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We review some recent progress in studying the nuclear physics especially nucleon-nucleon (NN) force within the gauge-gravity
duality, in context of noncritical string theory.Ourmain focus is on the holographicQCDmodel based on theAdS

6
background.We

explain the noncritical holography model and obtain the vector-meson spectrum and pion decay constant. Also, we study the NN
interaction in this frame and calculate the nucleonmeson coupling constants. A further topic covered is a toy model for calculating
the light nuclei potential. In particular, we calculate the light nuclei binding energies and also excited energies of some available
excited states. We compare our results with the results of other nuclear models and also with the experimental data. Moreover, we
describe some other issues which are studied using the gauge-gravity duality.

1. Introduction

One of the fundamental ingredients of nuclear physics is the
nuclear force with which point-like nucleons interact with
each other. Since Yukawa, many potential models have been
constructed which have been composed to fit the available
NN scattering data. The newer potentials have only slightly
improved with respect to the previous ones in describing
the recent much more accurate data. As it is shown in [1],
all of these potential models do not have good quality with
respect to the pp scattering data below 350MeV and just a
few of them are of satisfactory quality. These models are the
Reid soft-core potential Reid68 [2], the Nijmegen soft-core
potential Nijm78 [3], the new Bonn pp potential Bonn89 [4],
and also the parameterized Paris potential Paris80 [5]. These
familiar one-boson-exchange potentials (OBEP) contain a
relatively small number of free parameters (about 10 to 15
parameters) but do not have a reasonable description of
the empirical scattering data. Also, most of these potentials,
which have been fitted to the np scattering data, unfortunately
do not automatically fit to the pp scattering data even by
considering the correction term for the Coulomb interaction
[1]. Of course, new versions of these potentials have been

constructed such as Nijm I, Nijm II, Reid93 [6], CD-Bonn
[7], and AV18 [8] which explain the empirical scattering
data successfully. But they contain a large number of purely
phenomenological parameters. For example, an updated
(Nijm92pp [9]) version of the Nijm78 potential contains 39
free parameters.

On the other hand, there are many attempts to impose
the symmetries of QCD using an effective Lagrangian of
pions and nucleons [10, 11]. These models only capture the
qualitative features of the nuclear interactions and could not
compete with the much more successful potential models
mentioned above.

Despite many efforts, no potential model has yet been
constructed which gives a high-quality description of the
empirical data, obeys the symmetries of QCD, and contains
only a few number of free phenomenological parameters.

In recent years, holography or gauge-gravity duality gave
us a new approach to hadronic physics [12] and make new
progress in understanding the nuclear force.

Nuclear force, the force between nucleons, exhibits a
repulsive core of nucleons at short distances. This repulsive
core is quite important for large varieties of physics of nuclei
and nuclear matter. For example, the well-known presence of
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nuclear saturation density is essentially due to this repulsive
core. However, from the viewpoint of strongly coupled QCD,
the physical origin of this repulsive core has not been well
understood. Nuclear force especially the repulsive core has
been studied using the AdS/CFT correspondence [13–16] and
an explicit expression has been obtained for the repulsive
core.

Also, there are many attempts to find a geometry dual to
nucleus. Since nucleons are described by𝐷-branes wrapping
a sphere in curved geometry of holographic QCD, on a
nucleus with mass number 𝐴 there appears a 𝑈(𝐴) gauge
theory. One can find the dual gravity by taking the large mass
number limit𝐴 → ∞ and obtained a near horizon geometry
corresponding to the heavy nucleus. The corresponding
supergravity solution has discrete fluctuation spectra compa-
rable with nuclear experimental data [17]. As we know from
the nuclear experiments, the nucleons of a heavy nuclei have
coherent excitationswhich are calledGiant resonances.These
resonances exhibit harmonic behavior 𝐸

𝑛
= 𝑛𝑤(𝐴) which is

explained with phenomenological models such as the liquid
drop model. The gauge-gravity duality can reproduce this
behavior. Moreover, dependence to the mass number 𝐴 is
obtained by using the duality [17].

Among the holographic QCD models, the Sakai-
Sugimoto (SS) [18, 19] and Klebanov-Strassler (KS) models
[20] are the most interesting holographic models to
study strong coupling regime of QCD. The SS model is
based on ten-dimensional type-IIA string theory, with a
background geometry given by 𝑁

𝑐
𝐷4-branes. They fill

four-dimensional Minkowski space-time and extend along
a fifth extra dimension 𝑥

4
compactified on a circle whose

circumference is parametrized by the Kaluza-Klein mass.
Through this compactified dimension and antisymmetric
boundary conditions for fermions supersymmetry is
completely broken. Left- and right-handed chiral fermions
are introduced by adding 𝑁

𝑓
𝐷8- and 𝑁

𝑓
𝐷8-branes which

extend in all dimensions except for 𝑥
4
. In this compact

direction, they are separated by a distance 𝐿 ∈ [0, 𝜋/𝑀KK].
There are two possible background geometries called
confined and deconfined phase. For more details about the
setup of the model see the original papers by Sakai and
Sugimoto [18, 19]. In this model, there is a nice topological
interpretation of chiral symmetry breaking.

Chiral symmetry breaking is realized in the model as
follows. A 𝑈(𝑁

𝑓
) gauge symmetry on the flavor branes

corresponds to a global 𝑈(𝑁
𝑓
) at the boundary. Therefore,

the bulk gauge symmetries on the𝐷8- and𝐷8-branes can be
interpreted as left- and right-handed flavor symmetry groups
in the dual field theory. The Chern-Simons term accounts
for the axial anomaly of QCD, such that one is left with the
chiral group 𝑆𝑈(𝑁

𝑓
)
𝐿
× 𝑆𝑈(𝑁

𝑓
)
𝑅
and the vector part 𝑈(1)

𝑉
.

There is no explicit breaking of this group since the model
only contains massless quarks. Spontaneous chiral symmetry
breaking is realized when the 𝐷8- and 𝐷8-branes connect
in the bulk. They always connect in the confined phase and
whether they connect in the deconfined phase depends on the
separation𝐿 of the𝐷8- and𝐷8-branes in the extra dimension
𝑥
4
.

The Sakai-Sugimoto model is particularly suited for phe-
nomenon related to chirality as chiral magnetic effect (CME)
[21–25] since it has a well-defined concept for chirality and
the chiral phase transition. It is straightforward to introduce
right- and left-handed chemical potentials independently.

The chiral magnetic effect is a hypothetical phenomenon
which states that, in the presence of a magnetic field B, a
nonzero axial charge density will lead to an electric current
along the direction of the 𝐵 field [26–28]. Analysis of RHIC
data appears to favor the presence of a CME in the quark-
gluon plasma, although a better understanding of systematic
errors and backgrounds is still needed. CME is studied
in many holographic systems, following [29–34], including
systems without confinement or chiral symmetry breaking in
vacuum.

Also, predictions of the SS model are in good agreement
with the lattice simulations such as the glueball spectrum
of pure QCD [35, 36]. This model describes baryons and
their interactions with mesons well [18, 19, 37–39]. It is
shown that the baryons can be taken as point-like objects
at distances larger than their sizes, so their interactions
can be described by the exchange of light particles such as
mesons.Therefore, one can find the baryon-baryon potential
from the Feynman diagrams using the interaction vertices
including baryon currents and light mesons [38]. But there
are some inconsistencies. For example, the size of the baryon
is proportional to 𝜆

−1/2. Consequently in the large ’t Hooft
coupling (large 𝜆), the size of the baryon becomes zero and
the stringy corrections have to be taken into account. Another
problem is that the scale of the system associated with the
baryonic structure is roughly half the one needed to fit to the
masonic data [40]. Also, the holographicmodels arising from
the critical string theory encounter with the some Kaluza-
Klein (KK) modes, with the mass scale of the same order as
themasses of the hadronicmodes.These unwantedmodes are
coupled with the hadronic modes and there is no mechanism
to disentangle them from the hadronic modes yet. In order
to overcome this problem, it is possible to consider the color
brane configuration in noncritical string theory [41–44].

The noncritical string is not formulated with the critical
dimension, but nonetheless has vanishing Weyl anomaly.
A worldsheet theory with the correct central charge can
be constructed by introducing a nontrivial target space,
commonly by giving an expectation value to the dilaton
which varies linearly along some spacetime direction. For
this reason noncritical string theory is sometimes called the
linear dilaton theory. Since the dilaton is related to the string
coupling constant, this theory contains a region where the
coupling is weak (and so perturbation theory is valid) and
another region where the theory is strongly coupled [45, 46].

In such backgrounds the string coupling constant is
proportional to 1/𝑁

𝑐
, so the large 𝑁

𝑐
limit corresponds to

the small string coupling constant. However, contrary to
the critical holographic models, in the large 𝑁

𝑐
limit, the ’t

Hooft coupling is of order one instead of infinity and the
scalar curvature of the gravitational background is also of
order one. So, it seems that the noncritical gauge-gravity
correspondence is not very reliable. But studies show that the
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results of these models for some low energy QCD properties
such as the mesonmass spectrum,Wilson loop, and themass
spectrum of glueballs [45–47] are comparable with lattice
computations.Therefore, noncritical holographicmodels still
seem useful to study QCD.

One of the noncritical holographicmodels is composed of
a𝐷4 and anti𝐷4 brane in six-dimensional non-critical string
theory [43, 47]. The low energy effective theory on the inter-
secting brane configuration is a four-dimensional QCD-like
effective theory with the global chiral symmetry 𝑈(𝑁

𝑓
)
𝐿
×

𝑈(𝑁
𝑓
)
𝑅
. In this brane configuration, the six-dimensional

gravity background is the near horizon geometry of the
color 𝐷4-branes. This model is based on the compactified
AdS

6
spacetime with constant dilaton. So the model does not

suffer from large string coupling as the SS model. The meson
spectrum [47] and the structure of thermal phase [48] are
studied in this model. Some properties, like the dependence
of themesonmasses on the stringymass of the quarks and the
excitation number, are different from the critical holographic
models such as the SS model.

We study the gauge field and its mode expansion in
this noncritical holography model and obtain the effective
pion action [49]. The model has a mass scale 𝑀KK like the
SS model in which we set its value by computing the pion
decay constant. Then, we study the baryon [50] and obtain
its size. We show that the size of the baryon is of order
one with respect to the ’t Hooft coupling, so the problem
of the zero size of the baryon in the critical holography
model is solved. But the size of the baryon is still smaller
than the mass scale of holographic QCD, so we treat it as
a point-like object and introduce an isospin 1/2 Dirac field
for the baryon [49]. We write a 5𝐷 effective action for the
baryon field and reduce it to 4𝐷 using the mode expansion
of gauge field and baryon field and obtain the NN potential
in terms of the meson exchange interactions. We calculate
the meson-nucleon couplings using the suitable overlapping
wave function integrals and compare them with the results
of SS model. Also, we compare the nucleon-meson couplings
obtained from noncritical holographicmodel with the results
of SS model and predictions of some phenomenological
models. Our study shows that the noncritical results are in
good agreement with the other available models.

On the other hand, one of the oldest problems of nuclear
physics is the nuclear binding energies: the interactions
between nucleons are very strong, while the nuclear matter is
not relativistic. Nuclear binding energies are experimentally
known with high accuracy while they are not predicted
with sufficient accuracy using different theoretical models.
Since, prediction of nuclear binding energy is a useful tool
to test the goodness of a theoretical nucleon-nucleon (NN)
interaction model, we use our NN holography potential to
obtain the light nuclei binding energies. We construct a
nuclear holographic model [50–53] in the noncritical base
and calculate the nuclei potentials as the sum of their NN
interactions. The minimum of the ground state potential is
considered as the binding energy. Also, difference between
this energy and the minimum of the excited state potential
presents the excited energy for each state. In order to compute
the potentials, we use the values of nucleon-meson coupling

constants obtained from both the critical and noncritical
holography models.

This paper is organized as follows. In Section 2, we briefly
review the AdS/CFT correspondence. The noncritical holo-
graphic model is introduced in Section 3 and NN potential
is constructed in this section. In Section 4, we construct a
simple model to study light nuclei such as 2𝐷, 3𝑇, 3He, and
4He and obtain their potential of ground and excited states
and respective binding energies. Section 5 is devoted to a brief
summary and conclusions. Also, some other topics, which are
studied using the duality, are introduced in this section.

