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We discuss phase transition of the charged topological dilaton AdS black holes by Maxwell equal area law.The two phases involved
in the phase transition could coexist and we depict the coexistence region in 𝑃-V diagrams. The two-phase equilibrium curves in
𝑃-𝑇 diagrams are plotted, the Clapeyron equation for the black hole is derived, and the latent heat of isothermal phase transition
is investigated. We also analyze the parameters of the black hole that could have an effect on the two-phase coexistence. The results
show that the black holesmay go through a small-large phase transition similar to that of a usual nongravity thermodynamic system.

1. Introduction

In recent years, the cosmological constant in 𝑛-dimensional
AdS and dS spacetime has been regarded as pressure of black
hole thermodynamic system with

𝑃 = −
Λ

8𝜋
, (1)

and the corresponding conjugate quantity, thermodynamic
volume [1–4],

𝑉 = (
𝜕𝑀

𝜕𝑃
)

𝑆,𝑄𝑖 ,𝐽𝑘

. (2)

(𝑃-𝑉) critical behaviors in AdS and dS black holes have
been extensively studied [5–44]. Using Ehrenfest scheme,
[22–29] studied the critical phenomena of a series of black
holes in AdS spacetime and proved that the phase transition
at critical point is the second-order one, which has also
been confirmed in [30–34] by studying thermodynamics
and state space geometry of black holes. And a completely
simulated gas-liquid system has been put forward [3, 5, 8,
43]. Recently phase transition below critical temperature and
phase structure of some black holes have received much
attention [45–49].

Although some encouraging results about black hole
thermodynamic properties in AdS and dS spacetimes have
been achieved and the problems about phase transition
of black holes have been extensively discussed, a unified
recognition on phase transition of black hole has not been put
forward. It is significant to further explore phase equilibrium
and phase structure in black holes, which can help to recog-
nize the evolution of black hole. We also expect to provide
some relevant information for quantum gravity properties by
studying the phase transition of charged topological dilaton
AdS black holes.

A scalar field called dilaton appears in the low energy
limit of string theory. The presence of the dilaton field has
important consequences on the causal structure and the
thermodynamic properties of black holes. Much interest has
been focused on studies of the dilaton black holes in recent
years [50–60]. The isotherms in 𝑃-V diagrams of charged
topological dilaton AdS black hole in [13] show that there
exists thermodynamic unstable region with 𝜕𝑃/𝜕V > 0

when temperature is below critical temperature and negative
pressure emerges when temperature is below a certain value.
This situation also exists in van der Waals-Maxwell gas-
liquid system, which has been resolved by Maxwell equal
area law. In this paper, using the Maxwell equal area law, we
establish a phase transition process for charged topological
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dilaton AdS black holes, where the issues about thermody-
namic unstable states and negative pressure are resolved. By
studying the phase transition process, we acquire the two-
phase equilibrium properties involving 𝑃-𝑇 phase diagram,
Clapeyron equation, and latent heat of phase change. The
results show that the phase transition is the first-order one
but the phase transition at critical point belongs to the
continuous one though the parameters of the charged topo-
logical dilaton black holes have some effects on the two-phase
coexistence.

The paper is arranged as follows.The charged topological
dilaton AdS black hole as a thermodynamic system is briefly
introduced in Section 2. In Section 3, by Maxwell equal area
law the phase transition processes at certain temperatures
are obtained and the boundary of two-phase equilibrium
region is depicted in 𝑃-V diagram for a charged topolog-
ical dilaton AdS black hole. Then some parameters of the
black hole are analyzed to find their relation with the two-
phase equilibrium. In Section 4, the 𝑃-𝑇 phase diagrams are
plotted; furthermore, Clapeyron equation and latent heat of
the isothermal phase change are derived. We make some
discussions and conclusions in Section 5. We use the units
𝐺
𝑑
= ℏ = 𝑘

𝐵
= 𝑐 = 1 in this paper.

