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We apply a tetrad field with six unknown functions to Einstein field equations. Exact vacuum solution, which represents axially
symmetric-dS spacetime, is derived. We multiply the tetrad field of the derived solution by a local Lorentz transformation which
involves a generalization of the angle 𝜙 and get a new tetrad field. Using this tetrad, we get a differential equation from the scalar
torsion 𝑇 = 𝑇𝛼

𝜇]𝑆𝛼
𝜇]. Solving this differential equation we obtain a solution to the 𝑓(𝑇) gravity theories under certain conditions

on the form of 𝑓(𝑇) and its first derivatives. Finally, we calculate the scalars of Riemann Christoffel tensor, Ricci tensor, Ricci scalar,
torsion tensor, and its contraction to explain the singularities associated with this solution.

1. Introduction

The discovery of the acceleration of the universe through
the SNeIa Hubble diagram has been later confirmed by wide
range of data, from more recent SNeIa data to BAOs and
CMBR anisotropies [1–12]. Such overwhelming abundance
of observational evidences in favor of the cosmic speed up
does not fit in the framework of GR making clear that our
theoretical background is seriously flawed [13].

The idea of unifying the gravitation and electromag-
netism was made by Einstein [14] in 1928. This attempt
was based on the mathematical structure of teleparallelism,
also referred to as distant or absolute parallelism. In other
words, the idea was the introduction of a tetrad field, a field
of orthonormal bases on the tangent spaces at each point
of the four-dimensional spacetime. The tetrad has sixteen
components whereas the gravitational field, represented by
the spacetimemetric, has only ten.The six additional degrees
of freedom of the tetrad were then supposed by Einstein to
be related to the six components of the electromagnetic field
[15–20]. This attempt of unification did not succeed because
the additional six degrees of freedom of the tetrad are actu-
ally eliminated by the 6-parameter local Lorentz invariance

of the theory. However, Einstein introduced concepts that
remain important to the present day. Teleparallelism could
be considered by using the Weitzenböck connection that
is curvatureless but has torsion, rather than the curvature
defined by the Levi-Civita connection [21].

Similar to the exotic dark energy and other modified
gravity models, it is found that the cosmic acceleration
can be obtained successfully from another gravitational
scenario, 𝑓(𝑇) theory [22]. It is based on the teleparallel
equivalent of general relativity (TEGR) which is known as
teleparallel gravity (TG). A scalar torsion 𝑇 is the Lagrangian
of teleparallel gravity. The teleparallel gravity is not a new
theory of gravity but an alternative geometric formulation
of general relativity (GR). In teleparallel gravity, the Levi-
Civita connection used in Einstein’s GR is replaced by the
Weitzenböck connection with torsion. However, the torsion
vanishes in the dark energy and modified gravity models.
Moreover, 𝑓(𝑇) theories have several interesting features.
They not only can explain the late accelerating expansion, but
also always have second order differential equations, which
is simpler than the 𝑓(𝑅) gravity. In addition, when certain
conditions are satisfied, the behavior of 𝑓(𝑇) will be similar
to quintessence [23]. Although 𝑓(𝑇) gravity has attracted
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wide attention, a disadvantage which has been pointed out in
[24, 25] is that the action and its field equations do not satisfy
local Lorentz symmetry. However, the investigation about
𝑓(𝑇) theories ismeaningful because it can provide some hints
about Lorentz violation.

Up till now, a number of 𝑓(𝑇) theories have been
proposed [22, 26–56]. Under these cases it is shown that
𝑓(𝑇) theories are not dynamically equivalent to teleparallel
action plus a scalar field [50]. Like other gravity theories and
models, the 𝑓(𝑇) theories also have been investigated using
the popular observational data. Investigations show that the
𝑓(𝑇) theories are compatible with observations (see, e.g., [57,
58] and references therein). So, we note that the new type of
𝑓(𝑇) theory in [54] was proposed to explain the acceleration.
It behaves like a cosmological constant but is free from the
coincidence problem. In order to have a better study of 𝑓(𝑇)
gravitational theories, we try to search for exact solutions for
the field equations of 𝑓(𝑇). Specifically, we are interested in
axially symmetric solutions which asymptotically behave as
dS.

