the linearization matrices corresponding to the critical points. Here 𝐵+ = (𝛼𝜉 + √𝜉(𝛼2𝜉 − 2𝜆2)) and 𝐵− =
(𝛼𝜉 − √𝜉(𝛼2𝜉 − 2𝜆2)).

Label Matrix𝑀 Eigenvalues

𝐴 (

−3 √3𝛽Ω
𝑚
−2√3𝛼𝜉

0 −3𝛾 0
√3

2
𝛼 0 0

)

−
3

2
+
1

2
√9 − 12𝛼2𝜉,

−
3

2
−
1

2
√9 − 12𝛼2𝜉,

−3𝛾

𝐵 (

−3 √3𝛽Ω
𝑚
2√3𝛼𝜉

0 −3𝛾 0

−
√3

2
𝛼 0 0

)

−
3

2
+
1

2
√9 − 12𝛼2𝜉,

−
3

2
−
1

2
√9 − 12𝛼2𝜉,

−3𝛾

𝐶
(
(
(
(

(

−3 2√3𝜆 +
√3𝛽𝜆2Ω

𝑚

𝛼𝐵+
−2√3𝜉𝜆√

𝛼

𝐵+

√3𝛼𝐵+

2𝜆
−3𝛾 3𝛾√

𝐵+

𝛼
√3𝛼√𝛼𝐵+

2𝜆
0 0

)
)
)
)

)

−
3

2
+
1

2
√9 + 12𝛼√𝜉(𝛼2𝜉 − 2𝜆2) + 6𝛽Ω

𝑚
𝜆,

−
3

2
−
1

2
√9 + 12𝛼√𝜉(𝛼2𝜉 − 2𝜆2) + 6𝛽Ω

𝑚
𝜆,

−3𝛾

𝐷
(
(
(
(

(

−3 2√3𝜆 +
√3𝛽𝜆2Ω

𝑚

𝛼𝐵−
2√3𝜉𝜆√

𝛼

𝐵−

√3𝛼𝐵−

2𝜆
−3𝛾 −3𝛾√

𝐵−

𝛼

−
√3𝛼√𝛼𝐵−

2𝜆
0 0

)
)
)
)

)

−
3

2
+
1

2
√9 − 12𝛼√𝜉(𝛼2𝜉 − 2𝜆2) + 6𝛽Ω

𝑚
𝜆,

−
3

2
−
1

2
√9 − 12𝛼√𝜉(𝛼2𝜉 − 2𝜆2) + 6𝛽Ω

𝑚
𝜆,

−3𝛾

3×3matrix𝑀 of the linearized perturbation equations of the
autonomous system is shown in the appendix. Therefore,
for each critical point of Table 1 we examine the sign of the
real part of the eigenvalues of 𝑀, namely, 𝑟1, 𝑟2, and 𝑟3, to
determine the type and stability of the critical point. A fixed
point is unstable if 𝑟1 > 0, 𝑟2 > 0, and 𝑟3 > 0. It is saddle
if the real part of the eigenvalues has different signs and it is
stable for negative real part of eigenvalues. In Table 2 we have
calculated the linearized perturbation matrix at each fixed
point and corresponding eigenvalues.The stability conditions
of each point are presented in Table 3.

We are going now to discuss the corresponding cosmo-
logical behavior of each critical point.

Critical Point A. Point 𝐴 represents a dark energy dominated
solution that exists for all values of 𝛼 and𝛽. For 0 < 𝜉 < 3𝛼2/4
it is a stable point (meaning that if the universe reaches this
solution, it remains there forever) and thus it can attract the
universe at late time. Accelerated expansion occurs for this
point because 𝜔tot < −1/3. Dark energy equation of state
at this point is the same as the equation of state of the cos-
mological constant 𝜔DE = −1. Point 𝐴 has the disadvantage
that exists for the limiting case 𝜆 = 0 that is for a constant
potential. Figure 1 from left to right shows the projections
of the phase-space trajectories on the 𝑦 − 𝑥, 𝑢 − 𝑦, and
𝑥 − 𝑢 planes for 𝜉 = 0.5 and 𝛼 = 1.5. With these values of

the parameters point𝐴 is an attractor as it is clear in Figure 1.
Also, we can see this stable point in 3-dimensional figure
plotted in Figure 4. Also, point 𝐴 could be a saddle point
(meaning that the universe during its evolution can reach this
state but does not remain there and evolves to another state)
for negative values of the coupling parameter 𝜉.

