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We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and
subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard
Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also
investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect
the area law.

1. Introduction

The laws of black hole thermodynamics capture the essential
features of macroscopic description of black holes in general
theory of relativity. The surface gravity is constant over the
horizon and it is related to the temperature of the black
hole known as the Hawking temperature. In the context
of black hole thermodynamics, the entropy is proportional
to area of the event horizon [1–5]. Quantum mechanically
black holes emit Hawking radiation and an understanding
of this process will lead to the resolution of information
loss paradox. If one considers quantum fields in the vicinity
of black holes, the area law of entropy receives quantum
corrections (logarithmic corrections) [6]. The entanglement
thermodynamics can also be used to study such corrections.
The AdS/CFT correspondence provides a geometric way to
calculate the entropy of the black hole known as holographic
entanglement entropy [7]. Alternatively one can consider the
matter fields in the background of black hole [8–10] and
calculate the entanglement entropy.

The entanglement entropy is the source of the quantum
information and it measures the correlation between sub-
systems separated by the boundary. The entanglement
entropy depends upon the geometry of the boundary called
the entangling surface. The entanglement entropy is defined
by the von Neumann entropy relation (𝑆

𝐴
= −tr
𝐴
[𝜌
𝐴
ln 𝜌
𝐴
]),

where 𝜌
𝐴
is the reduced density matrix of the system𝐴 and is

dominated by short range correlations across the entangling
surface. These correlations give an area law (entanglement
entropy proportional to the area of entangling surface divided
by the cutoff (𝜖)) and the subleading term in the entangle-
ment entropy contains useful cutoff independent information
about the quantum corrections.

The entanglement entropy approach was first used by
Bombelli et al. [11] and Srednicki [12] for scalar field in
spherical systems by considering the entangling surface as
would be horizon of a black hole, formed by a collapsing
star. Peschel [13] developed a technique to calculate the
entanglement entropy of fermions, where the reduced density
matrix can be written in terms of fermion correlator. The
reduced density matrix in terms of correlators obeys the wick
theorem and fixes 𝜌 = 𝑐 exp(−H), whereH is a Hamiltonian,
quadratic in fields. In this paper, we calculate the density
matrix for fermions fields in BTZ space-time and explicitly
diagonalize the reduced density matrix in order to estimate
the entanglement entropy.

We also consider the massive fermion fields in BTZ black
hole space-time and calculate the entanglement entropy. We
expand the entropy in powers proper distance from horizon
for different masses and calculate the coefficients of the 1/𝜇𝜌
term using the entanglement entropy approach [14].The cor-
rection to entanglement entropy for massive fields in (2 + 1)
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dimension is related to the coefficient of logarithmic term
in (3 + 1) dimensional massless theory [15]. The area law
contribution of entanglement entropy is not affected by the
mass term and the universal quantities depend upon the basic
properties of the system (spatial dimension) [16–19].

This paper is organized as follows. We study the fermion
field propagating in BTZ black hole space-time in Section 2.
In Section 3, we calculate the coefficients appearing in the
entropy formula numerically. The contribution of massive
fermion fields is studied in Section 4. Finally, we summarize
our results and their physical implications.

2. Fermions in BTZ Black Hole Space-Time

TheBTZ black hole is a solution of (2+1) dimensional gravity
with negative cosmological constant (Λ = −2/𝑙2) [20] and the
metric is given by

𝑑𝑠
2
= −𝑁

2
(𝑟) 𝑑𝑡

2
+𝑁
−2
(𝑟) 𝑑𝑟

2
+ (𝑁
𝜙
(𝑟) 𝑑𝑡 + 𝑑𝜙)

2
, (1)

where𝑁2
(𝑟) and𝑁𝜙(𝑟) are lapse and shift functions;

𝑁
2
(𝑟) = −𝑀+

𝑟
2

𝑙2
+
𝐽
2

4𝑟2
,

𝑁
𝜙
(𝑟) = −

𝐽

2𝑟2
,

(2)

where −∞ < 𝑡 < ∞ and 0 ≤ 𝜙 ≤ 2𝜋. The solution is parame-
terized by the mass𝑀 and angular momentum 𝐽 of the black
hole and they obey the conditions,𝑀 > 0 and |𝐽| < 𝑀𝑙.