Within 𝑓(𝑇) gravitational theory there are many solu-
tions, spherically symmetric [59, 60], spherically symmetric
charged [61], homogenous anisotropic [62], and stability of
the Einstein static closed and open universe [63]. Some cos-
mological features of the ΛCDM model in the framework of
the𝑓(𝑇) are investigated [64].However, up till now, no axially
symmetric-dS solution derived in this theory. It is the aim
of the present study to find an analytic, axially symmetric-
dS solution in 𝑓(𝑇) gravitational theories. In Section 2,
preliminaries of 𝑓(𝑇) gravitational theory are presented. In
Section 3, a tetrad field with six unknown functions is applied
to the field equation of 𝑓(𝑇). New analytic solution, vacuum
one with two constants of integration, for Einstein field
equation is derived. In Section 4, we multiply this solution
by a local Lorentz transformation with a generalization of
the angle 𝜙, that is, 𝑁(𝜙). Using the calculations carried out
in Section 3, we succeed to derive special solution for 𝑓(𝑇)
gravitational theories under certain conditions on 𝑓(𝑇) and
its first derivative. Final section is devoted to sum up the
results obtained.

2. Preliminaries of 𝑓(𝑇)

In a spacetime with absolute parallelism the parallel vector
field 𝑒

𝑖

𝜇 [21] defines the nonsymmetric affine connection:

Γ
𝜇

]𝜌
def .
= 𝑒
𝑖

𝜇

𝑒
𝑖

],𝜌, (1)

where 𝑒
𝑖𝜇,] = 𝜕]𝑒𝑖𝜇. “We use the Greek indices 𝜇, ], . . . for

local holonomic spacetime coordinates and the Latin indices
𝑖, 𝑗, . . . label (co)-frame components.”

The curvature tensor defined by Γ𝜇]𝜌, given by (1), is
identically vanishing. The metric tensor 𝑔

𝜇] is defined by

𝑔
𝜇]

def .
= 𝜂
𝑖𝑗
𝑒
𝑖

𝜇
𝑒
𝑗

], (2)

with 𝜂
𝑖𝑗

= (−1, +1, +1, +1) being the metric of Minkowski
spacetime. Defining the torsion and the contortion compo-
nents as

𝑇
𝜇

]𝜌
def .
= Γ
𝜇

𝜌] − Γ
𝜇

]𝜌 = 𝑒
𝑖

𝜇

(𝜕]𝑒
𝑖

𝜌
− 𝜕
𝜌
𝑒
𝑖

]) ,

𝐾
𝜇]
𝜌

def .
= −

1

2
(𝑇
𝜇]
𝜌
− 𝑇

]𝜇
𝜌
− 𝑇
𝜌

𝜇]
) ,

(3)

where the contortion equals the difference between Weitz-
enböck and Levi-Civita connection; that is, 𝐾𝜇]𝜌 = Γ𝜇]𝜌 −

{ 𝜇]𝜌}.
The skew symmetric tensor 𝑆

𝜇

]𝜌 is defined as

𝑆
𝜇

]𝜌 def .
=

1

2
(𝐾

]𝜌
𝜇
+ 𝛿

]
𝜇
𝑇
𝜆𝜌

𝜆
− 𝛿
𝜌

𝜇
𝑇
𝜆]
𝜆
) . (4)

The torsion scalar is defined as

𝑇
def .
= 𝑇
𝜇

]𝜌𝑆𝜇
]𝜌
. (5)

The action of 𝑓(𝑇) theory is given by

L (𝑒
𝑎

𝜇
, Φ
𝐴
) = ∫𝑑

4

𝑥𝑒 [
1

16𝜋
(𝑓 (𝑇) − 2Λ) +LMatter (Φ𝐴)] ,

(6)

where 𝑒 = √−𝑔 = det(𝑒𝑎
𝜇
), LMatter is the Lagrangian

of matter field, Λ is the cosmological constant, and Φ
𝐴
are

matter fields.
Similar to the 𝑓(𝑅) theory, one can define the action of

𝑓(𝑇) theory as a function of the fields 𝑒𝑎
𝜇
and by putting the

variation of the function with respect to the field 𝑒𝑎
𝜇
to be

vanishing, one can obtain the following equations of motion:

𝑆
𝜇

]𝜌
𝑇
,𝜌
𝑓 (𝑇)
𝑇𝑇

+ [𝑒
−1

𝑒
𝑎

𝜇
𝜕
𝜌
(𝑒𝑒
𝑎

𝛼

𝑆
𝛼

]𝜌
) − 𝑇
𝛼

𝜇𝜆
𝑆
𝛼

]𝜆
] 𝑓 (𝑇)