2. Review of AdS/CFT Correspondence

2.1. Historical Notes. Quantum chromodynamics (QCD) is
the quantum field theory of the strong interactions which has
two important properties, asymptotic freedom and confine-
ment. Various analytical and numerical methods have been
developed to study QCD. One example is perturbative QCD
whichworks at small distanceswhere the coupling isweak but
fails to work at larger distances where the coupling becomes
relatively strong in which case the problem is said to become
nonperturbative. Examples of methods that study nonper-
turbative problems are effective field theories such as chiral
perturbation theory, lattice QCD [64], Dyson-Schwinger
equations (DSE) formalism [65], and gauge-gravity duality
[12, 66, 67].

Before QCD, in the 1960’s string theory was introduced as
a model to describe the strong interactions [68]. It was able
to explain the organization of hadrons in Regge trajectories,
describing them as rotating strings. After the formulation
of QCD, string theory took a different direction, becoming
a possible candidate for a unified theory of all the forces.
Nevertheless, some string interpretation of hadron spectra
was not abandoned; for example, a meson is sometimes
described as a quark and an antiquark connected by a tube
of strong interaction flux [69, 70]. This picture establishes a
link between QCD and string theory, which becomes even
more evident in the limit of large number of colors𝑁 [71]. ’t
Hooft proposed that in this limit the gauge theorymay have a
description in terms of a tree level string theory; in particular,
the leading Feynman diagrams in the 1/𝑁 expansion are
planar and look like the worldsheet of a string theory. For
example, a meson can be represented by two quark lines
propagating in time connected by a dense sheet of gluons,
reminding the worldsheet swept out by a string through
time. In 1997, these studies found a possible new framework
in the so-called AdS/CFT correspondence [12], a conjecture
introduced by Maldacena relating a supergravity theory in
ten dimensions to a supersymmetric gauge theory in four
dimensions. This correspondence has been extended to a
gauge theory as 𝑆𝑈(3)

𝑐
, thus proving some link betweenQCD

and a higher dimensional theory in a curved space-time.

2.2. D-Branes and AdS Space. The most important property
of𝐷-branes is that they contain gauge theories on their world
volume. In particular, the massless spectrum of open strings
living on a𝐷𝑝-brane contains a (maximally supersymmetric)
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𝑈(1) gauge theory in 𝑝 + 1 dimensions. Moreover, it appears
that if we consider the stack of 𝑁 coincident 𝐷-branes,
then there are 𝑁2 different species of open strings which
can begin and end on any of the 𝐷-branes, allowing us to
have (maximally supersymmetric)𝑈(𝑁) gauge theory on the
world-volume of these 𝐷-branes. Now, if 𝑁 is sufficiently
large, then this stack of𝐷-branes is a heavy object embedded
into a theory of closed strings that contains gravity.This heavy
object curves the space which can then be described by some
classical metric and other background fields.

Thus, we have two absolutely different descriptions of the
stack of coincident𝐷𝑝-branes. One description is in terms of
the𝑈(𝑁) supersymmetric gauge theory on the world volume
of the 𝐷𝑝-branes, and the other is in terms of the classical
theory in some gravitational background. It is this idea that
lies at the basis of gauge-gravity duality.

One important example is 𝐷3-branes which can also be
seen as solutions of ten-dimensional type IIB supergravity at
low energies, with metric of the form [72]:

𝑑𝑠
2
= (1 +

𝐿
4

𝑟4
)

−1/2

[−𝑑𝑡
2
+ 𝑑�⃗�

2
]

+ (1 +
𝐿
4

𝑟4
)

1/2

[𝑑𝑟
2
+ 𝑟

2
𝑑Ω

2

5
] ,

(1)

where

𝐿
4
= 4𝜋𝑔

𝑠
𝑁
2
𝛼

. (2)

Here, 𝑔
𝑠
is the string coupling constant which is related to

the constant dilaton as (𝑔
𝑠
= 𝑒

Φ). Also, there is 𝑁
𝑐
units

of 𝐹
[5]

flux. 𝐿 is the only length scale in the solution. This
metric interpolates between a throat geometry and a ten-
dimensional Minkowski region.

If we take the near horizon limit of the solution given in
(1), 𝑟 ≪ 𝐿, and redefine 𝑧 = 𝐿

2
/𝑟, we can completely decouple

the Minkowski region and are left with a throat geometry
which is given by

𝑑𝑠
2
=
𝐿
2

𝑧2
[−𝑑𝑡

2
+ 𝑑�⃗�

2
+ 𝑑𝑧

2
] + 𝐿

2
𝑑Ω

2

5
, (3)

which is the Poincaré wedge of the direct product of five-
dimensional anti-de-Sitter space and a five-sphere (AdS

5
×𝑆

5).
The isometry group of this space is given by 𝑆𝑂(4, 2)×𝑆𝑂(6),
though if we include fermions, the full supersymmetric
isometry group is 𝑆𝑈(2, 2 | 4). Note that this is exactly the
same as the full global symmetry groupof the low energy limit
of the open string sector (i.e., SYM theory).

We see that the radius 𝐿, of both the AdS throat and
the 𝑆5, in string units is given in terms of the gauge theory
parameters as

𝐿
4
= 𝑔

2

YM𝑁𝑐
𝛼
2

= 𝜆𝛼
2

. (4)

Therefore, in order that the stringy modes be unimpor-
tant, 𝐿 ≫ √𝛼, which translates into gauge theory language
as 𝜆 = 𝑔

2

YM𝑁𝑐
≫ 1.

2.3. N = 4 Super Yang-Mills Theory. N = 4 𝑆𝑈(𝑁) super-
symmetric Yang-Mills theory (SYM) in four dimensions (the
dimensionality of the world volume of the 𝐷3-branes) has
one vector field, 𝐴

𝜇
, six scalars fields 𝜙𝐼 (𝐼 = 1, . . . , 6), and

four fermions 𝜒𝑖
𝛼
, 𝜒𝑖

�̇�
(𝑖, 𝑖 = 1, 2, 3, 4) which are in the 4 and 4

representations of the 𝑆𝑈(4) = 𝑆𝑂(6) 𝑅-symmetry group.
This theory naturally arises on the surface of a 𝐷3-

brane in type IIB superstring theory. Open strings generate
a massless gauge field in ten dimensions. When the open
string ends are restricted to a 3 + 1 dimensional subspace
the ten components of the gauge field naturally break into
a 3 + 1 dimensional gauge field and 6 scalar fields. The
fermionic superpartners naturally separate to complete the
3 + 1 dimensional supermultiplets.

The beta function of N = 4 SYM theory vanishes to
all orders in perturbation theory, 𝛽 = 0. This implies
that the theory is conformal with conformal symmetry
group 𝑆𝑂(4, 2) also at the quantum level. Moreover, this
theory has a global 𝑆𝑈(4)𝑅 symmetry group. The complete
superconformal group is 𝑆𝑈(2, 2 | 4), of which both 𝑆𝑂(4, 2)
and 𝑆𝑈(4) are bosonic subgroups.

2.4.The AdS/CFT Correspondence. TheAdS/CFT correspon-
dence, which was first suggested by Maldacena [12] in 1997,
states that type IIB string theory on (AdS

5
𝑆
5
)
𝑁

plus some
appropriate boundary conditions (and possibly also some
boundary degrees of freedom) is dual toN = 4,𝑑=3+ 1𝑈(𝑁)
super Yang-Mills. There are three different versions of this
conjecture [73], depending on the precise form of the limits
taken. In the strong version, type IIB string theory on AdS

5
×

𝑆
5 is dual to 𝑆𝑈(𝑁

𝑐
) SYM theory. The mild version relates

classical type IIB strings on AdS
5
× 𝑆

5 to planar 𝑆𝑈(𝑁
𝑐
) SYM

theory. But the mostly adopted form of the conjecture is the
weak regime (in the SUGRA limit) which specializes further
to the case in which 𝜆 is large. In this limit, strongly coupled
N = 4 𝑆𝑈(𝑁) Yang-Mills theory is mapped to supergravity
on AdS

5
× 𝑆

5; the inverse string tension 𝛼 goes to zero.
A precise way in which the two theories can be mapped

into each other was proposed independently by Gubser et
al. [41] and by Witten [66]. Since the boundary of the AdS

5

space, namely, 𝑆3 × 𝑅, is equivalent to 𝑅3,1, which is a copy
of the Minkowski space, plus a point at infinity, the authors
suggested a recipe to link the gravity theory in the bulk
(AdS space) to the field theory on the boundary (Minkowski
space). In this sense, the AdS/CFT correspondence can be
considered as a holographic projection of the supergravity
theory in the bulk to the field theory on the boundary.

Despite the fact that there is no proof of the AdS/CFT
correspondence taking account of its string-theoretical origin
yet, the huge amount of symmetry present almost guaran-
tees that the AdS/CFT correspondence should hold. When
proceeding to less symmetrical situations below, generalized
gauge-gravity dualities remain a conjecture though.

2.5. QCD versus SYM. It would be useful if the four-
dimensional theory on the boundary was QCD, since this
would allow us to explore its nonperturbative regime by
studying a perturbative dual theory. However, the field theory
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described by the correspondence is a supersymmetric theory
with conformal invariance, while QCD has none of these
features. The most important differences between the two
theories are as follows [73].

(i) QCD confines while SYM is not confining.

(ii) QCDhas a chiral condensate while SYMhas no chiral
condensate.

(iii) QCD has a discrete spectrum while that of SYM is
continuous.

(iv) QCDhas a running couplingwhile SYMhas a tunable
coupling and is conformal.

(v) QCD has quarks while SYM has adjoint matter.

(vi) QCD is not supersymmetric while SYM is maximally
supersymmetric.

(vii) QCD has 𝑁
𝑐
= 3 in real life, while the AdS/CFT

correspondence holds for large𝑁
𝑐
.

However, the gauge-gravity duality can be expanded to
more field theories by changing the supergravity theory. This
gives a possibility to search for a field theory that is closer to
QCD and has a gravity dual.

(i) For example, considering multiple 𝐷3-branes on
curved backgrounds leads to an interesting family of
N = 1 superconformal field theories [74, 75] which
contain adjoint matter fields. Also, one can introduce
the confinement and break the conformal symmetry
by deforming the background further. This leads to
chiral symmetry breaking and a running coupling
constant [20].

(ii) Also, theories looking like N = 1 supersymmetric
Yang-Mills theory in the IR can be obtained by con-
sidering higher dimensional 𝐷-branes wrapped on
certain submanifolds of the ten-dimensional geome-
try [76, 77].

(iii) Deformations of the geometry lead to nonsupersym-
metric, nonconformal gauge theories which display
confinement and chiral symmetry breaking [18, 19,
78–81].

(iv) Fundamentalmatter can be added to the gauge theory
by introducing 𝐷7-branes [82]. In the quenched
approximation, 𝑁

𝑓
≪ 𝑁

𝑐
, their effect on the back-

ground geometry is ignored. Also, dynamical quarks
can be added to this geometry [82].

(v) Recently, some phenomenological models have been
suggested which are motivated by the AdS/CFT but
not within the full string theory framework. These
models are known as AdS/QCD [83–86].

(vi) Also, an approach similar to AdS/QCD is introduced
based on the noncritical string theory in 𝑑 ̸= 10

dimensions [42, 86, 87].

3. Holographic QCD from the Noncritical
String Theory

The key idea of construction of holographic models with
flavors was given by Karch and Katz [88]. In these models,
two stacks of flavor branes, branes, and antibranes are added
to the geometry as a probe, so that the back reaction of
the flavor branes is negligible (probe approximation). This
approximation is reliable when𝑁

𝑓
≪ 𝑁

𝑐
, where𝑁

𝑐
and𝑁

𝑓

refer to the number of colors and flavors, respectively.
Of course, the brane/antibrane system is unstable, since

the branes and antibranes will tend to annihilate. This is
reflected in the presence of tachyons in the spectrum. But, it
should make sense within the context of perturbation theory.
The point where the tachyon field vanishes corresponds to a
local maximum of the tachyon potential, and thus it is part
of a classical solution. The one-loop effective action in an
expansion around this solution should be well defined, even
though the solution is unstable, and, in particular, it should
have a well-defined phase. It was conjectured that at the
minimum of the tachyon potential, the negative contribution
to the energy density from the potential exactly cancels the
sum of the tensions of the brane and the antibrane, thereby
giving a configuration of zero energy density (and hence
restoring spacetime supersymmetry). Therefore, the various
gauge and gravitational anomalies, which arise as one-loop
effects, cancel and as we expected theory is perturbatively
well-behaved [72–92].