The proper distance from the horizon, 𝜌 is given by

𝑟
2
= 𝑟

2
+
cosh2𝜌+ 𝑟2

−
sinh2𝜌, (3)

where 𝑟
+
and 𝑟
−
are outer and inner horizons of the black hole.

The metric of BTZ black hole can be written in terms of
proper distance [21, 22],

𝑑𝑠
2
= −(𝑢

2
+

𝐽
2

4𝑙2 (𝑢2 +𝑀)
)𝑑𝑡

2
+𝑑𝜌

2

+(
𝐽

2𝑙√(𝑢2 +𝑀)

𝑑𝑡 − 𝑙√𝑢2 +𝑀𝑑𝜙)

2

,

(4)

where we are using (𝑟2 = 𝑙2(𝑢2 +𝑀)).
The Dirac equation in the background of BTZ black hole

is given by (see Appendix A)

[−
1
𝑢
𝛾0𝜕𝑡 +𝑢𝛾1𝜕𝜌 +(

−𝐽

2𝑙2𝑢 (𝑢2 +𝑀)
𝛾0

+
1

𝑙√𝑢2 +𝑀
𝛾2)𝜕𝜙

−
1
4
(−2𝛾1(

√𝑢2 +𝑀

𝑢𝑙
−

𝐽
2

4 (𝑢2 +𝑀)
3/2)

+
𝐽

(𝑢2 +𝑀) 𝑙2
)−𝜇𝐼]Ψ = 0.

(5)

The two-component Dirac spinor Ψ can be written as

Ψ = (
Ψ

1
𝑚
(𝜌)Φ

1
𝑚
(𝜙)

Ψ
2
𝑚
(𝜌)Φ

2
𝑚
(𝜙)

) , (6)

where Φ1
𝑚
= (1/√2𝜋)𝑒𝜄𝜙(𝑚+1/2) and Φ2

𝑚
= (1/√2𝜋)𝑒𝜄𝜙(𝑚−1/2)

are the eigenvectors of the angular momentum operator.
Now, we can express the Hamiltonian of the system as the

sum over azimuthal quantum number𝑚,

𝐻 = ∑

𝑚

(Ψ
†1
𝑚
, Ψ
†2
𝑚
)𝐻
𝑚
(
Ψ

1
𝑚

Ψ
2
𝑚

) . (7)

The explicit form of 𝐻
𝑚
can be obtained from (5) and is given

by

𝐻
𝑚
(𝜌) = 𝑢

2
𝜎2𝜕𝜌

−
𝑢

2
(
√𝑢2 +𝑀

𝑢𝑙
−

𝐽
2

4 (𝑢2 +𝑀)
3/2)𝜎2

+(
−𝐽𝑚

2𝑙2 (𝑢2 +𝑀)
+

𝑢𝑚

𝑙√(𝑢2 +𝑀)

𝜎1)

−
𝑢𝐽

(𝑢2 +𝑀) 𝑙2
𝜎3 −𝜇𝑢𝜎3,

(8)

where we have also used 𝛾0 = 𝜄𝜎3, 𝛾1 = 𝜎1, and 𝛾2 = 𝜎2, and
𝜎3 is multiplied by imaginary unit to change from Lorentzian
to Euclidean signature.

We also set 𝜇 = 0 and 𝑙 = 1, in this and the next section.
Massive case is considered in Section 4.