𝑇

−
1

4
𝛿
]
𝜇
(𝑓 (𝑇) − 2Λ) = 8𝜋T

𝜇

]
,

(7)

where

𝑇
,𝜌

=
𝜕𝑇

𝜕𝑥𝜌
, 𝑓 (𝑇)

𝑇
=

𝜕𝑓 (𝑇)

𝜕𝑇
, 𝑓 (𝑇)

𝑇𝑇
=

𝜕2𝑓 (𝑇)

𝜕𝑇2
,

(8)

andT
𝜇

] is the energy momentum tensor.
Now we are going to rewrite (7) in another form: the

field equations (7) are written in terms of the tetrad and its
partial derivatives. These equations appear to be different
from Einstein’s field equations. Following [24, 25], one can
obtain an equation relating 𝑇 with the Ricci scalar of the
metric 𝑅. These will make the equivalence between TG and
GR clear. On the other hand, the tetrad cannot be eliminated
completely in favor of the metric in (7), because of the lack
of local Lorentz symmetry, but the latter can be brought in
a form that closely resembles Einstein’s equation. This form
is more suitable for constructing analytic solutions in the
𝑓(𝑇) theory. To start writing the field equations in a covariant
version, one must replace partial derivatives in the tensors by
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covariant derivatives compatible with the metric 𝑔
𝜇], that is,

∇
𝜎
where ∇

𝜎
𝑔
𝜇] = 0. Thus, (3) can be written as

𝑇
𝜇

]𝜌 = 𝑒
𝑎

𝜇

(∇]𝑒
𝑎

𝜌
− ∇
𝜌
𝑒
𝑎

]) . (9)

Using (9) in (3) and (4) one can get

𝐾
𝜇

]𝜌 = 𝑒
𝑎

𝜇

∇
𝜌
𝑒
𝑎

],

𝑆
𝜇]
𝜌
= 𝜂
𝑖𝑗

𝑒
𝑖

𝜇

∇
𝜌
𝑒
𝑗

]
+ 𝛿

]
𝜌
𝜂
𝑖𝑗

𝑒
𝑖

𝜎

∇
𝜎
𝑒
𝑗

𝜇

− 𝛿
𝜇

𝜌
𝜂
𝑖𝑗

𝑒
𝑖

𝜎

∇
𝜎
ℎ
𝑗

]
.

(10)

On the other hand, from the relation between
Weitzenböck connection and the Levi-Civita connection one
can write the Riemann tensor for the Levi-Civita connection,
{
𝜌

𝜇] }, in terms of the nonsymmetric connection, Γ𝜌
𝜇], in the

form

𝑅
𝜌

𝜇𝜆] = 𝜕
𝜆
Γ
𝜌

𝜇] − 𝜕]Γ
𝜌

𝜇𝜆
+ Γ
𝜌

𝜎𝜆
Γ
𝜎

𝜇] − Γ
𝜌

𝜎]Γ
𝜎

𝜇𝜆

= ∇
𝜆
𝐾
𝜌

𝜇] − ∇]𝐾
𝜌

𝜇𝜆
+ 𝐾
𝜌

𝜎𝜆
𝐾
𝜎

𝜇] − 𝐾
𝜌

𝜎]𝐾
𝜎

𝜇𝜆
.

(11)

The associated Ricci tensor can then be written as

𝑅
𝜇] = ∇]𝐾

𝜌

𝜇𝜌
− ∇
𝜌
𝐾
𝜌

𝜇] + 𝐾
𝜌

𝜎]𝐾
𝜎

𝜇𝜌
− 𝐾
𝜌

𝜎𝜌
𝐾
𝜎

𝜇]. (12)

Now, by using 𝐾𝜎
𝜇] given by (3) along with the relations

𝐾(𝜇])𝜎 = 𝑇𝜇(]𝜎) = 𝑆𝜇(]𝜎) = 0 and considering that 𝑆𝜇
𝜌𝜇

=

2𝐾𝜇
𝜌𝜇

= −𝑇𝜇
𝜌𝜇

one has [24–53]

𝑅
𝜇] = −∇

𝜆

𝑆]𝜆𝜇 − 𝑔
𝜇]∇
𝜆

𝑇
𝜌

𝜆𝜌
− 𝑆
𝜌𝜎

𝜇
𝐾
𝜎𝜌],

𝑅 = −𝑇 − 2∇
𝜇

𝑇
𝜌

𝜇𝜌
= −𝑇 −

2

𝑒
𝜕
𝜇

(𝑒𝑇
𝜌

𝜇𝜌
) .