In this section, we study a model which is similar in
many aspects to the SS model [18], a holographic model
based on the critical string theory. But, we try to solve some
inconsistencies of the SS model in describing the baryons via
the noncritical AdS

6
model.

3.1. AdS
6
Model. In the presented noncritical model, the

gravity background is generated by near-extremal𝐷4-branes
wrapped over a circle with the antiperiodic boundary con-
ditions. Two stacks of flavor branes, namely, 𝐷4-branes and
anti-𝐷4-branes, are added to this geometry and are called
flavor probe branes. The color branes extend along the
directions 𝑡, 𝑥

1
, 𝑥

2
, 𝑥

3
, and 𝜏 while the probe flavor branes

fill the whole Minkowski space and stretch along the radius
𝑈 which is extended to infinity. The strings attaching a color
𝐷4-brane to a flavor brane transform as quarks, while strings
hanging between a color 𝐷4 and a flavor 𝐷4 transform as
antiquarks. The chiral symmetry breaking is achieved by a
reconnection of the brane and antibrane pairs. Under the
quenched approximation (𝑁

𝑐
≫ 𝑁

𝑓
), the reactions of flavor

branes and the color branes can be neglected. Just like the
SS model, the 𝜏 coordinate is wrapped on a circle and the
antiperiodic condition is considered for the fermions on the
thermal circle. The final low energy effective theory on the
background is a four-dimensional QCD-like effective theory
with the global chiral symmetry 𝑈(𝑁

𝑓
)
𝐿
× 𝑈(𝑁

𝑓
)
𝑅
.
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In this model, the near horizon gravity background at low
energy is [47]

𝑑𝑠
2
= (

𝑈

𝑅
)

2

(−𝑑𝑡
2
+ 𝑑𝑥

𝑖
𝑑𝑥

𝑖
+ 𝑓 (𝑈) 𝑑𝜏

2
) + (

𝑅

𝑈
)

2
𝑑𝑈

2

𝑓 (𝑈)
,

(5)

where𝑅 is the radius of the AdS space. Also𝑓(𝑈) and RR six-
formfield strength,𝐹

(6)
, are defined by the following relations:

𝐹
(6)

= 𝑄
𝑐
(
𝑈

𝑅
)

4

𝑑𝑡 ∧ 𝑑𝑥
1
∧ 𝑑𝑥

2
∧ 𝑑𝑥

3
∧ 𝑑𝑢 ∧ 𝑑𝜏,

𝑓 (𝑈) = 1 − (
𝑈KK
𝑈

)

5

.

(6)

In order to obtain solutions of near extremal flavored AdS
6
,

the values of dilaton and 𝑅AdS are considered as

𝑒
𝜙
=
2

3

𝑄
𝑓

𝑄2

𝑐

(√1 +
6𝑄

2

𝑐

𝑄
2

𝑓

− 1) ,

𝑅
2

AdS =
90

12 + 𝑄
2

𝑓
/𝑄2

𝑐
− (𝑄

2

𝑓
/𝑄2

𝑐
)√1 + 6𝑄

2

𝑐
/𝑄

2

𝑓

.

(7)

This relation indicates that the 𝑅AdS and dilaton depend on
the ratio of the number of colors (∼ 𝑄

𝑐
) and flavors (∼ 𝑄

𝑓
).

Under the quenched approximation, the values of the dilaton
and AdS radius can be rewritten as

𝑅
2

AdS =
15

2
, 𝑒

𝜙
=

2√2

√3𝑄
𝑐

, (8)

where 𝑄
𝑐
is proportional to the number of color branes,𝑁

𝑐
.

To avoid singularity, the coordinate 𝜏 satisfies the follow-
ing periodic condition:

𝜏 ∼ 𝜏 + 𝛿𝜏, 𝛿𝜏 =
4𝜋𝑅

2

5𝑈KK
. (9)

Also, the Kaluza-Klein mass scale of this compact dimension
is

𝑀KK =
2𝜋

𝛿𝜏
=
5

2

𝑈KK
𝑅2

, (10)

and dual gauge field theory for this background is nonsuper-
symmetric. Also, the Yang-Mills coupling constants can be
defined as a function of string theory parameters using the
DBI action as follows:

𝑔
2

YM =
𝑔
𝑠

𝜇
4
(2𝜋𝛼)

2
𝛿𝜏

, (11)

where 𝛼 = 𝑙
2

𝑠
is the Regge slope parameter and 𝑙

𝑠
is the string

length. Also, the ’t Hooft coupling is 𝜆 = 𝑔
2

YM𝑁𝑐
.

3.2. Meson Sector. In AdS/QCD, there is a gauge field living
in the bulk AdS whose dynamics is dual to the meson sector
of QCD such as pions and higher resonances.The gauge field
on the𝐷4-brane includes five components,𝐴

𝜇
(𝜇 = 0, 1, 2, 3)

and𝐴
𝑈
.The𝐷4-brane action is given by Pahlavani et al. [49]:

𝑆
𝐷4

= −𝜇
4
∫𝑑

5
𝑥𝑒

−𝜙
√− det (𝑔

𝑀𝑁
+ 2𝜋𝛼𝐹

𝑀𝑁
) + 𝑆

𝐶𝑆
, (12)

where 𝐹
𝑀𝑁

= 𝜕
𝑀
𝐴
𝑁
− 𝜕

𝑁
𝐴
𝑀

− 𝑖[𝐴
𝑀
, 𝐴

𝑁
], (𝑀,𝑁 =

0, 1, . . . , 5) is the field strength tensor, and 𝐴
𝑀

is the 𝑈(𝑁
𝑓
)

gauge field on the 𝐷4-brane. The second term in the above
action is the Chern-Simons action and 𝜇

4
= 2𝜋/(2𝜋𝑙𝑠)

5. It is
useful to define the new variable 𝑧 as

𝑈
𝑧
= (𝑈

5

KK + 𝑈
3

KK𝑧
2
)
1/5

. (13)

Then by neglecting the higher order of 𝐹2 in the expansion,
the𝐷4-brane action can be written as [49]

𝑆
𝐷4

= −𝜇
4
(2𝜋𝛼


)
2

∫𝑑
4
𝑥 𝑑𝑧

× [
𝑅
4

4𝑈
5/2

𝑧

𝜂
𝜇]
𝜂
𝜌𝜎
𝐹
𝜇𝜌
𝐹]𝜎 +

25

8

𝑈
9/2

𝑧

𝑈
3

KK
𝜂
𝜇]
𝐹
𝜇𝑧
𝐹]𝑧]

+ O (𝐹
3
) ,

(14)

where 𝜇
4
is

𝜇
4
= √

3

2

𝑁
𝑐
𝑈
3/2

KK
5𝑅3

𝜇
4
. (15)

The gauge fields 𝐴
𝜇
(𝜇 = 0, 1, 2, 3) and 𝐴

𝑧
have a mode

expansion in terms of complete sets {𝜓
𝑛
(𝑧)} and {𝜙

𝑛
(𝑧)} as

𝐴
𝜇
(𝑥

𝜇
, 𝑧) = ∑

𝑛

𝐵
(𝑛)

𝜇
(𝑥

𝜇
) 𝜓

𝑛 (𝑧) ,

𝐴
𝑧
(𝑥

𝜇
, 𝑧) = ∑

𝑛

𝜑
(𝑛)
(𝑥

𝜇
) 𝜙

𝑛 (𝑧) .

(16)

After calculating the field strengths, the action (14) is rewrit-
ten as

𝑆
𝐷4

= −𝜇
4
(2𝜋𝛼


)
2

∫𝑑
4
𝑥 𝑑𝑧

× ∑

𝑚,𝑛

[
𝑅
4

4𝑈
5/2

𝑧

𝐹
(𝑚)

𝜇] 𝐹
𝜇](𝑛)

𝜓
𝑚
𝜓
𝑛

+
25

8

𝑈
9/2

𝑧

𝑈
3

KK
(𝜕

𝜇
𝜑
(𝑚)
𝜕
𝜇
𝜑
(𝑛)
𝜙
𝑚
𝜙
𝑛

+ 𝐵
(𝑚)

𝜇
𝐵
𝜇(𝑛)

�̇�
𝑚
�̇�
𝑛

− 2𝜕
𝜇
𝜑
(𝑚)
𝐵
𝜇(𝑛)

𝜙
𝑚
�̇�
𝑛
) ] ,

(17)

where the over dot denotes the derivative respect to the 𝑧
coordinate.
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We introduce the following dimensionless parameters:

�̃� ≡
𝑧

𝑈KK
, 𝐾 (�̃�) ≡ 1 + �̃�

2
= (

𝑈
𝑧

𝑈KK
)

5

, (18)

and find that the functions 𝜓
𝑛
(𝑛 ≥ 1) satisfy the normaliza-

tion condition as

𝜇
4
(2𝜋𝛼


)
2 𝑅

4

𝑈
3/2

KK

∫𝑑�̃�𝐾
−1/2

𝜓
𝑛
𝜓
𝑚
= 𝛿

𝑛𝑚
. (19)

Also, we suppose that the functions 𝜓
𝑛
(𝑛 ≥ 1) satisfy the

following condition:

𝜇
4
(2𝜋𝛼


)
2 𝑅

4

𝑈
3/2

KK

∫𝑑�̃�𝐾
9/10

𝜕
�̃�
𝜓
𝑚
𝜕
�̃�
𝜓
𝑛
= 𝜆

𝑛
𝛿
𝑛𝑚
. (20)

Using (19) and (20), an eigenvalue equation is obtained for
the functions 𝜓

𝑛
(𝑛 ≥ 1) as

−𝐾
1/2
𝜕
�̃�
(𝐾

9/10
𝜕
�̃�
𝜓
𝑚
) = 𝜆

𝑚
𝜓
𝑚
. (21)

The orthonormal condition for 𝜙
𝑛
are as follows:

(𝜙
𝑚
, 𝜙

𝑛
) ≡

25

4
𝜇
4
(2𝜋𝛼


)
2

𝑈
5/2

KK ∫𝑑�̃�𝐾
9/10

𝜙
𝑚
𝜙
𝑛
= 𝛿

𝑚𝑛
. (22)

We find that the functions 𝜙
(𝑛)

and �̇�
𝑛
are related together. In

fact, we can consider 𝜙
𝑛
= 𝑚

−1

𝑛
�̇�
𝑛
(𝑛 ≥ 1). Also, there exists a

function 𝜙
0
= 𝐶/𝐾

9/10 which is orthogonal to �̇�
𝑛
for all 𝑛 ≥ 1:

(𝜙
0
, 𝜙

𝑛
) ∝ ∫𝑑�̃�𝜕

�̃�
𝜓
𝑛
= 0, (for 𝑛 ≥ 1) . (23)

We use the normalization condition 1 = (𝜙
0
, 𝜙

0
) to obtain

the normalization constant𝐶. Finally by using an appropriate
gauge transformation, the action (14) becomes

𝑆
𝐷4

= −∫𝑑
4
𝑥[

1

2
𝜕
𝜇
𝜑
(0)
𝜕
𝜇
𝜑
(0)

×∑

𝑛≥1

(
1

4
𝐹
(𝑛)

𝜇] 𝐹
𝜇](𝑛)

+
1

2
𝑚
2

𝑛
𝐵
(𝑛)

𝜇
𝐵
𝜇(𝑛)

)] ,

(24)

where 𝐵
(𝑛)

𝜇
is a massive vector meson of mass 𝑚

𝑛
≡

𝜆
1/2

𝑛
𝑀KK for all 𝑛 ≥ 1 and 𝜑

(0) is the pion field, which
is the Nambu-Goldstone boson associated with the chiral
symmetry breaking [49].

It is useful to make another gauge choice, namely, the
𝐴
𝑧

= 0 gauge. Actually, we can transform to the new
gauge through a suitable gauge transformation and obtain the
following new gauge fields:

𝐴
𝑧
(𝑥

𝜇
, 𝑧) = 0,

𝐴
𝜇
(𝑥

𝜇
, 𝑧) = −𝜕

𝜇
𝜑
(0)
(𝑥

𝜇
) 𝜓

0 (𝑧) + ∑

𝑛≥1

𝐵
(𝑛)

𝜇
(𝑥

𝜇
) 𝜓

𝑛 (𝑧) .
(25)

Table 1:The ratio of the obtained eigenvalues of (21) compared with
the results of the KS [54], DKS [55], and SS model [18] and the ratio
of meson masses.