We discretize the system using the following relations [11,
23, 24]:

𝜌 󳨀→ (𝑖 −
1
2
) 𝑎,

𝛿 (𝜌 − 𝜌
󸀠
) 󳨀→

𝛿
𝑖𝑗

𝑎
,

(9)

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁 and “𝑎” is the lattice spacing. The
continuum limit is obtained by taking 𝑎 → 0 and𝑁 → ∞,
while keeping the size of the system fixed. To discretize the
Hamiltonian, we make the following replacements:

𝑢 [𝜌 =(𝑖 −
1
2
) 𝑎] 󳨀→ 𝑢

𝑖
,

Ψ
𝑚
[𝜌 =(𝑖 −

1
2
) 𝑎] 󳨀→ Ψ

𝑖

𝑚
.

(10)
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ThediscretizedHamiltonian of the system is given by (we also
suppress angular momentum index “𝑚” here) (we discret-
ize the Hamiltonian (8) using the middle-point prescrip-
tion; the derivative of the form 𝑓(𝑥)𝜕𝑔(𝑥) is replaced by
𝑓
𝑗+1/2[𝑔𝑗+1𝑔𝑗]/𝑎, etc.)

𝐻 = ∑

𝑖,𝑗

−
𝑖

2
(Ψ
†

𝑖
𝑢
2
𝑖+1/2𝜎2 (Ψ𝑖+1 −Ψ𝑖)

+Ψ
†

𝑖

𝑢
𝑖

2
𝜎2(

√𝑢
2
𝑖
+𝑀

𝑢
𝑖

−
𝐽
2

4 (𝑢2
𝑖
+𝑀)

3/2)Ψ
𝑖

+Ψ
†

𝑖
(

−𝐽𝑚

2 (𝑢2
𝑖
+𝑀)

+
𝑚𝑢
𝑖

𝑙√(𝑢
2
𝑖
+𝑀)

𝜎1)Ψ
𝑖

−Ψ
†

𝑖

𝐽𝑢
𝑖

(𝑢
2
𝑖
+𝑀)

𝜎3Ψ𝑖).

(11)

The corresponding discrete Hamiltonian for an 𝑁 lattice
takes the form

𝐻 =

𝑁

∑

𝑖,𝑗=1
𝐻
𝑖,𝑗
=

𝑁

∑

𝑖,𝑗=1
(𝜓
†

1𝑖, 𝜓
†

2𝑖)𝑀𝑖,𝑗(
𝜓1𝑗

𝜓2𝑗
) , (12)

where 𝑖, 𝑗 are the discrete variables corresponding to the
radial distance𝜌 and𝑀

𝑖𝑗
for fixed 𝑖, 𝑗 is (2×2)matrix such that

𝐻
𝑖𝑗
= Ψ
†

1𝑖𝑀
11
𝑖𝑗
Ψ1𝑗 +𝜓

†

1𝑖𝑀
12
𝑖𝑗
Ψ2𝑗 +Ψ

†

2𝑖𝑀
21
𝑖𝑗
Ψ1𝑗

+Ψ
†

2𝑖𝑀
22
𝑖𝑗
Ψ2𝑗.

(13)

For the general quadratic Hamiltonian, the fermion corre-
lator appearing in the entanglement entropy formula is
directly related to the𝑀

𝑖,𝑗
by the relation (see Appendix B)

𝐶 = Θ (−𝑀) , (14)

where Θ(𝑥) is unit step function and 𝑀 is the trace of the
matrix𝑀

𝑖𝑗
.

It is convenient to define (2𝑁 × 2𝑁) matrix
𝑀̃

2𝑘+𝛼−2,2𝑙+𝛽−2
= 𝑀
𝛼,𝛽

𝑘,𝑙
, for 𝑘, 𝑙 = 1, . . . , 𝑁 and 𝛼, 𝛽 = 1, 2.