(13)

Equation (13) implies that the 𝑇 and 𝑅 differ only by a covari-
ant divergence of a spacetime vector. Therefore, the Einstein-
Hilbert action and the teleparallel action (i.e., LTEGR =

∫𝑑4𝑥|𝑒|𝑇) will both lead to the same field equations and are
dynamically equivalent theories. In [24, 25] the authors have
shown that this equivalence is directly at the level of the field
equations. By using the equations listed above and after some
algebraic manipulations, one can get

𝐺
𝜇] −

𝑔
𝜇]

2
𝑇 = −∇

𝜌

𝑆]𝜌𝜇 − 𝑆
𝜎𝜌

𝜇
𝐾
𝜌𝜎], (14)

where 𝐺
𝜇] = 𝑅

𝜇] − (1/2)𝑔
𝜇]𝑅 is the Einstein tensor.

With the aid of the equations listed above, it can be shown,
after some algebraic manipulations, that [24, 25]

𝐺
𝜇] = 𝑒

−1

𝑒
𝑎

𝜇
𝜕
𝜌
(𝑒𝑒
𝑎

𝛼

𝑆
𝛼]
𝜌

) − 𝑇
𝛼

𝜇𝜆
𝑆
𝛼]
𝜆

+
1

2
𝑔
𝜇]𝑇. (15)

Finally, by using (14) and (15), the field equations for 𝑓(𝑇)
gravity (7) can be rewritten in the form

𝑓 (𝑇)
𝑇
𝐺
𝜇] −

1

2
(𝑓 (𝑇) − 2Λ − 𝑇𝑓 (𝑇)

𝑇
) 𝑔
𝜇]

+ 𝑆]
𝜌

𝜇
𝑇
,𝜌
𝑓 (𝑇)
𝑇𝑇

= 8𝜋T
𝜇].

(16)

Equation (16) can be taken as the starting point of the
𝑓(𝑇) modified gravity model, and it has a structure similar

to the field equation of 𝑓(𝑅) gravity. Note that in the more
general case with 𝑓(𝑇) ̸= 𝑇 the field equations are covariant
form. Nevertheless, the theory is not local Lorentz invariant.
In case of 𝑓(𝑇) = 𝑇 and constant scalar torsion, 𝑓(𝑇

0
), GR is

recovered and field equations are covariant and the theory is
Lorentz invariant.

3. Axially Symmetric Solution in
𝑓(𝑇) Gravity Theory

The tetrad field that is stationary and has axial symmetry
takes the form

(ℎ
𝑖

𝜇
) =

[
[
[
[
[

[

𝑆
1
(𝑟, 𝜃) 0 0 𝑆

2
(𝑟, 𝜃)

0 𝑆
3
(𝑟, 𝜃) 0 0

0 0 𝑆
4
(𝑟, 𝜃) 0

𝑆
5
(𝑟, 𝜃) 0 0 𝑆

6
(𝑟, 𝜃)

]
]
]
]
]

]

, (17)

where 𝑆
𝑖
(𝑟, 𝜃), 𝑖 = 1 ⋅ ⋅ ⋅ 6, are unknown functions of the radial

coordinate, 𝑟, and the azimuthal angle 𝜃. Applying tetrad field
(17) to the field equations of GR,𝑅

𝜇]−(1/2)𝑔
𝜇](𝑅−2Λ), we get

a system of lengthy partial nonlinear differential equations.
The solution of these system has the form

𝑆
1
(𝑟, 𝜃) = √

𝛿 (𝑟)

Σ (𝑟, 𝜃)
, 𝑆

2
(𝑟, 𝜃) = 𝑆

7
(𝑟, 𝜃) 𝑆

1
(𝑟, 𝜃) ,

𝑆
3
(𝑟, 𝜃) =

1

𝑆
1
(𝑟, 𝜃)

, 𝑆
4
(𝑟, 𝜃) =

√Σ (𝑟, 𝜃)