𝑘 (
𝜆
𝑘+1

𝜆
𝑘

)

AdS6

(
𝜆
𝑘+1

𝜆
𝑘

)

DKS
(
𝜆
𝑘+1

𝜆
𝑘

)

KS
(
𝜆
𝑘+1

𝜆
𝑘

)

SS
(
𝜆
𝑘+1

𝜆
𝑘

)

Exp

1 2.76 1.97 2.68 2.34 2.51
2 5.58 3.56 5.63 4.92 3.65
3 9.55 5.49 8.88 6.97 4.45

Function 𝜓
0
(𝑧) is calculated through

𝜓
0 (𝑧) = ∫

𝑧

0

𝑑𝑧

𝜙
0
(𝑧


) = 𝐶𝑈KK�̃�𝐹1 (0.5, 0.9, 1.5, −�̃�

2
) ,

(26)

where 𝐹
1
is well-known hypergeometric function. It should

be noted that themassless pseudoscalar meson appears in the
asymptotic behavior of 𝐴

𝜇
, since we have

𝐴
𝜇
(𝑥

𝜇
, 𝑧) → ±1.8𝐶𝑈KK𝜕𝜇𝜑

(0)
(𝑥

𝜇
) (as 𝑧 → ±∞) .

(27)

In order to calculate the meson spectrum, it is necessary to
solve the (21) numerically by considering the normalization
condition (19).

Since (21) is invariant under �̃� → −�̃�, we can assume
𝜓
𝑛
to be an even or odd function. In fact, the 𝐵(𝑛)

𝜇
is a four-

dimensional vector and axial vector if 𝜓
𝑛
is an even or odd

function, respectively. Equation (21) is solved numerically
using the shooting method to obtain the mass of lightest
mesons. Our results are compared with the results of the SS,
KS, and DKS models and experimental data in Table 1. As is
clear, our results are in good agreementwith the experimental
data [49].

3.3. Pion Effective Action. Now, we just consider the pion
field in the gauge field expansion and use the non-Abelian
generalization of the DBI action to find the effective pion
action [49]:

𝑆
𝐷4

= −𝜇
4
(2𝜋𝛼


)
2

∫𝑑
4
𝑥 tr (𝐴(𝑈−1

𝜕
𝜇
𝑈)

2

+𝐵[𝑈
−1
𝜕
𝜇
𝑈,𝑈

−1
𝜕]𝑈]

2

) ,

(28)

where the coefficients 𝐴 and 𝐵 are defined by the following
relations [49]:

𝐴 ≡ 2
25

8

1

𝑈
3

KK
∫𝑑�̃�𝑈

9/2

𝑧
(𝜕
�̃�
�̂�
0 (�̃�))

2
=
25

4

𝑈
1/2

KK
3.6

,

𝐵 ≡ 2
𝑅
4

4
∫𝑑𝑧

1

𝑈
5/2

𝑧

𝜓
2

+
(𝜓

+
− 1)

2
=
0.16𝑅

4

2𝑈
3/2

KK

.

(29)
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If we compare (33) with the familiar action of the Skyrme
model [93]

𝑆 = ∫𝑑
4
𝑥(

𝑓
2

𝜋

4
tr (𝑈−1

𝜕
𝜇
𝑈)

2

+
1

32𝑒2
tr [𝑈−1

𝜕
𝜇
𝑈,𝑈

−1
𝜕]𝑈]

2

) ,

(30)

it is possible to calculate the pion decay constant 𝑓
𝜋
and

dimensionless parameter 𝑒 in terms of the noncritical model
parameters [49]:

𝑓
2

𝜋
= 4𝜇

4
(2𝜋𝛼


)
2

𝐴 = √
3

2

45𝜇
4
(2𝜋𝛼


)
2

3.6𝑅3
𝑁
𝑐
𝑀

2

KK,

1

𝑒2
= 32𝜇

4
(2𝜋𝛼


)
2

𝐵 = √
3

8
𝜇
4
(2𝜋𝛼


)
2

𝑅𝑁
𝑐
.

(31)

It is clear from the above equations that the parameters 𝑓
𝜋

and 𝑒 depend on 𝑁
𝑐
as 𝑓

𝜋
∼ O(√𝑁

𝑐
) and 𝑒 ∼ O(1/√𝑁

𝑐
),

respectively. It is coincident with the result obtained from the
SSmodel and also QCD in large𝑁

𝑐
. We fix the𝑀KK such that

the 𝑓
𝜋
∼ 93MeV for𝑁

𝑐
= 3. So, we obtain𝑀KK = 395MeV

for our holographic model [49]. It should be noted that𝑀KK
is the only mass scale of the noncritical model below which
the theory is effectively pure Yang-Mills in four dimensions.

3.4. Baryon in AdS
6
. In this section we aim to introduce

baryon configuration in the noncritical holographic model.
As is known, in the SS model the baryon vertex is a𝐷4-brane
wrapped on a 𝑆4 cycle.Here in six-dimensional configuration,
there is no compact 𝑆4 sphere. So, we introduce an unwrapped
𝐷0-brane as a baryon vertex instead [94]. In analogy with the
SS model, there is a Chern-Simons term on the vertex world
volume as

𝑆CS ∝ ∫𝑑𝑡𝐴
0 (𝑡) , (32)

which induces 𝑁
𝑐
units of electric charge on the unwrapped

𝐷0-brane. In accordance with the Gauss constraint, the
net charge should be zero. So, one needs to attach 𝑁

𝑐

fundamental strings to the 𝐷0-brane. In turn, the other side
of the strings should end up on the probe 𝐷4-branes. The
baryon vertex looks like an object with𝑁

𝑐
electric chargewith

respect to the gauge field on the𝐷4-brane whose charge is the
baryon number. This 𝐷0-brane dissolves into the 𝐷4-brane
and becomes an instanton solution [94]. It is important to
know the size of the instanton in our model. In the SS model,
it is shown that the size of an instantonic baryon goes to zero
at large ’t Hooft coupling limit which is one of the problems
of the SS model in describing the baryons [37].

Let us consider the DBI action in the Yang-Mills approx-
imation for the𝐷4-brane:

𝑆YM = −
1

4
𝜇
4
(2𝜋𝛼


)
2

∫ 𝑒
−𝜙
√−𝑔4+1 tr 𝐹𝑚𝑛𝐹

𝑚𝑛
. (33)

The induced metric on the𝐷4-brane is

𝑔
4+1

= (
𝑈

𝑅
)

2

(𝜂
𝜇]𝑑𝑥

𝜇
𝑑𝑥

]
+ (

𝑅

𝑈
)

4
𝑑𝑈

2

𝑓 (𝑈)
) . (34)

It is useful to define the new coordinate 𝑤

𝑑𝑤 =
𝑅
2
𝑈
1/2
𝑑𝑈

√𝑈5 − 𝑈
5

KK

. (35)

Using this coordinate, the metric (34) transforms to a confor-
mally flat metric:

𝑔
4+1

= 𝐻 (𝑤) (𝑑𝑤
2
+ 𝜂

𝜇]𝑑𝑥
𝜇
𝑑𝑥

]
) , 𝐻 (𝑤) = (

𝑈

𝑅
)

2

. (36)

Also, the 𝑤 coordinate can be rewritten in terms of the 𝑧
coordinate introduced in (13) as

𝑑𝑤 =
2

5

𝑅
2
𝑈
3

KK𝑑𝑧

(𝑈
5

KK − 𝑈
3

KK𝑧
2)
7/10

. (37)

Note that in the new conformally flat metric, the fifth
direction is a finite interval [−𝑤max, 𝑤max] because

𝑤max = ∫

∞

0

𝑅
2
𝑈
1/2
𝑑𝑈

√𝑈5 − 𝑈
5

KK

≃
𝑅
2

𝑈KK
1.25 < ∞. (38)

We can approximate 𝑤 near the origin 𝑤 ≃ 0 as

𝑤 ≃
2

5
(

𝑅

𝑈KK
)

2

𝑧, (39)

and using relation (10), we obtain

𝑤 ≃
𝑧

𝑀KK𝑈KK
or 𝑀KK𝑤 ≃

𝑧

𝑈KK
, (40)

or, equivalently,

𝑈
5
≃ 𝑈

5

KK (1 +𝑀
2

KK𝑤
2
) . (41)

In analogy with the SS model, this relation implies that𝑀KK
is the only mass scale that dictated the deviation of themetric
from the flat configuration and it is the only mass scale of the
theory in the low energy limit. (It should be noted that the
𝐷4-branes comewith two asymptotic regions at𝑤 → ±𝑤max
corresponding to the ultraviolet and infrared region near the
𝑤 ≃ 0).

Equation (33) is rewritten in the conformally flat metric
(36) as

𝑆
𝐷4

YM = −
1

4
𝜇
4
(2𝜋𝛼


)
2

∫𝑑
4
𝑥𝑑𝑤𝑒

−𝜙
(
𝑈 (𝑤)

𝑅
) tr 𝐹

𝑚𝑛
𝐹
𝑚𝑛

= −∫𝑑𝑥
4
𝑑𝑤

1

4𝑒2 (𝑤)
tr 𝐹

𝑚𝑛
𝐹
𝑚𝑛
.

(42)

Thus, the position dependent electric coupling 𝑒(𝑤) of this
five-dimensional Yang-Mills is equal to [30]

1

𝑒2 (𝑤)
≡

√3/2𝜇
4
(2𝜋𝛼


)
2

𝑅𝑁
𝑐

5
𝑀KK (

𝑈

𝑈KK
) . (43)
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Also, for a unit instanton we have

1

8𝜋2
∫ tr 𝐹 ∧ 𝐹 =

1

16𝜋2
∫ tr 𝐹

𝑚𝑛
𝐹
𝑚𝑛

= 1. (44)

Inserting the above relations in (42), we obtain the energy of
a point-like instanton localized at 𝑤 = 0 as

𝑚
(0)

𝐵
=

√3/2 4𝜋
2
𝜇
4
(2𝜋𝛼


)
2

𝑅

5
𝑁
𝑐
𝑀KK.

(45)

By increasing the size of the instanton, more energy is needed
because 1/𝑒

2
(𝑤) is an increasing function of |𝑤|. So the

instanton tends to collapse to a point-like object. On the
other hand, 𝑁

𝑐
fundamental strings attached to the 𝐷4-

branes behave as𝑁
𝑐
units of electric charge on the brane.The

Coulomb repulsions among them prefer a finite size for the
instanton.Therefore, there is a competition between themass
of the instanton and Coulomb energy of fundamental strings.
For a small instanton of size 𝜌 with the density 𝐷(𝑥𝑖, 𝑤) ∼
𝜌
4
/(𝑟

2
+ 𝑤

2
+ 𝜌

2
)
4, the Yang-Mills energy is approximated as

∼
1

6
𝑚
(0)

𝐵
𝑀

2

KK𝜌
2
, (46)

and the five-dimensional Coulomb energy is

∼
1

2
×
𝑒(0)

2
𝑁
2

𝑐

10𝜋2𝜌2
. (47)

The size of a stable instanton is obtained by minimizing the
total energy [49]:

𝜌
2

baryon ≃
1

√3/2 2𝜋2𝜇
4
(2𝜋𝛼)

2

1

𝑀
2

KK
. (48)

As it is stated in the previous section, in the SS model (the
critical version of dual QCD) the size of the instanton goes to
zero because of the large ’t Hooft coupling limit. However in
the noncritical string theory, the ’t Hooft coupling is of order
one. So, the size of the instanton is also of order 1 but it is
still smaller than the effective length of the fifth direction ∼
1/𝑀KK of the dual QCD.