The matrix elements of 𝑀̃
𝑘𝑙
for fermion field in BTZ black

hole case can be extracted from the Hamiltonian (11) and are
given explicitly as

𝑀̃
𝑘𝑘
= (−1)𝑘+1 𝜄 [ 𝐽𝑚

(𝑢
2
𝑖
+𝑀)

+
𝑢
𝑖
𝐽

4 (𝑢2
𝑖
+𝑀)

] ,

𝑀̃
2𝑘−1,2𝑘

= 𝜄(𝑢
2
𝑖+1/2

−
𝑢
𝑖

2
(

√𝑢
2
𝑖
+𝑀

𝑢
𝑖

−
𝐽
2

4 (𝑢2
𝑖
+𝑀)

3/2)),

𝑀̃
2𝑘,2𝑘−1

= − 𝜄(𝑢
2
𝑖+1/2

−
𝑢
𝑖

2
(

√𝑢
2
𝑖
+𝑀

𝑢
𝑖

−
𝐽
2

4 (𝑢2
𝑖
+𝑀)

3/2)),

𝑀̃
1,2
= 𝜄(𝑢

2
𝑖+1/2

−
𝑢
𝑖

2
(

√𝑢
2
𝑖
+𝑀

𝑢
𝑖

−
𝐽
2

4 (𝑢2
𝑖
+𝑀)

3/2)

+
𝑚𝑢
𝑖

√𝑢
2
𝑖
+𝑀

) ,

𝑀̃
2,1
= − 𝜄(𝑢

2
𝑖+1/2

−
𝑢
𝑖

2
(

√𝑢
2
𝑖
+𝑀

𝑢
𝑖

−
𝐽
2

4 (𝑢2
𝑖
+𝑀)

3/2)

+
𝑚𝑢
𝑖

√𝑢
2
𝑖
+𝑀

) ,

𝑀̃
2𝑘−1,2𝑘+2

=
𝜄

2
(

𝑚𝑢
𝑖

√𝑢
2
𝑖
+𝑀

) ,

𝑀̃
2𝑘,2𝑘−3

= −
𝜄

2
(

𝑚𝑢
𝑖

√𝑢
2
𝑖
+𝑀

) ,

𝑀̃
2𝑘−1,2𝑘−1

=
𝜄

2
(

𝑚𝑢
𝑖

√𝑢
2
𝑖
+𝑀

) ,

𝑀̃
2𝑘,2𝑘+1

= −
𝜄

2
(

𝑚𝑢
𝑖

√𝑢
2
𝑖
+𝑀

) .

(15)

These are the matrix elements of massless fields with angular
momentum 𝐽. Since the fermion correlator appearing in the
entanglement entropy formula is related to 𝑀

𝑖𝑗
, the matrix

appearing in the Hamiltonian, for the general case the
entropy of the system is given by a sum over the angular
momentum “𝑚.” We diagonalize the correlation matrix and
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calculate the entanglement entropy, which can be expressed
as

𝑆ent = ∑
𝑚

− tr [(1−𝐶) log (1−𝐶) +𝐶 log𝐶] , (16)

where 𝐶 is the correlation matrix related to the matrix𝑀 by
(14).

3. Numerical Estimation of Entropy

In order to calculate the entanglement entropy of the system,
we split the total system 𝑖 = 1, 2, . . . , 𝑁 into two subsystems
labeled by (𝛼 = 1, 2, . . . , 𝑛

𝐵
) and (𝛽 = 𝑛

𝐵
+ 1, 𝑛
𝐵
+ 2, . . . , 𝑁),

where 𝛼 and 𝛽 are the inside and outside indices with respect
to the position of spatial boundary (hypersurface) 𝑅 = 𝑛

𝐵
𝑎.