Critical Point B.The critical point𝐵 also exists independent of
the values of the 𝛼 and 𝛽 but again for a constant potential. It
corresponds to a completely dark energy dominated solution
and could be a stable point if 0 < 𝜉 < 3𝛼2/4. Note however
that since the variable 𝑦 has the sign of 𝐻 thus this critical
point corresponds to a contracting universe and it is not a
physically meaningful solution.

Critical Point C. Accelerating dark energy dominated solution
𝐶 exists for 𝜉 ≥ 2𝜆2/𝛼2 and𝜆/𝛼 > 0 or 𝜉 < 0, 𝛼 > 0 and𝜆 < 0.
This point is an attractor solution if there are the following
constraints on the nonminimal coupling parameters:

𝜆2

𝛼2
(1 + √1 +

𝛽2Ω2
𝑚

4𝜆2
)

< 𝜉 <
𝜆2

𝛼2
(1 + √1 +

9(1 + (2/3) 𝛽Ω𝑚𝜆)
2

16𝜆4
)

(22)
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Table 3: Stability of the critical points of Table 1.

Label Stability

𝐴
Stable point if 0 < 𝜉 < 3𝛼2/4
Saddle point if 𝜉 < 0

𝐵
Stable point if 0 < 𝜉 < 3𝛼2/4
Saddle point if 𝜉 < 0

𝐶

Stable point (for 𝛼 < 0 and 𝛽𝜆 > 0) if
𝜆2

𝛼2
(1 + √1 +

𝛽2Ω2
𝑚

4𝜆2
) < 𝜉 <

𝜆2

𝛼2
(1 + √1 +

9(1 + (2/3)𝛽Ω
𝑚
𝜆)2

16𝜆4
)

or
𝜆2

𝛼2
(1 − √1 +

9(1 + (2/3)𝛽Ω
𝑚
𝜆)2

16𝜆4
) < 𝜉 <

𝜆2

𝛼2
(1 − √1 +

𝛽2Ω2
𝑚

4𝜆2
)

Saddle point (for 𝛼 > 0, 𝛽𝜆 > 0 and √𝜉 (𝛼2𝜉 − 2𝜆2) >
𝛽Ω
𝑚
𝜆

2𝛼
) if

𝜉 <
𝜆2

𝛼2
(1 − √1 +

𝛽2Ω2
𝑚

4𝜆2
)

or

𝜉 >
𝜆2

𝛼2
(1 + √1 +

𝛽2Ω2
𝑚

4𝜆2
)

Saddle point (for all 𝛼, 𝛽𝜆 > 0 and √𝜉 (𝛼2𝜉 − 2𝜆2) <
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽Ω
𝑚
𝜆

2𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
) if

𝜆2

𝛼2
(1 − √1 +

𝛽2Ω2
𝑚

4𝜆2
) < 𝜉 < 0

and

2
𝜆2

𝛼2
< 𝜉 <

𝜆2

𝛼2
(1 + √1 +

𝛽2Ω2
𝑚

4𝜆2
)

𝐷

Stable point (for 𝛼 > 0 and 𝛽𝜆 > 0) if
𝜆2

𝛼2
(1 + √1 +

𝛽2Ω2
𝑚

4𝜆2
) < 𝜉 <

𝜆2

𝛼2
(1 + √1 +

9(1 + (2/3)𝛽Ω
𝑚
𝜆)2

16𝜆4
)

or
𝜆2

𝛼2
(1 − √1 +

9(1 + (2/3)𝛽Ω
𝑚
𝜆)2

16𝜆4
) < 𝜉 <

𝜆2

𝛼2
(1 − √1 +

𝛽2Ω2
𝑚

4𝜆2
)