3.5. Nucleon-Nucleon Potential. In the previous section, we
demonstrated that the size of the baryon in the noncritical
holographic model is smaller than the scale of the dual QCD
andwe can assume that the baryon is a point-like object in five
dimensions. Thus as a leading approximation, we can treat it
as a point-like quantum field in five dimensions. In the rest
of this paper, we will restrict ourselves to fermionic baryons
because we intend to study the nucleons. So, we consider odd
𝑁
𝑐
to study a fermionic spin 1/2 baryon. We choose 𝑁

𝑐
= 3

in our numerical calculations for realistic QCD. Also, we will
assume𝑁

𝐹
= 2 and consider the lowest baryons which form

the proton-neutron doublet under 𝑆𝑈(𝑁
𝐹
= 2). All of these

assumptions lead us to introduce an isospin 1/2 Dirac field,
N for the five-dimensional baryon.

The leading 5𝐷 kinetic term for N is the standard Dirac
action in the curved background along with a position

dependent mass term for the baryon. Moreover, there is a
coupling between the baryon field and the gauge filed living
on the flavor branes that should be considered. Therefore, a
complete action for the baryon reads as [49]

∫𝑑
4
𝑥𝑑𝑤[ − 𝑖N𝛾

𝑚
𝐷
𝑚
N − 𝑖𝑚

𝑏 (𝑤)NN

+ 𝑔
5 (𝑤)

𝜌
2

baryon

𝑒2 (𝑤)
N𝛾

𝑚𝑛
𝐹
𝑚𝑛
N]

− ∫𝑑
4
𝑥𝑑𝑤

1

4𝑒2 (𝑤)
tr 𝐹

𝑚𝑛
𝐹
𝑚𝑛
,

(49)

where 𝐷
𝑚
is a covariant derivative, 𝜌baryon is the size of the

stable instanton, and 𝑔
5
(𝑤) is an unknown function with a

value as 𝑤 = 0 of 2𝜋2/3 [38]. 𝛾𝑚 are the standard 𝛾 matrices
in the flat space and 𝛾𝑚𝑛 = 1/2[𝛾

𝑚
, 𝛾

𝑛
].

The factor 𝜌2baryon/𝑒
2
(𝑤) is used for convenience. Usually,

the first two terms in the action are called the minimal
coupling and the last term in the first integral refers to the
magnetic coupling.

A four-dimensional nucleon is the localized mode at 𝑤 ≃

0which is the lowest eigenmode of a five dimensional baryon
along the 𝑤 direction. So, the action of the five-dimensional
baryon must be reduced to four dimensions. In order to do
this, one should perform the KK mode expansion for the
baryon fieldN(𝑥

𝜇
, 𝑤) and the gauge field𝐴(𝑥

𝜇
, 𝑤).The gauge

field has a KKmode expansion presented in (16). The baryon
field also can be expanded as

N
𝐿,𝑅

(𝑥
𝜇
, 𝑤) = 𝑁

𝐿,𝑅
(𝑥

𝜇
) 𝑓

𝐿,𝑅 (𝑤) , (50)

where 𝑁
𝐿,𝑅
(𝑥

𝜇
) is the chiral component of the four-

dimensional nucleonfield.Also the profile functions,𝑓
𝐿,𝑅
(𝑤),

satisfy the following conditions:

𝜕
𝑤
𝑓
𝐿 (𝑤) + 𝑚𝑏 (𝑤) 𝑓𝐿 (𝑤) = 𝑚

𝐵
𝑓
𝑅 (𝑤) ,

−𝜕
𝑤
𝑓
𝑅 (𝑤) + 𝑚𝑏 (𝑤) 𝑓𝑅 (𝑤) = 𝑚

𝐵
𝑓
𝐿 (𝑤) ,

(51)

in the range 𝑤 ∈ [−𝑤max, 𝑤max], and the eigenvalue 𝑚
𝐵

is the mass of the nucleon mode, 𝑁(𝑥). Moreover, the
eigenfunctions 𝑓

𝐿,𝑅
(𝑤) obey the following normalization

condition:

∫

𝑤max

−𝑤max

𝑑𝑤
𝑓𝐿 (𝑤)



2
= ∫

𝑤max

−𝑤max

𝑑𝑤
𝑓𝑅 (𝑤)



2
= 1. (52)

It is more useful to consider the following second-order
differential equations for 𝑓

𝐿,𝑅
(𝑤) :

[−𝜕
2

𝑤
− 𝜕

𝑤
𝑚
𝑏 (𝑤) + (𝑚𝑏 (𝑤))

2
] 𝑓

𝐿 (𝑤) = 𝑚
2

𝐵
𝑓
𝐿 (𝑤) ,

[−𝜕
2

𝑤
+ 𝜕

𝑤
𝑚
𝑏 (𝑤) + (𝑚𝑏 (𝑤))

2
] 𝑓

𝑅 (𝑤) = 𝑚
2

𝐵
𝑓
𝑅 (𝑤) .

(53)

As we approach𝑤 → ±𝑤max,𝑚𝑏
(𝑤) diverges as𝑚

𝑏
(𝑤) ∼

1/(𝑤 ∓ 𝑤max)
2 and the above equations have normalizable

eigenfunctions with a discrete spectrum of𝑚
𝐵
. Note that the
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term −𝜕
𝑤
𝑚
𝑏
(𝑤) is asymmetric under 𝑤 → −𝑤. It causes

that 𝑓
𝐿
(𝑤) tends to shift to the positive side of 𝑤 and the

opposite behavior happens for 𝑓
𝑅
(𝑤). It is important in the

axial coupling of the nucleon to the pions.
The gauge field can be expanded in 𝐴

𝑧
= 0 gauge as

follows [49]:

𝐴
𝜇 (𝑥, 𝑤) = 𝑖𝛼

𝜇 (𝑥) 𝜓0 (𝑤) + 𝑖𝛽𝜇 (𝑥) +∑

𝑛

𝐵
(𝑛)

𝜇
(𝑥) 𝜓(𝑛) (𝑤) ,

(54)

where 𝛼
𝜇
and 𝛽

𝜇
are related to the pion field𝑈(𝑥) = 𝑒

2𝑖𝜋(𝑥)/𝑓𝜋

by the following relations:

𝛼
𝜇 (𝑥) ≡ {𝑈

−1/2
, 𝜕
𝜇
𝑈
1/2
} ,

𝛽
𝜇 (𝑥) ≡

1

2
[𝑈

−1/2
, 𝜕
𝜇
𝑈
1/2
] .

(55)

Here, we use the above expansion along with the proper-
ties of 𝑓

𝐿
(𝑤) = ±𝑓

𝑅
(−𝑤) and 𝜓

0
and 𝜓

(𝑛)
under the𝑤 → −𝑤

transformation to calculate the four-dimensional action. It
is worthwhile to note that again 𝜓

(2𝑘+1)
(𝑤) is even, while

𝜓
(2𝑘)

(𝑤) is odd under 𝑤 → −𝑤, corresponding to vector
𝐵
(2𝑘+1)

𝜇
(𝑥

𝜇
) and axial-vector mesons 𝐵(2𝑘)

𝜇
(𝑥

𝜇
), respectively.

For simplicity, we neglect the Chern-Simons term in the
baryon action (49).

By inserting the mode expansion of the nucleon field and
gauge field into the baryon action [49],

LNucleon = −𝑖𝑁𝛾
𝜇
𝜕
𝜇
𝑁 − 𝑖𝑚

𝐵
𝑁𝑁 +Lvector +Laxial, (56)

where

Lvector = −𝑖𝑁𝛾
𝜇
𝛽
𝜇
𝑁 − ∑

𝑘≥0

𝑔
(𝑘)

𝑉
𝑁𝛾

𝜇
𝐵
(2𝑘+1)

𝜇
𝑁

+ ∑

𝑘≥0

𝑔
(𝑘)

𝑑𝑉
𝑁𝛾

𝜇]
𝜕
𝜇
𝐵
(2𝑘+1)

] 𝑁,

Laxial = −
𝑖𝑔
𝐴

2
𝑁𝛾

𝜇
𝛾
5
𝛼
𝜇
𝑁 − ∑

𝑘≥1

𝑔
(𝑘)

𝐴
𝑁𝛾

𝜇
𝛾
5
𝐵
(2𝑘)

𝜇
𝑁

+ ∑

𝑘≥0

𝑔
(𝑘)

𝑑𝐴
𝑁𝛾

𝜇]
𝛾
5
𝜕
𝜇
𝐵
(2𝑘)

] 𝑁.

(57)

Also, 𝑔 = 𝑔min + 𝑔mag stands for all the couplings. We
neglect the derivative couplings in the following calculations
as a leading approximation. The various minimal couplings
constants 𝑔(𝑘)

𝑉,minand 𝑔
(𝑘)

𝐴,min as well as the pion-nucleon axial
coupling 𝑔

𝐴,min are calculated by the following suitable
overlap integrals of wave functions:

𝑔
(𝑘)

𝑉,min = ∫

𝑤max

−𝑤max

𝑑𝑤
𝑓𝐿 (𝑤)



2
𝜓
(2𝑘+1) (𝑤) ,

𝑔
(𝑘)

𝐴,min = ∫

𝑤max

−𝑤max

𝑑𝑤
𝑓𝐿 (𝑤)



2
𝜓
(2𝑘) (𝑤) ,

𝑔
𝐴,min = 2∫

𝑤max

−𝑤max

𝑑𝑤
𝑓𝐿 (𝑤)



2
𝜓
0 (𝑤) .

(58)

Also, we can compute the magnetic couplings using the
following integrals [49]:

𝑔
(𝑘)

𝑉,mag = 2𝐶mag ∫
𝑤max

−𝑤max

𝑑𝑤(
𝑔
5 (𝑤)

𝑔
5 (0)

)(
𝑈 (𝑤)

𝑈KK
)

×
𝑓𝐿 (𝑤)



2
𝜕
𝑤
𝜓
(2𝑘+1) (𝑤) ,

𝑔
(𝑘)

𝐴,mag = 2𝐶mag ∫
𝑤max

−𝑤max

𝑑𝑤(
𝑔
5 (𝑤)

𝑔
5 (0)

)(
𝑈 (𝑤)

𝑈KK
)

×
𝑓𝐿 (𝑤)



2
𝜕
𝑤
𝜓
(2𝑘) (𝑤) ,

𝑔
𝐴,mag = 4𝐶mag ∫

𝑤max

−𝑤max

𝑑𝑤(
𝑔
5 (𝑤)

𝑔
5 (0)

)(
𝑈 (𝑤)

𝑈KK
)

×
𝑓𝐿 (𝑤)



2
𝜕
𝑤
𝜓
0 (𝑤) ,

(59)

where we define 𝐶mag as

𝐶mag =
√3/2𝜇

4
(2𝜋𝛼


)
2

5
𝑅𝑁

𝑐
𝑔
5 (0)𝑀KK𝜌

2

baryon.
(60)

Since the instanton carries only the non-Abelian field
strength, the isoscalar mesons couple to the nucleon in a
different formalism than the isovector mesons. Therefore,
for the isoscalar mesons, such as the 𝜔(𝑘) meson, only the
minimal couplings contribute to

𝑔
iso-scalar
𝐴

= 𝑔
𝐴,min,

𝑔
(𝑘),iso-scalar
𝐴

= 𝑔
(𝑘)

𝐴,min,

𝑔
(𝑘),iso-scalar
𝑉

= 𝑔
(𝑘)

𝑉,min.

(61)

However, the isovector mesons couple to the nucleon
from both the minimal and magnetic channels. Thus, isovec-
tor meson couplings are [49]

𝑔
iso-vector
𝐴

= 𝑔
𝐴,min + 𝑔𝐴,mag,

𝑔
(𝑘),iso-vector
𝐴

= 𝑔
(𝑘)

𝐴,min + 𝑔
(𝑘)

𝐴,mag,

𝑔
(𝑘),iso-vector
𝑉

= 𝑔
(𝑘)

𝑉,min + 𝑔
(𝑘)

𝑉,mag.