The entropy is obtained by taking the limit;

𝑆ent = lim
𝑁→∞

𝑆 (𝑛
𝐵
, 𝑁) , (17)

where 𝑆(𝑛
𝐵
, 𝑁) is the entanglement entropy of the total sys-

tem𝑁 with partition 𝑛
𝐵
. We consider the system discretized

in radial direction with 𝑁 = 200 lattice points and partition
size specified by the integer 𝑛

𝐵
.We obtain the reduced density

matrix by tracing over degrees of freedom outside the hyper-
surface and calculate the entanglement entropy using (B.9).
The value of 𝑛

𝐵
is taken in the range of 10–50 and it suffices for

extracting the term proportional to 𝑅/𝑎 from 𝑆(𝑛
𝐵
, 𝑁). The

numerical calculation of entropy begins with the calculation
of matrix 𝑀̃

𝑖𝑗
and the two point correlators using the relation

(14), and finally the entropy of the system (summed over
angular momentum modes,𝑚) is given by (16).

The partition size is given by 𝑅 = 𝑛
𝐵
𝑎 and the entropy

scales with the size of the system and it can be a function of
dimensionless ration𝑅/𝑎 in order to render the entropy finite.
This argument also justifies the existence of a finite cutoff
length (here lattice spacing “𝑎”) in the system. If we consider
a hypersurface close to the black hole horizon (distance
measured in units of 𝑎), the resulting entanglement entropy
can be interpreted as black hole entropy and scales as 𝑟

+
/𝑎.

We fit the numerical data in the following form:

𝑆ent = 𝐶𝑠 (
𝑟
+

𝑎
) , (18)

where 𝐶
𝑠
is the numerical constant; we estimate this coeffi-

cient numerically.
We plot entropy as a function of 𝑟

+
/𝑎, where 𝑟

+
is the

horizon of the black hole and this gives the value 𝑐
𝑠
= 0.297

(slope of line in Figure 1).
The black hole entropy also receives quantum corrections

given by logarithmic term in the entropy formula. The fitting
procedure can also be used to calculate the coefficient of
logarithmic correction of entropy,

𝑆log = 𝑎 (
𝑟
+

𝑎
)+ 𝑏 (log

𝑟
+

𝑎
)+ 𝑐. (19)

The numerical value of these coefficients is obtained by
fitting procedure and is given as 𝑎 = 0.304, 𝑏 = −0.315, and
𝑐 = −0.327.
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Figure 1: The entanglement entropy of massless fermion field with
the function of 𝑟

+
/𝑎.
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Figure 2: The entanglement entropy of massless fermion field as a
function of 𝑟

+
/𝑎 with different value of 𝐽 = 0, 0.9, and 0.99.

The coefficient of logarithmic term for Dirac and scalar
fields is related by the formula [25, 26]

𝑏
𝐷

𝑑
= 2[(𝑑+1)/2]−1𝑏𝑠

𝑑
. (20)

Our numerical results seem to confirm this while using the
results for the scalar field from our previous work [21] and
analytic result of Mann and Solodukhin [27].

The dependence of entropy on angular momentum 𝐽 is
also shown in Figure 2. The entropy has no explicit depend-
ence on angular momentum except through the factor 𝑟

+
/𝑎,

which defines the size of the horizon.

4. Entanglement Entropy in
Free Massive Theory

In this section, we study the entanglement entropy in free
massive theory in BTZ black hole space-time. The entropy
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Table 1: The value of 𝑐0, 𝑐1, and 𝑐−1 for different masses 0.1, 0.2, 0.3,
0.4, and 0.5.

𝜇 = 0.1 𝜇 = 0.2 𝜇 = 0.3 𝜇 = 0.4 𝜇 = 0.5
𝑐0(𝜇) 0.23 0.21 0.25 0.32 0.36
𝑐1(𝜇) 2.64 2.53 2.42 2.32 2.22
𝑐
−1(𝜇) 1.20 0.84 0.70 0.64 0.62
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Figure 3: The entanglement entropy of fermion field for massive
fields of a function of 𝑟

+
/𝑎 with different masses (0.1, 0.3, and 0.5).

can be expanded in powers of proper distance, 𝜌, for large
values of 𝜌 [14],

𝑆 = 𝑐1 (𝜇) 𝜌 + 𝑐0 (𝜇) + 𝑐−1 (𝜇)
1
𝜌
+ ⋅ ⋅ ⋅ . (21)

We calculate the entanglement entropy of the fermion field
for different masses in the range (0.05 < 𝜇 < 0.5). The value
of 𝑐0(𝜇), 𝑐1(𝜇), and 𝑐−1(𝜇) for different masses is tabulated in
Table 1 and plotted in Figure 3.