𝑓 (𝜃)
,

𝑆
5
(𝑟, 𝜃) =

𝛽 sin 𝜃

√Σ (𝑟, 𝜃)
, 𝑆

6
(𝑟, 𝜃) =

𝑆
8
(𝑟, 𝜃)

√Σ (𝑟, 𝜃)
,

where 𝛿 (𝑟) = (𝑟
2

+ 𝑐
2

2

)(1 −
Λ𝑟2

3
) − 2𝑐

1
𝑟,

Σ (𝑟, 𝜃) = 𝑟
2

+ 𝑐
2

2cos2𝜃, 𝑓 (𝜃) = 1 +
𝑐
2

2Λcos2𝜃
3

,

𝑆
7
= −Ω𝑐

2
sin2𝜃, Ω = 1 +

𝑐
2

2Λ

3
,

𝛽 = 𝑐
2
√𝑓 (𝜃), 𝑆

8
(𝑟, 𝜃) = −Ω sin 𝜃√(𝑟2 + 𝑐

2

2) 𝑓 (𝜃).

(18)

Themetric associated with tetrad field (17) after using (18) has
the following form. “For brevity, we write 𝑆

𝑖
(𝑟, 𝜃) ≡ 𝑆

𝑖
, 𝑖 =

1 ⋅ ⋅ ⋅ 6”:

𝑑𝑠
2

= [𝑆
1

2

− 𝑆
5

2

] 𝑑𝑡
2

− 𝑆
3

2

𝑑𝑟
2

− 𝑆
4

2

𝑑𝜃
2

− [𝑆
6

2

− 𝑆
2

2

] 𝑑𝜙
2

− [𝑆
5
𝑆
6
− 𝑆
1
𝑆
2
] 𝑑𝑡𝑑𝜙,

(19)

which is the Kerr-dS spacetime provided that 𝑐
1

= 𝑀 and
𝑐
2
= 𝑎where𝑀 and 𝑎 are themass of the gravitational system

and the rotation parameter [65]. Solution (18) is a solution to
Einstein field equations; however themain task of the present
study is to find an axially symmetric-dS solution for 𝑓(𝑇). To
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do such aim, we multiply tetrad field (17) with the following
𝑠𝑜(3)matrix:

(Λ
𝑖

𝑗
) = (

1 0 0 0

0 sin 𝜃 cosΦ cos 𝜃 sinΦ − sinΦ

0 sin 𝜃 sinΦ cos 𝜃 sinΦ cosΦ
0 cos 𝜃 − sin 𝜃 0

), (20)

where Φ is a function of azimuthal angle 𝜙; that is, Φ =
𝑁(𝜙). “Here we consider Φ to be function of 𝜙 only which
is sufficient to carry out our aim. However, if Φ becomes
a general function, that is, depends on 𝑟, 𝜃 and 𝜙 the
calculations will be very complicated.” The new tetrad field,

(𝑒
𝑖

𝜇
)
1

= Λ
𝑖

𝑗
𝑒
𝑗

𝜇
, (21)

takes the form

(𝑒
𝑖

𝜇
)
1

=

(
(
(
(
(
(
(
(

(

√𝛿(𝑟)

√Σ (𝑟, 𝜃)
0 0

𝑎sin2𝜃√𝛿 (𝑟)

Ω√Σ (𝑟, 𝜃)

−𝑎 sin 𝜃 sinΦ√𝑓 (𝜃)

√Σ (𝑟, 𝜃)

sin 𝜃 cosΦ√Σ (𝑟, 𝜃)

√𝛿 (𝑟)

cos 𝜃 cosΦ√Σ (𝑟, 𝜃)

√𝑓 (𝜃)
−
(𝑟2 + 𝑎2) sin 𝜃 sinΦ√𝑓 (𝜃)

Ω√Σ (𝑟, 𝜃)

𝑎 sin 𝜃 cosΦ√𝑓 (𝜃)

√Σ (𝑟, 𝜃)

sin 𝜃 sinΦ√Σ (𝑟, 𝜃)

√𝛿 (𝑟)

cos 𝜃 sinΦ√Σ (𝑟, 𝜃)

√𝑓 (𝜃)

(𝑟2 + 𝑎2) sin 𝜃 cosΦ√𝑓 (𝜃)