2. Charged Dilaton Black Holes in
Anti-de Sitter Space

The Einstein-Maxwell-dilaton action in (𝑛 + 1)-dimensional
(𝑛 ≥ 3) spacetime is [59, 60]

𝑆 =
1

16𝜋
∫𝑑
𝑛+1
𝑥√−𝑔(𝑅 −

4

𝑛 − 1
(∇Φ)
2
− 𝑈 (Φ)

− 𝑒
−4𝛼Φ/(𝑛−1)

𝐹
𝜇]𝐹
𝜇]
) ,

(3)

where 𝑅 is the Ricci scalar curvature, Φ is the dilaton field
and𝑈(Φ) is a potential forΦ, 𝛼 is a constant determining the
strength of coupling of the scalar and electromagnetic field,
𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 is the electromagnetic field tensor, and
𝐴𝜇 is the electromagnetic potential. The dilaton potential is
related to the dilatonfield and its coupling to the cosmological
constant. The field equations

∇
2
Φ =

𝑛 − 1

8

𝜕𝑈

𝜕Φ
−
𝛼

2
𝑒
−4𝛼Φ/(𝑛−1)

𝐹
𝜆𝜂
𝐹
𝜆𝜂
,

∇
𝜇
(𝑒
−4𝛼Φ/(𝑛−1)

𝐹
𝜇]
) = 0.

(4)

The topological black hole solutions take the following form
[59, 60]:

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+
𝑑𝑟
2

𝑓 (𝑟)
+ 𝑟
2
𝑅
2
(𝑟) 𝑑Ω

2

𝑘,𝑛−1
, (5)

where

𝑓 (𝑟) = −

𝑘 (𝑛 − 2) (𝛼
2
+ 1)
2

𝑏
−2𝛾
𝑟
2𝛾

(𝛼2 − 1) (𝛼2 + 𝑛 − 2)
−

𝑚

𝑟(𝑛−1)(1−𝛾)−1

+

2𝑞
2
(𝛼
2
+ 1)
2

𝑏
−2(𝑛−2)𝛾

(𝑛 − 1) (𝛼
2 + 𝑛 − 2)

𝑟
2(𝑛−2)(𝛾−1)

−

𝑛 (𝛼
2
+ 1)
2

𝑏
2𝛾

𝑙2 (𝛼2 − 𝑛)
𝑟
2(1−𝛾)

,

(6)

𝑅 (𝑟) = 𝑒
2𝛼Φ/(𝑛−1)

,

Φ (𝑟) =
(𝑛 − 1) 𝛼

2 (1 + 𝛼2)
ln(𝑏

𝑟
) ,

(7)

with 𝛾 = 𝛼
2
/(𝛼
2
+ 1) and 𝑏 is an arbitrary constant. The

cosmological constant is related to spacetime dimension 𝑛 by

Λ = −
𝑛 (𝑛 − 1)

2𝑙2
, (8)

where 𝑙 denotes the AdS length scale. In (6),𝑚 appears as an
integration constant and is related to the ADM (Arnowitt-
Deser-Misner) mass of the black hole. According to the
definition of mass due to Abbott and Deser [61], the ADM
mass of the solution (6) is

𝑀 =
𝑏
(𝑛−1)𝛾

(𝑛 − 1) 𝜔𝑛−1

16𝜋 (𝛼2 + 1)
𝑚. (9)

The electric charge is

𝑄 =
𝑞𝜔
𝑛−1

4𝜋
, (10)

where 𝜔𝑛−1 represents the volume of constant curvature
hypersurface described by 𝑑Ω2

𝑘,𝑛−1
.

The thermodynamic quantities satisfy the first law of
thermodynamics

𝑑𝑀 = 𝑇𝑑𝑆 + 𝜙𝑑𝑄 + 𝑉𝑑𝑃. (11)

The Hawking temperature and entropy of the topological
black hole

𝑇 = −

(𝛼
2
+ 1)

2𝜋 (𝑛 − 1)
(
𝑘 (𝑛 − 2) (𝑛 − 1) 𝑏

−2𝛾

2 (𝛼2 − 1)
𝑟
2𝛾−1

+

+ Λ𝑏
2𝛾
𝑟
1−2𝛾

+
+ 𝑞
2
𝑏
−2(𝑛−2)𝛾

𝑟
(2𝑛−3)(𝛾−1)−𝛾

+
) ,

(12)

𝑆 =
𝑏
(𝑛−1)𝛾

𝜔
𝑛−1
𝑟
(𝑛−1)(1−𝛾)