One can expand the 𝑐1(𝜇) and 𝑐−1(𝜇) in powers of 𝜇,

𝑐1 (𝜇) = 𝑐1𝜇+ 𝑐
0
1 + 𝑐
−1
1

1
𝜇
,

𝑐
−1 (𝜇) = 𝑐

1
−1𝜇+ 𝑐

0
−1 + 𝑐−1

1
𝜇
.

(22)

The plots of 𝑐1(𝜇) and 𝑐−1(𝜇) as a function of mass 𝜇 and
1/𝜇, respectively, for the fermion field are shown in Figure 4.
The coefficients 𝑐1 and 𝑐

−1 are found from fitting the data
plotted in Figure 4 and the values are −0.503 and −0.074,
respectively.

Here it is interesting to note that themassive theory in (2+
1) dimension can be obtained via dimensional reduction of
(3 + 1) dimensional massless theory [28, 29]. The coefficients
𝑐
−1 are related with the coefficient of logarithmic term in (3 +
1) dimension and are given by −𝜋/40 and −𝜋/6.

5. Results and Conclusion

In this paper, we have studied the entanglement entropy of
the fermion field propagating in the background of BTZ
black hole numerically. We have calculated the coefficients
of leading and subleading correction of entropy for massless
fermion field. The subleading correction gives the first quan-
tum correction of entropy, which is a logarithmic correction.
We have calculated the coefficient of logarithmic term using
fitting procedure. We also notice that the entropy of the
fermion fields depends weakly upon the angular momentum.
We have also studied the entanglement entropy for mas-
sive fermion fields numerically. One may also compute the
entanglement entropy for fermion field numerically in the
context of nonvacuum states (first excited state and mixed
state) using the correlator method and study the correction
of area relation. We leave it as a future exercise.

Appendices

A. Dirac Equation in BTZ Black
Hole Background

The metric of BTZ black hole can be written in terms of
proper distance,𝜌, defined as 𝑟2 = 𝑟2

+
cosh2𝜌+𝑟2

−
sinh2𝜌, where

𝑟
+
and 𝑟
−
are outer and inner horizon of the black hole,

𝑑𝑠
2
= −(𝑢

2
+

𝐽
2

4𝑙2 (𝑢2 +𝑀)
)𝑑𝑡

2
+𝑑𝜌

2

+(
𝐽

2𝑙√(𝑢2 +𝑀)

𝑑𝑡 − 𝑙√𝑢2 +𝑀𝑑𝜙)

2

,

(A.1)

and we use (𝑟2 = 𝑙2(𝑢2 +𝑀)) and so forth [21].
The Dirac equation in the curved space-time is written 𝑠;

[𝛾
𝜇
𝜕
𝜇
+
1
4
𝛾
𝜇
𝜔
𝑎𝑏

𝜇
𝛾
𝑎𝑏
−𝜇𝐼]𝜓 = 0, (A.2)

where 𝛾𝜇 are the Gamma matrices and 𝜔𝑎𝑏
𝜇

are spin connec-
tion.