Ω√Σ (𝑟, 𝜃)

0
cos 𝜃√Σ (𝑟, 𝜃)

√𝛿 (𝑟)

sin 𝜃√Σ (𝑟, 𝜃)

√𝑓 (𝜃)
0

)
)
)
)
)
)
)
)

)

. (22)

We rewrite (16) as

𝐺
𝜇] +

1

𝑓 (𝑇)
𝑇

Λ𝑔
𝜇]

=
1

𝑓 (𝑇)
𝑇

(
1

2
(𝑓 (𝑇) − 𝑇𝑓 (𝑇)

𝑇
) 𝑔
𝜇]

− 𝑆]
𝜌

𝜇
𝑇
,𝜌
𝑓 (𝑇)
𝑇𝑇

+ 8𝜋T
𝜇]) ,

⇒ 𝐺
𝜇] +

1

𝑓 (𝑇)
𝑇

Λ𝑔
𝜇] =

1

𝑓 (𝑇)
𝑇

(4𝜋T
𝜇] + 𝑇

eff
𝜇]) ,

(23)

where 𝑇eff
𝜇] = (1/2)[𝑓(𝑇) − 𝑇𝑓(𝑇)

𝑇
]𝑔
𝜇] − 𝑆]

𝜌

𝜇
𝑇
,𝜌
𝑓(𝑇)
𝑇𝑇

is
the effective energy momentum tensor.

To find a vacuum solution within 𝑓(𝑇) theories, it is
sufficient to find the condition that makes the effective
energy momentum tensor 𝑇eff

𝜇] vanishing. The simplest
condition that satisfies this aim is the vanishing of the scalar
torsion, 𝑇. The imposition of 𝑇 = 0 is just one (simplest)
solution, and in principle there can exist many more; for
example, when the torsion scalar is constant the effective
energy momentum tensor 𝑇eff

𝜇] will also be vanishing under
some constraints on the form of 𝑓 (constant) and its first
derivative. Using (6) and tetrad field (22) one can obtain
ℎ = det(ℎ𝑎

𝜇
) = (𝑟2 + 𝑎2cos2𝜃) sin 𝜃/(1 + Λ𝑎2). With the use

of (3), (4), and (5) we obtain the torsion scalar as

𝑇 = √𝑓 (𝜃) 𝛿 (𝑟) (2ΩΣ
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𝑁
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Λcos6𝜃
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3
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3
𝑟
3
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+ 2𝑟
4
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Λ

3
(3𝑟
2
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2
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+ 2Σ
2

(3 + 𝑎
2
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⋅ [
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3
(2𝑟
2

+ 𝑎
2

) − 𝑟 + 𝑀] ,

(24)

where 𝑁 = 𝑑𝑁(𝜙)/𝑑𝜙. The exact solution of (24) has the
form

𝑁(𝜙) =
𝜙√𝑓 (𝜃)

ΩΣ2 (2Λ𝑟3 − 3𝑟 + 𝑟𝑎2Λ + 3𝑀 + 3√𝑓 (𝜃) 𝛿 (𝑟))

⋅ (𝑎
2
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3
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2
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4sin2𝜃cos2𝜃Λ}
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3
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2

Λ)) .

(25)

Using (25) and (22) in (23) we get a solution to 𝑓(𝑇) gravita-
tional theory provided that 𝑓(0) = 0.

4. Singularities

Now we are going to study the singularities of the derived
solution. For this purpose we search the value at which
𝑟 makes 𝑔

00
and 𝑔

11
tend to zero or ∞. This procedure

may reproduce singularities corresponding to coordinate
singularities. Therefore to procedure correct singularities
we are going to demonstrate the invariants. In orthodox
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general relativity or its modifications the invariants are the
Ricci scalar, the Kretschmann scalar, or other invariants
constructed from Riemann tensor and its contractions. In
the teleparallel geometry of gravity we have two approaches
of finding invariants. In the first approach one uses the
solution of the vierbein and the Weitzenböck connection
to calculate torsion invariants such as the torsion scalar 𝑇.
In the second approach one uses the solution to construct
metric and then construct the Levi-Civita connection and
finally calculate curvature invariants such as the Ricci and
Kretschmann scalars. The comparison of the two approaches
is able to show differences between curvature and torsion
gravity. In teleparallel theories we mean by singularity of
spacetime the singularity of the scalar concomitants of the
torsion and curvature tensors.