(62)

The is-scalar and isovector mesons have the same origin
in the five-dimensional dynamics of the gauge field. In fact,
if we write the gauge field in the fundamental representation,
we could decompose the massive vector mesons as

𝐵
(2𝑘+1)

𝜇
= (

1

2
0

0
1

2

)𝜔
(𝑘)

𝜇
+ 𝜌

(𝑘)

𝜇
, (63)

where 𝜔(𝑘)
𝜇

and 𝜌(𝑘)
𝜇

are the isoscalar and the isovector parts
of a vector meson, respectively. Since the baryon is made
out of𝑁

𝑐
product quark doublets, the above composition for

nucleon should be written as

𝐵
(2𝑘+1)

𝜇
= (

𝑁
𝑐

2
0

0
𝑁
𝑐

2

)𝜔
(𝑘)

𝜇
+ 𝜌

(𝑘)

𝜇
. (64)
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Therefore, there is an overall factor𝑁
𝑐
between the isoscalar,

𝜔
(𝑘)

𝜇
and isovector, 𝜌(𝑘)

𝜇
mesons. Indeed, there is a univer-

sal relation between the Yukawa couplings involving the
isoscalar and isovector mesons:

𝑔𝜔(𝑘)NN
 ≃ 𝑁

𝑐
×

𝑔
𝜌
(𝑘)NN


. (65)

We solve the eigenvalue (51) numerically using the shoot-
ing method to obtain the wave function, 𝑓

𝐿,𝑅
, and the mass,

𝑚
𝐵
, of the nucleon. In order to do the numerical calculation,

we assume𝑁
𝑐
= 3 for realistic QCD. Also as was mentioned

in the previous section, we choose the value of 𝑀KK =

0.395GeV to have the pion decay constant 𝑓
𝜋
= 0.093GeV.

We obtain the various couplings by evaluating integrals (58)
and (59) and compare some of our results with the results of
the SS model [37] in Table 2.

Also, using this noncritical model, the axial couplings are
obtained as

𝑔
𝐴,mag = 1.582, 𝑔

𝐴,min ≃ 0, (66)

while in the previous analysis [18] using the SS model, these
couplings are reported as

𝑔
𝐴,mag = 0.7

𝑁
𝑐

3
, 𝑔

𝐴,min ≃ 0.13. (67)

If we choose 𝑁
𝑐
= 3, then the SS model predicts 𝑔

𝐴,mag =

0.7 and 𝑔
𝐴

= 0.83. It should be noted that the higher
order of 1/𝑁

𝑐
corrections can be used to improve this result

but the lattice calculations indicate that higher order of
1/𝑁

𝑐
corrections are suppressed. Our results are a good

approximation of the experimental data at leading order
𝑔
exp
𝐴

= 1.2670 ± 0.0035.

3.5.1. Nucleon-MesonCouplings. Our holographicNNpoten-
tial contains just the vector, axial-vector, and pseudoscalar
meson exchange potentials which have the isospin dependent
and isospin independent components. The vector meson
(𝜔(𝑘), 𝜌(𝑘)), axial-vector meson (𝑓(𝑘), 𝑎(𝑘)), and pseudoscalar
meson (𝜋(𝑘), 𝜂(𝑘)) couplings are related to the minimal and
magnetic couplings as follows:

𝑔
𝜔
(𝑘)NN ≡

𝑁
𝑐
𝑔
(𝑘),iso-scalar
𝑉

2
=

𝑁
𝑐
𝑔
(𝑘)

𝑉,min

2
,

𝑔
𝜌
(𝑘)NN ≡

𝑔
(𝑘),iso-vector
𝑉

2
=

𝑔
(𝑘)

𝑉,min + 𝑔
(𝑘)

𝑉,mag

2
,

𝑔
𝑓
(𝑘)NN ≡

𝑁
𝑐
𝑔
(𝑘),iso-scalar
𝐴

2
=

𝑁
𝑐
𝑔
(𝑘)

𝐴,min

2
,

𝑔
𝑎
(𝑘)NN ≡

𝑔
(𝑘),iso-vector
𝐴

2
=

𝑔
(𝑘)

𝐴,min + 𝑔
(𝑘)

𝐴,mag

2
,

𝑔
𝜋
(𝑘)NN
2𝑚

𝑁

𝑀KK ≡
𝑔
iso-vector
𝐴

2𝑓
𝜋

𝑀KK =

𝑔
𝐴,min + 𝑔𝐴,mag

2𝑓
𝜋

𝑀KK,

𝑔
𝜂
(𝑘)NN

2𝑚
𝑁

𝑀KK ≡
𝑁
𝑐
𝑔
iso-scalar
𝐴

2𝑓
𝜋

𝑀KK =
𝑁
𝑐
𝑔
𝐴,min

2𝑓
𝜋

𝑀KK.

(68)

Table 2: Numerical results for axial and vector meson couplings
in the noncritical holographic model of QCD. The values of vector
couplings are compared with the SS model results [37].

𝑘 𝑔
(𝑘)

𝐴,min 𝑔
(𝑘)

𝐴,mag 𝑔
(𝑘),a
𝑉,min 𝑔

(𝑘),b
𝑉,min 𝑔

(𝑘),a
𝑉,mag 𝑔

(𝑘),b
𝑉,mag

0 1.16 1.86 8.30 5.933 −1.988 −0.816
1 1.07 1.44 1.6488 3.224 −6.83 −1.988
2 0.96 0.862 1.9 1.261 −7.44 −1.932
3 0.67 0.14 0.688 0.311 −4.60 −0.969
apresented model results; bSS model results.

Table 3: The values of different effective meson-nucleon couplings
in the phenomenological interactionmodels [56], SSmodel [18], and
our model.

𝑔 AV18 CD-Bonn Nijm (93) Paris SS model Our model
𝑔
𝑎
0 9.0 9.0 9.0 10.4 — —

𝑔
𝜎

9.0 11.2 9.8 7.6 — —
𝑔
𝜋

13.4 13.0 12.7 13.2 16.48 15.7
𝑔
𝜂

8.7 0.0 1.8 11.7 16.13 0.0
𝑔
𝜔

12.2 13.5 11.7 12.7 12.6 11.57
𝑔
𝜌

— 3.19 2.97 — 3.6 3.15
𝑔
𝑎
1 — — — — 3.94 1.51

𝑔
𝑓
1 — — — — 1.74

All of the leading order meson-nucleon couplings are
calculated numerically and compared with the predictions of
the four modern phenomenological NN interaction models
such as the AV 18 [8], CD-Bonn [7], Nijmegen (93) [6], and
Paris [5] potentials in Table 3. Also, results of the SSmodel are
presented in this table. It is necessary to mention here that
the components of the phenomenological models are very
different in strength, and if parameterized in terms of single
meson exchange give rise to effective meson-nucleon cou-
pling strengths, which also are similar. We explain different
components of the NN potential below in detail.

The isospin dependent component of the vector potential
which arises from a 𝜌meson exchange is roughly three times
weaker than the isospin independent component. In a chiral
quark model, it is expected to have 𝑔

𝜔
= 3𝑔

𝜌
, but the

value of the R = 𝑔
𝜔
/3𝑔

𝜌
differs from the one in the above

phenomenological interaction models. It is 1.66 for the CD-
Bonn, 1.5 for the Nijmegen, and 0.77 in the Paris model.
This ratio is about 1.2 in the SS model and equal to R =

1.33 in our model. Actually, the NN phase shifts uniformly
require a larger R than the chiral quark model prediction
which is a mystery. However, in the resultant potential of
the holographic QCD model, it can be explained by the
contribution of the magnetic coupling in the vector channel.

4. Holographic Light Nuclei

In the holographic models, baryon is introduced as a 𝐷-
brane wrapped on a higher dimensional sphere in the curved
spacetime [17]. According to the fact that each nucleus is
a set of 𝐴 nucleons, so the collection of the 𝐴 baryon 𝐷-
branes can describe a nucleus with the mass number𝐴. Then
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the dual gravity for the nucleus can be obtained by applying
the AdS/CFT correspondence. The 𝑈(𝐴) gauge theory living
in the gravity dual of QCD is difficult to treat; hence, the
large 𝐴 limit is considered for this dual geometry which
corresponds to the heavy nuclei [95]. On the other hand, it
is necessary to use the nucleon-nucleon potential to study
the properties of light nuclei. In this section, we aim to study
the holographic light nuclei such as 2

𝐷, 3𝑇, 3He, and 4He.
For this purpose, we consider a set of 𝐴 instantonic baryons
as a nucleus. It is known that the nucleons are stabilized at
a certain distance in nuclei because of a binding force and
a strong repulsive force due to the light meson exchanges.
We assume that the nucleons have a uniform distribution in
nucleus. Therefore, we consider a homogeneous distribution
of 𝐷-branes in the 𝑅3 space. In order to study the potential
of nucleus, we should regard the interaction between these
𝐷-branes. It was shown that the size of baryon (instanton)
is small and the interaction between two instantons can be
explained by the OBEP potential [49]. In this section, we
use this nucleon-nucleon potential to obtain the potentials
of light nuclei. Also we calculate the binding energy of these
nuclei.Then we impose different conditions on nucleon spins
in order to obtain some excited states of the 4He nucleus.
Finally, we calculate the energy of these excited states and
estimate their excited energy.

4.1. Nucleon-Nucleon Holography Potential. Two particle
scattering Phase shift in different partial waves as well as
the bound state properties of deuteron are experimental data
for a two-nucleon system which identify the main properties
of nucleon-nucleon interaction. But the potentials attained
phenomenologically have many free parameters which are
determined by fitting to the experimental data. Various
mesons and their resonances play a special role in producing
the nucleon-nucleon potential with the following rules.

(i) The long range part of the NN potential (𝑟 > 3𝑓𝑚) is
mostly due to the one pion exchange mechanism.

(ii) Isoscalar mesons are responsible for the attractive
interaction in the intermediate range of the potential
(0.7 < 𝑟 < 2𝑓𝑚).

(iii) Exchanging the vector meson 𝜌 can explain the small
attractive behavior of the odd-triplet state.

(iv) Vector mesons produce the strong short range repul-
sion.

Then by considering these facts the general one boson
exchange nucleon-nucleon potential is written as [39]

𝑉NN = 𝑉
𝜋
+ 𝑉

𝜂
 +

∞

∑

𝑘=1

𝑉
𝜌
(𝑘) +

∞

∑

𝑘=1

𝑉
𝜔
(𝑘)

+

∞

∑

𝑘=1

𝑉
𝑎
(𝑘) +

∞

∑

𝑘=1

𝑉
𝑓
(𝑘) ,

(69)

which contains the pseudoscalar (𝜋, 𝜂), vector (𝜌(𝑘), 𝜔(𝑘)),
and axial vector (𝑎

(𝑘)
, 𝑓

(𝑘)
) meson exchange potentials,

respectively. It should be noted that despite of the phe-
nomenological NN interaction model, here we compute all
of the nucleon-meson couplings contributing to the above
potential using the noncritical holography model.

In our calculations, the leading parts of the potential come
from the pseudoscalar meson 𝜋, isoscalar vector meson 𝜔(𝑘),
isovector vector meson 𝜌(𝑘), and isovector axial vector meson
𝑎
(𝑘) exchange interactions:

𝑔
𝜋NN𝑀KK
2𝑚N

∼ 𝑔
𝜔
(𝑘)NN ∼

𝑔
𝜌
(𝑘)NN𝑀KK

2𝑚N

∼ 𝑔
𝑎
(𝑘)NN. (70)

One pion exchange potential (OPEP) has the following
form:

𝑉
𝜋
=

1

4𝜋
(
𝑔
𝜋NN𝑀KK
2𝑚N

)

2
1

𝑀
2

KK𝑟
3
𝑆
12

⃗𝜏
1
⋅ ⃗𝜏
2
. (71)

Also, the holographic potentials for isospin singlet vector
mesons𝜔(𝑘), isospin triplet vectormesons 𝜌(𝑘), and the triplet
axial-vector mesons 𝑎(𝑘) are

𝑉
𝜔
(𝑘) =

1

4𝜋
(𝑔

𝜔
(𝑘)NN)

2
𝑚
𝜔
(𝑘)𝑦

0
(𝑚

𝜔
(𝑘)𝑟) ,

𝑉
𝜌
(𝑘) ≃

1

4𝜋
(

𝑔
𝜌
(𝑘)NN𝑀KK

2𝑚N

)

2
𝑚
3

𝜌
(𝑘)

3𝑀
2

KK

× [2𝑦
0
(𝑚

𝜌
(𝑘)𝑟) �⃗�

1
⋅ �⃗�

2
− 𝑦

2
(𝑚

𝜌
(𝑘)𝑟)𝑆

12
(𝑟)] ⃗𝜏

1
⋅ ⃗𝜏
2
,

𝑉
𝑎
(𝑘) ≃

1

4𝜋
(𝑔

𝑎
(𝑘)NN)

2𝑚𝑎
(𝑘)

3

× [−2𝑦
0
(𝑚

𝑎
(𝑘)𝑟) �⃗�

1
⋅ �⃗�

2
+ 𝑦

2
(𝑚

𝑎
(𝑘)𝑟) 𝑆

12 (𝑟)] ⃗𝜏
1
⋅ ⃗𝜏
2
.