The Gamma matrices in the background of BTZ black
hole space-time are 𝛾

𝜇
= 𝑒
𝑎

𝜇
𝛾
𝑎
. The dreibein are given by

𝑒
0
= (𝑢

2
+

𝐽
2

4𝑙2 (𝑢2 +𝑀)
)

1/2

𝑑𝑡,

𝑑𝑡 = (𝑢
2
+

𝐽
2

4𝑙2 (𝑢2 +𝑀)
)

−1/2

𝑒
0
,

𝑒
1
= 𝑑𝜌, 𝑑𝜌 = 𝑒

1
,

𝑒
2
= 𝑙√𝑢2 +𝑀𝑑𝜙−

𝐽

2𝑙√(𝑢2 +𝑀)

𝑑𝑡,

𝑑𝜙 =
1

𝑙√(𝑢2 +𝑀)

[𝑒
2
+ √(𝑢2 +

𝐽
2

4𝑙2 (𝑢2 +𝑀)
)𝑒

0
] ,

(A.3)
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Figure 4:The coefficients of 𝑐1 and 𝑐−1 are the function of 𝜇 with different masses. The coefficient 𝑐1 is proportional to 𝜇 and 𝑐−1 proportional
to the 1/𝜇 in fitting.

where

𝛾0 = √(𝑢
2 +

𝐽
2

4𝑙2 (𝑢2 +𝑀)
)𝛾0 −

𝐽

2𝑙√(𝑢2 +𝑀)

𝛾2,

𝛾1 = 𝛾1,

𝛾2 = 𝑙√𝑢
2 +𝑀𝛾2,

(A.4)

where 𝛾
𝑎
are the Paulimatrices in flat space-time and 𝛾0 = 𝜄𝜎3,

𝛾1 = 𝜎1, and 𝛾2 = 𝜎2. And the inverse of Gamma matrices is

𝛾
0
=

1

√(𝑢2 + 𝐽2/4𝑙2 (𝑢2 +𝑀))

𝛾0,

𝛾
1
= 𝛾

1
,

𝛾
2

=
1

𝑙√𝑢2 +𝑀
(𝛾2 −

𝐽

√𝑢2 + 𝐽2/4𝑙2 (𝑢2 +𝑀)

𝛾0).

(A.5)

The nonvanishing Christoffel symbols are

Γ
0
10 = Γ

0
01 =

√𝑢2 +𝑀

𝑢2 + 𝐽2/ (4𝑙2𝑢2 +𝑀)
,

Γ
0
21 = Γ

0
12 = −

𝐽√𝑢2 +𝑀

2 (𝑢2 + 𝐽2/4𝑙2 (𝑢2 +𝑀))
,

Γ
1
00 =

√𝑢2 +𝑀,

Γ
1
22 = − 𝑙

2√𝑢2 +𝑀,

Γ
2
10 = Γ

2
01 =

𝐽√𝑢2 +𝑀

2 (𝑢2 + 𝐽2/4𝑙2 (𝑢2 +𝑀))
,

Γ
2
21 = Γ

2
12 =

𝑢
2

√𝑢2 +𝑀(𝑢2 + 𝐽2/4𝑙2 (𝑢2 +𝑀))

.

(A.6)

The nonvanishing spin connections 𝜔 are

𝜔
0
01 =

1
2
[
2
𝑙2
−
3
2
𝐽
2

𝑟4
−
2𝐽2

𝑟3
] ,

𝜔
0
12 =

𝐽
2

𝑢 (𝑢2 +𝑀)
,

𝜔
0
21 =

𝐽
2

(𝑢2 +𝑀)
,

𝜔
2
01 =

𝐽
2
𝑢

(𝑢2 +𝑀)
−

𝐽𝑢

(𝑢2 +𝑀)
,

𝜔
2
10 =

𝐽
2

𝑢 (𝑢2 +𝑀)
,

𝜔
2
21 = 𝑢.

(A.7)

Finally, the Dirac equation (A.2) in BTZ black hole space-
time can be written as

−
1
𝑢
𝛾0𝜕0 +𝑢𝛾1𝜕1 +(

−𝐽

2𝑙2𝑢 (𝑢2 +𝑀)
𝛾0

+
1

𝑙√𝑢2 +𝑀
𝛾2)𝜕2
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−
1
4
(−2𝛾1(

√𝑢2 +𝑀

𝑢𝑙
−

𝐽
2

4 (𝑢2 +𝑀)
3/2)

+
𝐽

(𝑢2 +𝑀) 𝑙2
)−𝜇𝐼 = 0,

(A.8)

where the subscript (0, 1, 2) corresponds to (𝑡, 𝜌, 𝜙).