+

4
, (13)

where 𝑟
+
represents the position of black hole horizon and

meets 𝑓(𝑟
+
) = 0. The electric potential

𝜙 =
𝑞𝑏
(3−𝑛)𝛾

𝑟𝜆
+
𝜆

, (14)
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Figure 1: Isotherms in 𝑃-V diagrams of charged topological dilaton black holes in 𝑛-dimensional AdS spacetime.

where 𝜆 = (𝑛−3)(1−𝛾)+1, and the pressure and volume are,
respectively,

𝑃 =
𝑛 (𝑛 − 1)

16𝜋𝑙2
,

𝑉 = −

(𝛼
2
+ 1) 𝑏

𝛾(𝑛+1)
𝜔𝑛−1

(𝛼2 − 𝑛)
𝑟
𝑛−𝛾(𝑛+1)

+
.

(15)

Using (8), (12), and (15) for a fixed charge 𝑄, one can
obtain the equation of state 𝑃(V, 𝑇),

𝑃 =
𝑇

V
+

𝑘 (𝑛 − 2) (𝛼
2
+ 1)
2

𝜋 (𝑛 − 1) (𝛼
2 − 1) V2

+
𝑄
2
𝑏
2(1−𝑛)𝛾

2𝜋

𝜔
2

𝑛−1

(
V (𝑛 − 1)

4 (𝛼2 + 1) 𝑏2𝛾
)

2(𝑛−1)(𝛾−1)/(1−2𝛾)

=
𝑇

V
−
𝐴

V2
+

𝐵

V2(𝑛−1)(1−𝛾)/(1−2𝛾)
,

(16)

where specific volume [13]

V =
4 (𝛼
2
+ 1) 𝑏

2𝛾

(𝑛 − 1)
𝑟
1−2𝛾

+
,

𝐴 =

𝑘 (𝑛 − 2) (𝛼
2
+ 1)
2

𝜋 (𝑛 − 1) (1 − 𝛼
2)
,

𝐵 =
𝑄
2
𝑏
2(1−𝑛)𝛾

2𝜋

𝜔
2

𝑛−1

(

4 (𝛼
2
+ 1) 𝑏

2𝛾

(𝑛 − 1)
)

2(𝑛−1)(1−𝛾)/(1−2𝛾)

.

(17)

In Figure 1 we plot the isotherms in 𝑃-V diagrams in terms
of state equation (16) at different dimension 𝑛, charge 𝑄,
and parameters 𝑏 and 𝛼. One can see from Figure 1 that
there are thermodynamic unstable segments with 𝜕𝑃/𝜕V >
0 on the isotherms as temperature 𝑇 < 𝑇

𝑐
, where 𝑇

𝑐

is critical temperature. And the negative pressure emerges

when temperature is below certain value �̃�. �̃� and the
corresponding specific volume Ṽ can be derived as follows:

Ṽ𝑑−2 =
𝐵

𝐴
(𝑑 − 1) ,

�̃� =
𝐴 (𝑑 − 2)

Ṽ (𝑑 − 1)
,

𝑑 =
2 (𝑛 − 1) (1 − 𝛾)

1 − 2𝛾
.

(18)

3. Two-Phase Equilibrium and Maxwell
Equal Area Law

The state equation of the charged topological black hole
is exhibited by the isotherms in Figure 1, in which the
thermodynamic unstable states with 𝜕𝑃/𝜕V > 0 may lead to
the system automatic expansion or contraction and negative
pressure situation has no physical meaning. The cases occur
also in van der Waals equation but they have been resolved
by Maxwell equal area law.

We extend Maxwell equal area law to 𝑛 + 1-dimensional
charged topological dilaton AdS black holes to establish a
phase transition process for the black hole thermodynamic
system. On the isotherm with temperature 𝑇

0
(𝑇
0
< 𝑇
𝑐
)

in 𝑃-V diagram, there exist two points (𝑃
0
, V
1
) and (𝑃

0
, V
2
)

meeting Maxwell equal area law,

𝑃0 (V2 − V1) = ∫
V2

V1
𝑃𝑑V, (19)

which results in

𝑃
0
(V
2
− V
1
) = 𝑇
0
ln(V2

V
1

) − 𝐴(
1

V
1

−
1

V
2

)

+
𝐵

𝑑 − 1
(
1

V𝑑−1
1

−
1

V𝑑−1
2

) ,

(20)
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where the two points (𝑃
0
, V
1
) and (𝑃