The torsion invariant 𝑇, that is, the torsion scalar, that
arises from the vierbein solution (22) with the use of
Weitzenböck’s connection (25) is vanishing. The curvature
invariants that arise from themetric solution (19) through the
calculation of the Levi-Civita connection are [61]
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𝜇]𝜆𝜎
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(26)

where 𝑓(𝑟, 𝜃), 𝑓
1
(𝑟, 𝜃), and 𝑓

2
(𝑟, 𝜃) are functions of 𝑟 and 𝜃.

Here 𝑡
𝜇]𝜆, 𝑇𝜇, and 𝑎

𝜇
are the irreducible representation of the

torsion tensor:
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𝑎
𝜇
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1
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𝜖
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,

(27)

where 𝜖
𝜇]𝜌𝜎 is defined by

𝜖
𝜇]𝜌𝜎

def .
= √−𝑔𝛿

𝜇]𝜌𝜎 (28)

with 𝛿
𝜇]𝜌𝜎 being completely antisymmetric and normalized

as 𝛿
0123

= −1.
Observing the forms of Ricci and Kretschmann torsion

and its irreducible representation scalars in (26) we deduce
that in the Kerr-dS case there are no divergence points at
either 𝑟 = 0 or 𝑟 = ∞.

5. Main Results and Discussion

𝑓(𝑇) gravitational theories are modifications of the TEGR
that try to deal with the recent problems appearing in
cosmology. In these theories, it is not easy to find exact
solutions. We have rewritten the field equations of these
theories in a simple form. This form enables us to show the
extra terms that are responsible for the deviation from GR
theory. In the nonvacuum case, those terms can be regarded
as the effective energy momentum tensor and generally they
depend on the scalar torsion and its derivatives. For vacuum
solution one must show that the effective energy momentum
tensors are vanishing. So if the torsion scalar is vanishing then
it turns out that the extra terms are vanishing provided some
constraints on the form of the zero function, that is, 𝑓(0) and
its first derivative.

The equivalence between GR and TEGR emerges from
the property that Einstein-Hilbert Lagrangian differs from
TEGR Lagrangian by a four-divergence term. By using the
Levi-Civita scalar curvature 𝑅 for the metric (2) one gets the
result of (13). Therefore, TEGR and Einstein-Hilbert actions
are equivalent up to the equations of motion. This means
that GR and TEGR possess the same number of degrees of
freedom. In spite of the fact that the tetrad field contains 16
components (6more than themetric field), TEGR is invariant
under local Lorentz transformations of the tetrad due to the
existence of the divergence term. In the TEGR the tetrad field
changes under local Lorentz transformation as

𝑒
𝑖

𝜇
= Λ
𝑖

𝑗
𝑒
𝑗

𝜇
, 𝑒

𝑖

𝜇

= Λ
𝑖

𝑗

𝑒
𝑗

𝜇

. (29)

This transformation adds a four-divergence to the TEGR
Lagrangian 𝑒𝑇. This behavior is evident in (13) because 𝑒𝑅 is
invariant under local Lorentz transformations. Instead 𝑓(𝑇)
gravity, like other theories of amended gravity, possesses
extra degrees of freedom. In fact the dynamical equations
(7) are sensitive to local Lorentz transformations of the
tetrad except for the case 𝑓(𝑇) = 𝑇 (i.e., TEGR). This
implies that the dynamical equations of 𝑓(𝑇) gravitational
theories contain information not only about the evolution
of the metric but also about some extra degrees of freedom
exclusively associated with the tetrad that are not present in
the undeformed theory [24, 25, 33–51]. For 𝑓(𝑇) theories, the
Lagrangian changes under a local Lorentz transformation as

𝑒𝑓 (𝑇) = 𝑒𝑓 (𝑇 + divergence term) . (30)