Saddle point (for 𝛼 > 0 and 𝛽𝜆 > 0) if
𝜆2

𝛼2
(1 − √1 +

𝛽2Ω2
𝑚

4𝜆2
) < 𝜉 < 0

and

2
𝜆2

𝛼2
< 𝜉 <

𝜆2

𝛼2
(1 + √1 +

𝛽2Ω2
𝑚

4𝜆2
)

Saddle point (for 𝛼 < 0 and 𝛽𝜆 > 0) if

𝜉 <
𝜆2

𝛼2
(1 − √1 +

𝛽2Ω2
𝑚

4𝜆2
)

or

𝜉 >
𝜆2

𝛼2
(1 + √1 +

𝛽2Ω2
𝑚

4𝜆2
)
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Figure 1: From (a) to (c), the projections of the phase-space trajectories on the 𝑦 − 𝑥, 𝑢 − 𝑦, and 𝑥 − 𝑢 planes with 𝜉 = 0.5 and 𝛼 = 1.5.
For these values of the parameters, point 𝐴 is a stable attractor.

or

𝜆2

𝛼2
(1 − √1 +

9(1 + (2/3) 𝛽Ω𝑚𝜆)
2

16𝜆4
)

< 𝜉 <
𝜆2

𝛼2
(1 − √1 +

𝛽2Ω2
𝑚

4𝜆2
) .

(23)

Universe at this point behaves like a cosmological con-
stant with 𝜔DE = −1. In Figure 2, where the chosen values of

the parameters (𝜉 = 0.92 and 𝛼 = −1.5) satisfy existing condi-
tion and constraints (22) or (23), the projections of the phase-
space trajectories on 𝑦−𝑥, 𝑢−𝑦, and 𝑥−𝑢 are plotted, respec-
tively. Three-dimensional plot is also shown in Figure 4.
Point 𝐶 could be a saddle point if the constraints (22) or (23)
are not satisfied as it is mentioned in Table 3.

Critical Point D. Similar to the critical point 𝐶, the fixed
point 𝐷 could be an attractor of the model. In this situation
the parameter 𝜉 should be satisfied again in constraint (22)
or (23). The only difference is that the point 𝐷 is stable for
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Figure 2: From (a) to (c), the projections of the phase-space trajectories on the 𝑦 − 𝑥, 𝑢 − 𝑦, and 𝑥 − 𝑢 planes with 𝜉 = 0.92 and 𝛼 = −1.5.
The trajectories are attracted by the point 𝐶.

positive values of 𝛼 while 𝐶 is stable for negative values of 𝛼.
In Figure 3 we have chosen the parameters such that the fixed
point 𝐷 is an attractor point of the model (𝜉 = 0.92 and 𝛼 =
1.5) and Figure 4 shows the corresponding 3-dimensional
plot. Conditions needed in order for 𝐷 to become a saddle
point are presented in Table 3.

5. Conclusion

Tachyonic teleparallel dark energy is a generalization of the
teleparallel dark energy recently proposed by Geng et al.

[84]. Such an extension is obtained by replacing a canonical
scalar field (quintessence) by a noncanonical scalar field
(tachyon).Dynamics of tachyonic teleparallel dark energy has
been studied in [90]. In this paper we performed a detailed
phase-space analysis of interacting tachyonic teleparallel dark
energy where the dark energy sector interacts with the dark
matter one. We extracted the critical points of the model
and examined their stabilities. We derived the eigenvalues
corresponding to each critical point in order to find the
stable solutions. We also calculated some of the important
cosmological parameters such as the equation of state of dark
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Figure 3: From (a) to (c), the projections of the phase-space trajectories on the 𝑦 − 𝑥, 𝑢 − 𝑦, and 𝑥 − 𝑢 planes with 𝜉 = 0.92 and 𝛼 = 1.5.
The trajectories are attracted by the point𝐷.