0
, V
2
) are seen as end-

points of isothermal phase transition. Considering

𝑃
0
=
𝑇
0

V1
−
𝐴

V2
1

+
𝐵

V𝑑
1

,

𝑃
0
=
𝑇
0

V2
−
𝐴

V2
2

+
𝐵

V𝑑
2

,

(21)

and setting 𝑥 = V
1
/V
2
, we can get

𝑇
0
V𝑑−1
2
𝑥
𝑑−1

= 𝐴V𝑑−2
2
𝑥
𝑑−2
(1 + 𝑥) − 𝐵

1 − 𝑥
𝑑

1 − 𝑥
, (22)

𝑃
0
𝑥
𝑑−1V𝑑
2
= 𝐴𝑥
𝑑−2V𝑑−2
2

− 𝐵
1 − 𝑥
𝑑−1

1 − 𝑥
, (23)

V𝑑−2
2

=
𝐵

𝐴

𝑑 (1 − 𝑥
𝑑−1
) (1 − 𝑥) + (𝑑 − 1) (1 − 𝑥

𝑑
) ln𝑥

𝑥𝑑−2 (𝑑 − 1) (1 − 𝑥) (2 (1 − 𝑥) + (1 + 𝑥) ln𝑥)

= 𝑓 (𝑥) .

(24)

Substituting (24) into (22) and setting 𝑇
0
= 𝜒𝑇
𝑐
(0 < 𝜒 < 1),

we obtain

𝜒𝑇
𝑐
𝑥
𝑑−1
𝑓
(𝑑−1)/(𝑑−2)

(𝑥)

= 𝐴𝑓 (𝑥) 𝑥
𝑑−2
(1 + 𝑥) − 𝐵

1 − 𝑥
𝑑

1 − 𝑥
.

(25)

When 𝑥 → 1, the corresponding state is critical point state.
From (24)

V𝑑−2
2

= V𝑑−2
1

= V𝑑−2
𝑐

= 𝑓 (1) =
𝑑 (𝑑 − 1) 𝐵

2𝐴
. (26)

Substituting (26) into (22) and (23), the critical temperature
and critical pressure are

𝑇
𝑐
=
2𝐴 (𝑑 − 2)

(𝑑 − 1)
(

2𝐴

𝑑 (𝑑 − 1) 𝐵
)

1/(𝑑−2)

,

𝑃
𝑐 =

𝐴 (𝑑 − 2)

𝑑
(

2𝐴

𝑑 (𝑑 − 1) 𝐵
)

2/(𝑑−2)

.

(27)

Combining (27) and (25) we can get

𝜒𝑥
𝑑−1
𝑓
(𝑑−1)/(𝑑−2)

(𝑥)
2𝐴 (𝑑 − 2)

(𝑑 − 1)
(

2𝐴

𝑑 (𝑑 − 1) 𝐵
)

1/(𝑑−2)

= 𝐴𝑓 (𝑥) 𝑥
𝑑−2
(1 + 𝑥) − 𝐵

1 − 𝑥
𝑑

1 − 𝑥
.

(28)

For a fixed 𝜒, that is, a fixed 𝑇0, we can get a certain 𝑥 from
(28); then, according to (23) and (24), V

2
and 𝑃
0
are obtained.

The corresponding V
1
can be obtained from 𝑥 = V

1
/V
2
. Join

the points (V
1
, 𝑃
0
) and (V

2
, 𝑃
0
) on isotherms in 𝑃-V diagram,

which generate an isobar representing a process of isothermal
phase transition or two-phase coexistence situation like that
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Figure 2: The simulated isothermal phase transition by isobars and
the boundary of two-phase coexistence region for the topological
dilaton black hole as 𝑛 = 5, 𝑏 = 1, 𝑄 = 1, 𝛼 = 0.01.

of van der Waals system. Figure 2 shows the isobars on the
background of isotherms at different temperature and the
boundary of the two-phase equilibrium region by the dot-
dashed curve as 𝑛 = 5, 𝑏 = 1,𝑄 = 1, 𝛼 = 0.01. The isothermal
phase transition process becomes shorter as temperature goes
up until it turns into a single point at a certain temperature,
which is the critical temperature, and the point corresponds
to a critical state of the charged topological dilaton AdS black
hole.