B. A Model of Entanglement Entropy for
Fermion Fields

In this section, we review the model of entanglement entropy
for fermions and numerical computation of entropy. The
appropriate formalism to describe the entanglement entropy
is the density matrix, defined in the term of local operator O
in the region 𝑉 of space and it is given by

tr (𝜌
𝑉
O) = ⟨0 |O| 0⟩ . (B.1)

The reduced density matrix of a system can be written in the
exponential form [24, 26];

𝜌
𝑉
= 𝑐𝑒
−H
, (B.2)

where H is the Hermitian matrix to be identified with the
Hamiltonian of the system and 𝑐 is the normalization con-
stant.

The Hamiltonian of the system with fermions can be
written as [24]

H = ∫
𝑉

𝜓
†

𝑖
𝐻
𝑖𝑗
𝜓
𝑗
. (B.3)

Using this form of the Hamiltonian the reduced density
matrix (B.2) is given by

𝜌
𝑉
= 𝑐𝑒
∫
𝑉
𝜓
†

𝑖
𝐻𝑖𝑗𝜓𝑗 . (B.4)

We can diagonalize the exponent of density matrix by using
the unitary transformation 𝑑

𝑙
= 𝑈
𝑙𝑚
𝜓
𝑚
(one can choose 𝑈

such that 𝑈𝐻𝑈† = {𝜖
𝑖
}, 𝑈 being a unitary operator and

𝜖
𝑖
being the eigenvalue of𝐻).The local creation and annihila-

tion operator 𝜓
𝑖
and 𝜓†

𝑗
obey the anticommutation relations.

The two point correlators are given as

𝐶
𝑖𝑗
= ⟨0 󵄨󵄨󵄨󵄨󵄨𝜓𝑖𝜓

†

𝑗

󵄨󵄨󵄨󵄨󵄨
0⟩ ,

⟨0 󵄨󵄨󵄨󵄨󵄨𝜓
†

𝑗
𝜓
𝑖

󵄨󵄨󵄨󵄨󵄨
0⟩ = 𝛿

𝑖𝑗
−𝐶
𝑖𝑗
,

⟨0 󵄨󵄨󵄨󵄨󵄨𝜓𝑖𝜓𝑗
󵄨󵄨󵄨󵄨󵄨
0⟩ = 0,

⟨0 󵄨󵄨󵄨󵄨󵄨𝜓
†

𝑗
𝜓
†

𝑖

󵄨󵄨󵄨󵄨󵄨
0⟩ = 0.

(B.5)

The relation between 𝐶 and𝐻 can be rewritten as

𝐶
𝑖𝑗
= 𝑐 tr (𝑒−∑𝐻𝑙𝑚𝜓

†

𝑙
𝜓𝑚𝜓
𝑖
𝜓
†

𝑗
) . (B.6)

For general quadratic case the discreteHamiltonian is written
as [30]

𝐻 = ∑

𝑖,𝑗

𝜓
†

𝑖
𝑀
𝑖,𝑗
𝜓
𝑖
. (B.7)

The correlator is directly related to𝑀
𝑖,𝑗
by the relation,

𝐶 = Θ (−𝑀) , (B.8)

where𝑀 is the trace of the matrix andΘ is the step function.
The entropy of the system is given by the relation,

𝑆 = − tr [(1−𝐶) log (1−𝐶) +𝐶 log𝐶] . (B.9)

The eigenvalues of𝐶 lie between 0 and 1, except in case where
the global state is pure; then the eigenvalues of the 𝐶 are 0 or
1s.
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