In this case the divergence term remains free inside the
function 𝑓 damaging the principle of invariance under
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local Lorentz transformation. The loss of the local Lorentz
invariance leads to a preferred global reference frame defined
by the autoparallel curves of the manifold that consistently
solve the dynamical equations. This means that (7) not only
determines themetric but also chooses some other properties
of the tetrad field. The tetrads connected by local Lorentz
transformations lead to the same metric; however they are
different with respect to the parallel framework. Because
of this fundamental property of 𝑓(𝑇) theories, when one
is searching for solutions of a given symmetry it is quite
difficult to do an ansatz for the tetrad field. For themetric case
symmetry helps us to choose suitable coordinates to write the
metric. However, this does not say much about the ansatz
for the tetrad due to local Lorentz transformation [66, 67].
Certainly, in the context of 𝑓(𝑇) theories, the proper frame
which parallelizes the spacetime for a given symmetry of
the geometry must be independent of the function 𝑓 [68].
This work is focused on how to find the parallelization for
axially symmetric solutions in 𝑓(𝑇) theories. In particular,
we want to know whether Kerr-dS geometry survives or not
in 𝑓(𝑇) gravity. To answer this question we should find the
correct ansatz to solve (7). This search is greatly facilitated by
invoking the following argument concerning the survival of
certain TEGR solutions [67]: if a vacuum solution of 𝑓(𝑇)
gravity has 𝑇 = 0, then it will be a solution of TEGR as
well (a cosmological constantmight be necessary). In fact, the
replacement of𝑇 = 0 in (7), after neglecting the cosmological
constant, leads to

𝑒
−1

𝑒
𝑎

𝜇
𝜕
𝜌
(𝑒𝑒
𝑎

𝛼

𝑆
𝛼

]𝜌
) − 𝑇
𝛼

𝜇𝜆
𝑆
𝛼

]𝜆
−

1

4
𝛿
]
𝜇

𝑓 (0)

𝑓 (0)
= 0, (31)

which is a TEGR vacuum equation with cosmological con-
stant 2Λ = 𝑓(0)/𝑓(0). We can neglect the cosmological
constant term by restricting the family of functions 𝑓 to have
𝑓(0) = 0 and 𝑓(0) ̸= 0. In other words, we can utilize
the freedom to do local Lorentz transformations in TEGR
to search a tetrad having 𝑇 = 0; if we succeed, then we
will state that such solution survives in 𝑓(𝑇) gravity. Notice
that TEGR vacuum solutions do not force 𝑇 to vanish; 𝑅
must vanish. Thus (13) says that 𝑇 is a four-divergence. So,
the former argument is based on the sensitivity of 𝑇 to local
Lorentz transformations. The above argument means that
TEGR vacuum solutions having 𝑇 = 0 (or 𝑇 = constant)
cannot be deformed by𝑓(𝑇) gravity.We have shown that this
is the case for Kerr-dS geometry; what is meant that 𝑓(𝑇)
gravity is unable to smooth the singularity of a black hole
[67, 69, 70].

In this study, we have used a diagonal tetrad field with
six unknown functions of redial coordinate 𝑟 and azimuthal
angle 𝜃. This type of tetrad does not depend on local Lorentz
transformation. This tetrad field has been applied to the
field equations of GR with a cosmological constant and got
a system of nonlinear partial differential equations. This
system have been solved and a solution with two constants of
integration is derived. The associated metric of this solution
is similar to Kerr-dS solution provided that the two constants
of integration are the gravitational mass of the system and the
rotating parameter [65]. The tetrad field of this solution has
been multiplied by 𝑠𝑜(3) which contains a generalization of

the angle𝜙, that is,𝑁(𝜙).Thenew tetrad field has beenused to
calculate the scalar torsion and differential equation with one
unknown; 𝑁(𝜙) has been derived. This differential equation
has been solved, assuming the vanishing of the scalar torsion,
and the form of the unknown function has been derived.This
form of the unknown function has been used in the new
tetrad field which has been shown that the new tetrad is a
special solution to 𝑓(𝑇) provided that 𝑓(0) = 0.

The singularities of the derived solution have been dis-
cussed and has been shown that the derived solution has no
singularities at either 𝑟 = 0 or 𝑟 = ∞. This is done through
the calculations of the scalars of Ricci, Kretschman, torsion
tensor, and its irreducible representation.The situation of the
singularities is expected to change for higher order of 𝑓(𝑇).

This is a first step in deriving a special solution within
𝑓(𝑇) gravitational theories, which proves that any GR solu-
tion can be regarded as a solution in 𝑓(𝑇) under some
conditions [58]. This procedure can be generalized by trying
to derive solutions for quadratic 𝑓(𝑇) by trying to solve the
effective energy momentum tensor which will be responsible
for such quadratic theory. This will be done elsewhere.
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