To analyze the effect of parameters 𝛼 and 𝑏 on the phase
transition processes, we take 𝜒 = 0.1, 0.3, 0.5, 0.7, 0.9 and
calculate the quantities 𝑥, V2, 𝑃0 as 𝛼 = 0.1, 0.3, 0.5 and 𝑏 =
0.2, 20, 50, respectively, when 𝑑 = 5, 𝑄 = 1. The results are
shown in Table 1.

From Table 1, we can see that 𝑥 is unrelated to 𝑏 but it
is incremental with 𝜒 and 𝛼. V

2
increases with increasing 𝑏

but decreases with increasing 𝜒 and 𝛼. 𝑃
0
is incremental with

𝜒 and 𝛼 but decreases with increasing 𝑏. So phase transition
process becomes shorter with increasing 𝛼, and it lengthens
as 𝑏 increases.

4. Two-Phase Coexistent Curves and
the Phase Change Latent

Due to lack of knowledge of chemical potential, 𝑃-𝑇 curves
of two-phase equilibrium coexistence for general thermody-
namic system are usually obtained by experiment. However,
the slope of the curves can be calculated by Clapeyron
equation in theory,

𝑑𝑃

𝑑𝑇
=

𝐿

𝑇 (V𝛽 − V𝛼)
, (29)

where the latent heat of phase change 𝐿 = 𝑇(𝑠𝛽−𝑠𝛼) and V𝛼, 𝑠𝛼

and V𝛽, 𝑠𝛽 are the molar volumes and molar entropy of phase
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Table 1: State quantities at phase transition endpoints with different parameters 𝛼 and 𝑏 as 𝑑 = 5, 𝑄 = 1.

𝑏 𝜒
𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5

𝑥 V
2

𝑃
0

𝑥 V
2

𝑃
0

𝑥 V
2

𝑃
0

0.2

0.9 0.531 1.49 0.145 0.546 1.36 0.220 0.577 1.13 0.502
0.7 0.266 2.62 0.0770 0.279 2.36 0.118 0.308 1.92 0.274
0.5 0.114 5.70 0.0295 0.121 5.06 0.0458 0.139 4.00 0.109
0.3 0.0253 24.2 0.00481 0.0279 20.9 0.00771 0.0340 15.6 0.0195
0.1 6.32𝐸 − 5 9.28𝐸3 4.55𝐸 − 6 8.25𝐸 − 5 6.78𝐸3 8.64𝐸 − 6 1.40𝐸 − 4 3.65𝐸3. 3.07𝐸 − 5

20

0.9 0.531 1.58 0.128 0.546 2.32 0.0753 0.577 4.67 0.0295
0.7 0.266 2.79 0.068 0.279 4.03 0.0404 0.308 7.91 0.0161
0.5 0.114 6.06 0.0261 0.121 8.65 0.0157 0.139 16.5 0.00640
0.3 0.0253 25.7 0.00426 0.0279 35.7 0.00264 0.0340 64.3 0.00115
0.1 6.32𝐸 − 5 9.87𝐸3 4.02𝐸 − 6 8.25𝐸 − 5 1.16𝐸4 2.95𝐸 − 6 1.40𝐸 − 4 1.50𝐸4 1.80𝐸 − 6

50

0.9 0.531 1.60 0.125 0.546 2.58 0.0608 0.577 6.19 0.0168
0.7 0.266 2.82 0.0665 0.279 4.49 0.0326 0.308 10.5 0.00915
0.5 0.114 6.13 0.0254 0.121 9.63 0.0126 0.139 21.9 0.00364
0.3 0.0253 26.1 0.00415 0.0279 39.7 0.00213 0.0340 85.3 6.52𝐸 − 4

0.1 6.32𝐸 − 5 9.99𝐸3 3.93𝐸 − 6 8.25𝐸 − 5 1.29𝐸4 2.39𝐸 − 6 1.40𝐸 − 4 1.99𝐸4 1.03𝐸 − 6

𝛼 and phase 𝛽, respectively. So Clapeyron equation provides
a direct experimental verification for some phase transition
theories.