energy 𝜔DE, the total equation of state 𝜔tot, and deceleration
parameter 𝑞 in order to find whether critical points corre-
spond to an accelerating universe or not. Depending on the
nonminimal coupling parameter 𝜉, we found three stable
attractors of the model, that is, the point 𝐴 for a constant
potential and points 𝐶 and 𝐷 if 𝜉 satisfies (22) or (23). In
order to show behavior of the model at the critical points
more transparently, we plotted two- and three-dimensional
phase-space trajectories of the model in Figures 1–4. These

figures show that by choosing parameters of the model
suitably, points𝐴,𝐶, and𝐷 are attractors of themodel.While
all of the stable solutions admit an accelerating universe,
they correspond to a complete dark energy domination and
thus they are unable to solve coincidence problem. One can
consider more complicated interaction terms constructed
to solve the coincidence problem [117] or generalize the
nonminimal coupling function in order to have a varying
parameter 𝛼 similar to the procedure which was done in
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Figure 4: Three-dimensional phase-space trajectories of the model with stable attractors 𝐴 (a), 𝐶 (b), and𝐷 (c), respectively.

[88]. Moreover, in order to show that there are no significant
equilibrium points lost at infinity one can use the Poincare
central projection method to investigate the dynamics at
infinity [118]. Such method has been applied for teleparallel
dark energy model in [86].

Appendix

Stability of the Critical Points

The elements of 3×3matrix𝑀 of the linearized perturbation
equations for the real and physically meaningful critical
points (𝑥𝑐, 𝑦𝑐, 𝑢𝑐) of the autonomous system read

𝑀11 = √3 (−2𝜆𝑥𝑐𝑦𝑐 − √3 (1 − 3𝑥
2

𝑐
)

+6𝛼𝜉𝑢𝑐𝑥𝑐𝜇
−1

𝑐
𝑦−1
𝑐
) ,

𝑀12 = √3𝜇
−2

𝑐
(𝜆 + 2𝛼𝜉𝑢𝑐𝜇

−1

𝑐
𝑦−2
𝑐
) + √3𝛽𝑦−2

𝑐
Ω𝑚,

𝑀13 = −2√3𝛼𝜉𝜇
−3

𝑐
𝑦−1
𝑐
,

𝑀21 =
𝑦2
𝑐
(−3𝜇3
𝑐
𝑥𝑐𝑦𝑐 (𝑥

2

𝑐
+ 𝛾 − 2) + 4√3𝛼𝜉𝑢𝑐)

2 (2𝜉𝑢2
𝑐
+ 1)

−
√3𝜆𝑦2

𝑐

2
,
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𝑀22 =
𝑦𝑐 (9𝜇𝑐𝑦𝑐 (𝑥

2

𝑐
− 𝛾) + 8√3𝛼𝜉𝑥𝑐𝑢𝑐)

2 (2𝜉𝑢2
𝑐
+ 1)

− √3𝜆𝑥𝑐𝑦𝑐 +
3𝛾

2
,

𝑀23 =
2√3𝜉𝑦2

𝑐
(−√3𝜇𝑐𝑢𝑐𝑦𝑐 (𝑥

2

𝑐
− 𝛾) + 2𝛼𝑥𝑐)

(2𝜉𝑢2
𝑐
+ 1)
2

−
2√3𝛼𝜉𝑥𝑐𝑦

2

𝑐

2𝜉𝑢2
𝑐
+ 1

,

𝑀31 =
√3𝛼𝑦𝑐
2
,

𝑀32 =
√3𝛼𝑥𝑐
2
,

𝑀33 = 0.

(A.1)

Examining the eigenvalues of the matrix 𝑀 for each
critical point, one determines its stability behavior. We
mentioned that although the matrix 𝑀 has a complicated
form, inserting the explicit critical points presented in Table 1
into the elements, it takes a simple form and we can easily
calculate its eigenvalues. The corresponding eigenvalues for
each critical point are presented in Table 2.
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