(72)

In the above equations we have

𝑆
12
= 3 (�⃗�

1
⋅ 𝑟) (𝜎

2
⋅ 𝑟) − �⃗�

1
⋅ �⃗�

2
,

𝑦
0 (𝑥) =

𝑒
−𝑥

𝑥
, 𝑦

2 (𝑥) = (1 +
3

𝑥
+

3

𝑥2
)
𝑒
−𝑥

𝑥
.

(73)

The masses of all mesons are of the order 𝑀KK and 𝑚
𝜌
(𝑘) =

𝑚
𝜔
(𝑘) < 𝑚

𝑎
(𝑘) . Also, the mass of pion in the holographic

model is zero and its coupling constant to the nucleon in our
approach is 15.7.

Finally, the holographic nucleon-nucleon potential
becomes [51–53]

𝑉
holography
NN = 𝑉

𝐶 (𝑟) + (𝑉
𝜎

𝑇
(𝑟) �⃗�1 ⋅ �⃗�2 + 𝑉

𝑆

𝑇
(𝑟) 𝑆12) ⃗𝜏

1
⋅ ⃗𝜏
2
,

(74)



Advances in High Energy Physics 13

where

𝑉
𝐶 (𝑟) =

𝑃

∑

𝑘=1

1

4𝜋
(𝑔

𝜔
(𝑘)NN)

2
𝑚
𝜔
(𝑘)𝑦

0
(𝑚

𝜔
(𝑘)𝑟)𝑚, (75)

𝑉
𝜎

𝑇
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(76)

𝑉
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𝜋NN𝑀KK
2𝑚N

)

2
1

𝑀
2

KK𝑟
3

+

𝑃

∑

𝑘=1

1

4𝜋
(

𝑔
𝜌
(𝑘)NN𝑀KK

2𝑚N

)

2
𝑚
3

𝜌
(𝑘)

3𝑀
2

KK
[−𝑦

2
(𝑚

𝜌
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+

𝑃
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3
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𝑎
(𝑘)𝑟)] .

(77)

It is shown that in the SSmodel, at the large enough distances,
𝑝 ≃ √𝜆/10 is an acceptable value for these potentials. We
consider the ten first terms of the above potentials in our
numerical calculations both in SS and AdS

6
models.

In order to calculate theNNpotential, the nucleon-meson
coupling constants are needed.These couplings are calculated
using the SS model at the large 𝜆𝑁

𝑐
limit and presented in

Table 4.
Also, we calculate the coupling values in the noncritical

AdS
6
background. The obtained results are presented in

Tables 5 and 6. In the following, we calculate the light nuclei
potentials using the NN holography potentials coming from
both SS and AdS

6
models.

4.2. Holographic Deuteron. Deuteron is the only bound state
of two-nucleon system with the isospin 𝑇 = 0, total spin 𝑆 =
1, spin parity 1+, and binding energy 𝐸

𝐵
= 2.225MeV. In

our holographic model, we suppose that deuteron is made of
two instantonic baryons with 𝑁

𝑓
= 2 and 𝑁

𝑐
= 3 which are

located at relative distance 𝑟 in the 𝑅3 space and consider the
following potential for the deuteron:

𝑉
holography
deuteron = 𝑉

𝐶
+ (𝑉

𝜎

𝑇
�⃗�
1
⋅ �⃗�

2
+ 𝑉

𝑆

𝑇
𝑆
12
) ⃗𝜏

1
⋅ ⃗𝜏
2
, (78)

where𝑉
𝐶
(𝑟), 𝑉

𝜎

𝑇
(𝑟), and𝑉𝑆

𝑇
(𝑟) are presented in (75), (76), and

(77), respectively. The super selection rules propose that

𝑆
12
= 2, �⃗�

1
⋅ �⃗�

2
= 1, ⃗𝜏

1
⋅ ⃗𝜏
2
= −3. (79)

Thedeuteron potential is calculated numerically using the
results of both SS model and AdS

6
model. The minimum of

this potential is considered as the deuteron binding energy.
We choose the𝑁

𝑐
= 3, 𝜆 = 400, and𝑚

𝑁
= 550MeV in the SS

model.

Table 4: The values of meson-nucleon couplings and mass of
mesons in the SS model. The values of 𝑁

𝑐
= 3, 𝜆 = 400, and

𝑚
𝑁
= 550MeV are supposed in calculations.

𝑘 𝑚
𝜔
𝑘 𝑚

𝑎
𝑘 𝑔

𝜔
𝑘 𝑔

𝜌
𝑘 𝑔

𝑎
𝑘

0 0.818 1.25 2.1165 0.7055 0.8140
1 1.69 2.13 1.9312 0.6437 1.4202
2 2.57 3.00 1.8888 0.6296 2.0178
3 3.44 3.87 1.8740 0.6246 2.6067
4 4.30 4.73 1.8680 0.6226 3.1956
5 5.17 5.59 1.8636 0.6212 3.7931
6 6.03 6.46 1.8619 0.6206 4.3734
7 6.89 7.32 1.8602 0.6200 4.9623
8 7.75 8.19 1.8602 0.6200 5.5512
9 8.62 9.05 1.8593 0.6197 6.1401

Table 5: Numerical results of vectormeson couplings to the nucleon
for the ten lowest mesons using the AdS

6
model. Meson masses are

in the𝑀KK unit.

𝑘 𝑔
𝑘

𝑉,mag 𝑔
𝑘

𝑉,min 𝑔
𝜔
𝑘 𝑔

𝜌
𝑘 𝑚

2

2𝑘+1

0 −1.9889 7.7251 11.5727 2.8630 0.5516
1 −6.8384 7.3315 10.9974 0.24 3.0593
2 −7.4493 7.2420 10.863 0.1036 7.6012
3 −4.6067 7.2211 10.8317 1.3072 14.1905
4 −4.4327 7.2147 10.8222 1.3910 22.8274
5 −6.6083 7.2133 0.8200 0.3024 33.5191
6 −6.1778 7.2137 10.8206 0.5179 46.2717
7 −4.0509 7.1740 10.7611 1.5616 60.3053
8 −4.4701 7.1725 10.7589 1.3512 76.8821
9 −6.5703 7.1714 10.7572 0.3005 95.4673

Table 6: Numerical results of axial-vector meson couplings to the
nucleon for the ten lowest mesons using the AdS

6
model. Meson

masses are in the𝑀KK unit.

𝑘 𝑔
𝑘

𝐴,mag 𝑔
𝑘

𝐴,min 𝑔
𝑎
𝑘 𝑔

𝑓
𝑘 𝑚

2

2𝑘

0 4.2648 1.1659 2.7154 1.7489 1.5389
1 5.3813 1.0718 3.2301 1.6189 5.0877
2 7.8574 0.9692 4.4133 1.4539 10.6404
3 10.3344 0.6713 5.5028 1.0069 18.2525
4 12.8068 0.4188 6.6128 0.6282 27.9160
5 15.2780 0.3020 7.7900 0.4531 39.6300
6 17.7493 0.2743 9.0118 0.4115 53.4224
7 20.0849 0.2620 10.1734 0.3930 68.3462
8 22.528 0.2359 11.3820 0.3539 85.9293
9 24.9705 0.2061 12.5885 0.3092 105.5220

As we know, the t’ Hooft parameter is of order one in
noncritical holographic models. So, we choose the 𝑁

𝑐
= 3,

𝜆 = 1 values in our calculations in the AdS
6
model. Also, we

use the obtained value for the nucleon mass 𝑚
𝑁
= 920MeV

in this model which is very close to the real value of nucleon
mass. Numerical results are shown in Table 7.
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Table 7: The obtained binding energy of 2D, 3T, 3He, and 4He
nuclei with 𝑁

𝑐
= 3 and 𝑚

𝑁
= 0.92GeV. The results have a good

consistency with the experimental nuclear data. All energies are in
MeV.

Nuclei 𝑀KK 𝐸
NC-H
𝐵

𝐸
C-H
𝐵

[51, 52] 𝐸Exp [57–60]
2
𝐷 372 2.22 2.20 2.17 ± 0.0

3
𝑇 600 8.432 1.03 8.48
3He 372 7.8680 7.41 7.71
4He 533 28.3527 28.58 28.30

4.3. Holographic Tritium. The next nucleus we considered
here is tritium which is composed of three nucleons, two
neutrons, and one proton. We propose an equilateral tri-
angular configuration for the tritium nucleus in which the
distance between each two nucleons is 𝑟. We suppose that the
total potential of the nucleus is the sum of the all nucleon-
nucleon interaction potentials which are parameterized in
terms of a single parameter 𝑟. In fact, the radius of nucleus
can be expresses in terms of parameter 𝑟. Finally, we write the
following potential for the tritium:

𝑉
holography
Tritium = 𝑉

12
+ 𝑉

13
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23
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3
.

(80)

The super selection rules for this three-nucleon systems imply
that

𝑆
12
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1
⋅ �⃗�

2
= 1, ⃗𝜏

1
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2
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2
⋅ ⃗𝜏
3
= 1.

(81)

4.4. Holographic 3He. In order to study the 3He nucleus, it
is necessary to add the repulsive Coulomb energy to the
potential. So, we consider the following potential for the 3He
nucleus:

𝑉
holography
3He = 𝑉
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13
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23
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(82)

where 𝐸
𝑐
(𝑟) is the Coulomb repulsion between two instan-

tons carrying 𝑁
𝑐
unit of electric charge [14]. The protons of

3He in the ground state have the opposite spin directions, so
the spin parity of 3Henucleus in the ground state is (1/2)+. On

the other hand, we should have 𝐿 + 𝑆 + 𝑇 = 1 for a system of
two nucleons. It is well known that the nucleons in the ground
state of the 3He are in 𝐿 = 0 state. So, by using the super
selection rules we obtain

𝑆
12
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⋅ �⃗�

2
= −3, ⃗𝜏

1
⋅ ⃗𝜏
2
= 1,

𝑆
13
= 2, �⃗�

1
⋅ �⃗�

3
= 1, ⃗𝜏

1
⋅ ⃗𝜏
3
= −3,

𝑆
23
= 0, �⃗�

2
⋅ �⃗�

3
= −3, ⃗𝜏

2
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3
= 1.

(83)

If we consider another set of nucleons in 3He such that
the spin of protons is in a parallel direction, the spin parity
of 3He nucleus should be equal to (3/2)+. By super selection
rules, we have

𝑆
12
= 2, �⃗�

1
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2
= 1, ⃗𝜏

1
⋅ ⃗𝜏
2
= 1,

𝑆
13
= 2, �⃗�

1
⋅ �⃗�

3
= 1, ⃗𝜏

1
⋅ ⃗𝜏
3
= −3,

𝑆
23
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3
= −3.

(84)

We found that there is no bound state in this case both
in SS and AdS

6
models. Thus, we conclude that there is no

excited state for the 3He nucleus.

4.5. Holographic 4He. There is more than one possible
configuration for a system with four nucleons. The most
symmetric configurations are tetrahedron, diamond, and
square configurations. If we suppose that the nucleons are
located in the corners of a tetrahedron configuration which
is made of four equilateral triangles, the distance between
any two nucleons is similar. So, the total potential is sum
of the 6 nucleon-nucleon interactions with the same relative
distance. But, we know that theCoulomb interaction between
protons prefers a larger proton-proton distance than neutron-
neutron or neutron-proton distances. If two protons sit on the
contrary corners of a square, then the proton-proton distance
is larger than the neutron-proton distance. So, we consider
the square configuration for the 4He nucleus and write the
potential of 4He nucleus as the following form:
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holography
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Table 8: The obtained excited energy of 3He and 4He nuclei with
𝑁
𝑐
= 3 and𝑚

𝑁
= 0.92GeV.The results have a good agreement with

the experimental nuclear data [57, 58]. All energies are in MeV.

Nuclei 𝐽
𝑃

𝑀KK 𝐸
NC-H
Ex 𝐸

C-H
Ex [18, 19] 𝐸

Exp
Ex [57, 58]

3He 3

2

+

— — — No state
4He 2

−
, 𝑇 = 0 395 21.8237 22.00 21.840

4He 2
−
, 𝑇 = 1 395 25.1001 — 23.330

4He 1
−
, 𝑇 = 1 305 23.658 23.17 23.640

4.5.1. Ground State. It is well known from the Pauli exclusion
rule that the spins of two protons (neutrons) have opposite
directions and the 4He nucleus in the ground state has the
spin parity 0

+. The super selection rules for this structure
imply that
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4.5.2. Excited States. Also, the potential of 4He is obtained
for its excited states with (2

−
, 𝑇 = 1), (2−, 𝑇 = 0), and

(1
−
, 𝑇 = 1) by considering various structures for the spin

parity of nucleons.The holographic potential for each excited
state has a minimum.The excited energies of these states can
be regarded as the difference between the minimum point of
potential in each state and the binding energy of nucleus.

If two nucleons (two protons or neutron) have the same
spin directions and occupy the level 𝐿 = 1, we find the excited
level with 2−, 𝑇 = 1, and excited energy 𝐸ex = 23.330MeV.
Super selection rules for this state lead to
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Numerical values for the potential of this excited state
are shown in Table 8. For this state we obtain 𝐸excited =

25.1005MeV using the value 𝑀KK = 395MeV. While such
excited state is not predicted by the SS model [52].

In another structure, we suppose that the spins of two
protons (or neutrons) have the same directions and one of
them occupies the 𝐿 = 1 level. In this case, the spin parity of
the state is 2−. It may be treated as excited state of 4He nucleus
with spin parity and isospin 2−, 𝑇 = 0, and the excited energy

𝐸ex = 21.840MeV. In order to calculate its holographic
potential, the following values which are obtained from the
super selection rules have been used:
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The exited energy for this state is obtained about𝐸excited =
21.8237 MeV using the value𝑀KK = 395MeV.

If the spin of proton (neutron) in the 𝐿 = 1 level couples
with the spin of the proton (neutron) in the 𝐿 = 0 state,
we find another excited state with the 1−, 𝑇 = 1, and the
measured excited energy 𝐸ex = 23.640MeV. In this case, we
have
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In this case, we obtain 𝐸excited = 23.658MeV by choosing
the value𝑀KK = 305MeV.

4.6. Numerical Results. In general, the considered potential
in this model tends to zero at 𝑟 → ∞ and becomes
infinity at small distanceswhich is well established for nuclear
knowledge.Theminimumof the potential in the ground state
is considered as the binding energy of nucleus. Moreover, the
difference between theminimumof the excited state potential
and the nucleus binding energy is considered as the excited
energy of the corresponding state. We apply our method for
the deuteron, 2𝐷, tritium, 3𝑇, and two isotopes of helium,
namely, 3He and 4He nuclei.

To obtain the numerical results,𝑁
𝑐
= 3 have been chosen

for the realistic QCD. Also, we obtain the value of nucleon
mass about 𝑚

𝑁
= 0.92GeV which is very close to the

experimental nucleon mass. In our numerical calculations
there is only one free parameter𝑀KK. The results of binding
energy and excited energies are compared with results of SS
model and experiments in Tables 7 and 8. As it is indicated
from the tables, our results are in good agreement with the
experimental nuclear data. Moreover, our potential has only
one free parameter which allows us to fit our results with the
experimental data.

In Table 9, we compare our numerical results for the
light nuclei binding energies with the predictions of the
modern phenomenological NN potential models [61]. It
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Table 9: 3N and 4N binding energies for various NN potentials
[61] comparedwith our holographicmodel results and experimental
values. C-H and NC-H refer to the critical holographic [39] and
noncritical holographic potential [49] models, respectively. All
energies are in MeV.

Potential 𝐸
𝐵
(𝑇) 𝐸

𝐵
(3He) 𝐸

𝐵
(4He)

CD Bonn −8.012 −7.272 −26.26
AV18 −7.623 −6.924 −24.28
Nijm I −7.736 −7.085 −24.98
Nijm II −7.654 −7.012 −24.56
C-H −1.03 −7.41 −28.58
NC-H −8.4320 −7.8680 −28.3527
Exp. −8.48 −7.72 −28.30

Table 10: Comparison of the 4He binding energy obtained from
our model with the results of some other theoretical models based
on chiral low-momentum interactions [62, 63].

Method 𝐸
𝐵
(4He) [MeV]

Faddeev-Yakubovsky (FY) −28.65 (5)
Hyperspherical harmonics (HH) −28.65 (2)
CCSD (CC with singles and doubles) −28.44
Λ-CCSD (T) (CC with triples corrections) −28.63
Critical holography model (SS model) −28.58
Noncritical holography model (AdS

6
model) −28.3527

is obvious that our results obtained using the noncritical
holographic NN potential have a significant agreement with
the experimental data. It should be noted that we calculated
all of the parameters of noncritical holographic NN potential
[49] and also our toymodel for calculating the binding energy
has just one free parameter which is the mass scale of the
model,𝑀KK.

Also, we compare our results for the 4He binding energy
with the results obtained from other methods [62, 63] such as
Faddeev-Yakubovsky (FY), Hyperspherical harmonics (HH),
CCSD (CC with singles and doubles), and Λ-CCSD(T) (CC
with triples corrections) in Table 10. It is necessary tomention
that our model depends on just one parameter which is𝑀KK,
whereas the other theoretical models in nuclear literatures
have more than one parameter.

5. Conclusion

One of the applications of AdS/CFT correspondence is holog-
raphyQCDand introduced to solve the strong couplingQCD
such as the low-energy dynamics of hadrons in particular
baryons. A lot of holography models are introduced to
reproduce the QCD. Among them the SS model is one of
the most successful models due to its accurate results. But, as
we mentioned, the model encountered some inconsistencies
in describing the baryons especially nucleons. For example,
the mass scale of the model to describe the nucleons are the
half of the one needs to describe the meson sector. Also, the
size of baryon in the large t’ Hooft limit goes to zero. On the

other hand, all holographicQCDmodels based on the critical
string theory suffer from the unwanted KK modes.

In order to investigate these issues, we employ the non-
critical AdS

6
background and its field theory dual. We study

the mesons and nucleons in this background and compute
some of their features such as the vector-meson spectrum,
pion decay constant, baryon binding energy, thermodynamic
properties of baryonic matter, size of baryon, nucleon-
nucleon interaction, and nucleon-meson coupling constants.

We review some obtained results below which show that
our results not only are in a good agreement with the nuclear
data but also are better than the SS model results.

(1) Just like the SS model, there exist some KK modes
which come from the antiperiodic boundary conditions over
the circle 𝑆

1. These modes have the masses of the same
order of magnitude as the lightest glueballs of the four-
dimensional YM theory. Critical holographicmodels, such as
the SS model, have some extra KK modes too which do not
belong to the spectrum of pure YM theory. These undesired
KKmodes come from the extra internal space overwhich ten-
dimensional string theory is compactified, for example, the 𝑆4
sphere in the SSmodel. In the noncritical holographicmodel,
which we used here, there is no additional compactified
sphere, so there are no such extra KK modes and the QCD
spectrum is clear from them. Thus, it seems that our model
based on the noncritical holography is much more reliable.

(2) We studied the dynamics of gauge field living on
the flavor probe brane and obtained the spectrum of vector
mesons. Our results were compared with the results of
other holographic models and the experimental data. Also,
we calculated the pion decay constant in terms of model
parameter. We found the values of mass scale 𝑀KK =

395MeV to have pion decay constant 𝑓
𝜋
= 92MeV.

(3) In order to study the nuclear physics in the holography
frame, we investigated baryons which are defined by a vertex
with𝑁

𝑐
fundamental strings attached to the flavor brane. We

obtained the binding energy of baryon in the noncritical AdS
6

model [31]. Baryon in holography is replaced by a solitonic
instanton such that the instantonic number shows the baryon
number.We used this definition of baryon in the AdS

6
model

and calculated its size. We demonstrated that the size of
baryon is of order one; therefore, the zero size of baryon in
the holography SS model was solved here [49].

(4) Holographic models have a mass scale which is the
low-energy scale of the model. In the SS model, the value
of 𝑀KK to describe the baryon should be half of the one to
describe themesons.The nucleonmass was obtained roughly
920MeV using 𝑀KK = 395MeV. So, our model could well
describe the mesons and nucleons with the same mass scale.

(5) We employed the noncritical AdS
6
model to study

the NN potential and nucleon-meson coupling constants.
We derived the Yukawa coupling constants by exploring the
dynamics of nucleon in the holography frame. We compared
our results with the predictions of four modern phenomeno-
logical NN potential models. The remarkable point is that
all nucleon-meson coupling constants have been calculated
in the holography model, whereas these parameters were
obtained by fitting to the empirical NN scattering data in the
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phenomenological potentials. Our holography NN potential
can be more accurate by considering the derivative couplings
in the magnetic channels. In addition, the holography NN
potential obtained using the AdS

6
model can be used widely

in describing the nuclear structure andmultinucleon systems
such as the nuclear binding energy and NN scattering.

(6) The small value of nuclear binding energy is one
of the interesting issues in nuclear physics. Despite of the
power of strong interaction, the NN force is small: binding
energy is only a few percent of the mass of the nucleons.
In the holographic models, the exchange of heavy mesons is
suppressed in the large 𝑁

𝑐
limit. As a result, the interaction

of two nucleons is explained via the exchange of light
mesons such as pion and 𝜔-meson. The exchange of pion
is responsible for the attractive long-range nuclear force,
whereas, the exchange of 𝜔-meson produce mainly medium-
range repulsive force. If we suppose that the repulsion starts
at distance |𝑥| ∼ 𝑚

−1

𝜔
, then the nuclear binding energy

is of order 𝐸binding ∼ (1/𝑔
𝑠
)𝑚

𝜔
which is much smaller

than the nucleon mass. The above analysis motivated us to
introduce a simple toy model to estimate the binding energy
of multinucleons systems. We explained the model in the
previous section in details. In general, the obtained nuclear
potential has the familiar behavior in nuclear physics. In
addition, despite of the small number of free parameters in
our holography model, the obtained results have significant
agreement with the experimental data.

(7) In our holography model for the light nuclei, we
assumed that the setting of a small number of instantonic𝐷-
brane on the background does not change the background.
In fact, we ignored the back reaction of baryon vertices
and background geometry. It is clear that this assumption
is correct just for the light nuclei. In fact, one can find
a gravity dual for heavy nuclei by implying the AdS/CFT
correspondence again. In this holographic description, the
gauge theory on the nuclei with mass number 𝐴 is 𝑈(𝐴).
Study of the 𝑈(𝐴) gauge theory is hard, but the theory
becomesmore simple by taking the large𝐴 limit. In this limit,
one can find the near horizon geometry dual to the gauge
theory. The supergravity solution has a discrete spectrum
which is the excited spectrum of heavy nuclei with mass 𝐴
[17]. The result is in agreement with nuclear data manifestly.
As we know from the nuclear experiments, the nucleons of a
heavy nuclei have coherent excitations which are called Giant
resonances. These resonances exhibit harmonic behavior
𝐸
𝑛

= 𝑛𝑤(𝐴) which is explained with phenomenological
models such as the liquid drop model. The gauge-gravity
duality can reproduce this behavior. Also, dependence to the
mass number 𝐴 is obtained by using the duality [17].

In this regard, several issues can be studied. For example,
if we put a probe brane as an external nucleon near the
near-horizon geometry of 𝐴𝐷-brane and consider the probe
dynamics, the shell model potential of nuclear physicsmay be
obtained.

On the other hand, since black holes are described by fluid
dynamics holographically, one can speculate that the liquid
dropmodel of heavy nuclei may be related to dual geometries
through the holographic hydrodynamics. In fact, dissipation

of excitations on a nucleus is a target of research for many
decades.

(8) The repulsive core potential is one of the critical
issues of nuclear physics that its origin is still not well under-
stood. Nuclear force has been studied using the AdS/CFT
correspondence [13–16] and an explicit expression has been
obtained for the nuclear force which contains the repulsive
core too. This potential behaves as 𝑟−2 in small distances.
However, there are yet a lot of unanswered questions about
the nuclear repulsive and attractive force.

Finally, it seems that the AdS/CFT correspondence is
a new tool to solve the unanswered questions in nuclear
physics.
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