Here we investigate the two-phase equilibrium 𝑃-𝑇
curves and the slope of them for the topological dilaton AdS
black holes. Rewrite (22) and (23) as

𝑃 = 𝑦
1 (𝑥) ,

𝑇 = 𝑦
2 (𝑥) ,

(30)

where

𝑦1 (𝑥) =

[𝐴𝑥
𝑑−2
𝑓 (𝑥) − 𝐵 (1 − 𝑥

𝑑−1
) / (1 − 𝑥)]

[𝑥𝑑−1𝑓𝑑/(𝑑−2) (𝑥)]
,

𝑦
2 (𝑥) =

[𝐴𝑓 (𝑥) 𝑥
𝑑−2
(1 + 𝑥) − 𝐵 (1 − 𝑥

𝑑
) / (1 − 𝑥)]

[𝑥𝑑−1𝑓(𝑑−1)/(𝑑−2) (𝑥)]
.

(31)

We plot the 𝑃-𝑇 curves with 0 < 𝑥 ≤ 1 in Figure 3 when
the parameters 𝑏, 𝛼, and 𝑄 take different values, respectively.
The curves represent two-phase equilibrium condition for the
topological dilaton AdS black holes and the terminal points
of the curves represent corresponding critical points.

Figure 3 shows that, for fixed 𝛼 and 𝑄, both the critical
temperature and critical pressure decrease as 𝑏 increases.
Both critical pressure and critical temperature are incremen-
tal with increasing 𝛼, but two-phase equilibrium pressure
decreases with increasing 𝛼 at certain temperature. The
change of two-phase equilibrium curve with parameter 𝑄 is
similar to that with parameter 𝑏. As 𝑄 becomes larger the
critical pressure and critical temperature become smaller, but
at certain temperature the corresponding pressure on 𝑃-𝑇
curves is larger for larger 𝑄.

From (31), we obtain

𝑑𝑃

𝑑𝑇
=
𝑦


1
(𝑥)

𝑦


2
(𝑥)
, (32)

where 𝑦(𝑥) = 𝑑𝑦/𝑑𝑥. Equation (32) represents the slope of
two-phase equilibrium 𝑃-𝑇 curve as function of 𝑥.

From (29) and (32) we can get the latent heat of phase
change as function of 𝑥 for 𝑛 + 1-dimensional charged
topological dilaton AdS black hole,

𝐿 = 𝑇 (1 − 𝑥)
𝑦


1
(𝑥)

𝑦


2
(𝑥)
𝑓
1/(𝑑−2)

(𝑥)

= (1 − 𝑥)
𝑦


1
(𝑥)

𝑦


2
(𝑥)
𝑦2 (𝑥) 𝑓

1/(𝑑−2)
(𝑥) .

(33)

The latent heat of phase change varies with temperature for
some usual thermodynamic systems, and the rate of variation

𝑑𝐿

𝑑𝑇
= 𝐶
𝛽

𝑃
− 𝐶
𝛼

𝑃
+
𝐿

𝑇

− [(
𝜕V𝛽

𝜕𝑇
)

𝑃

− (
𝜕V𝛼

𝜕𝑇
)

𝑃

]
𝐿

V𝛽 − V𝛼
,

(34)

where 𝐶𝛽
𝑃
and 𝐶𝛼

𝑃
are molar heat capacity of phase 𝛽 and

phase 𝛼. For 𝑛 + 1-dimensional charged topological dilaton
AdS black holes, the rate of variation of latent heat of phase
transition with temperature can be obtained from (33) and
(30):

𝑑𝐿

𝑑𝑇
=
𝑑𝐿

𝑑𝑥

𝑑𝑥

𝑑𝑇
=
𝑑𝐿

𝑑𝑥

1

𝑦


2
(𝑥)
. (35)

Using (33) and (30) we plot 𝐿-𝑇 curves in Figure 4 as
the parameters 𝑏, 𝛼, and 𝑄 take some certain values. From
Figure 4 one can see that the effects of 𝑇 and the parameters
𝛼, 𝑏, and𝑄 on phase change latent heat 𝐿. When 𝑇 increases,
𝐿 is not monotonous but increases firstly and then decreases
to zero as 𝑇 → 𝑇

𝑐
. 𝐿 decreases with increasing 𝑏 as other

parameters 𝛼 and 𝑄 are fixed. Similarly 𝐿 decreases with
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Figure 3: Two-phase equilibrium curves in 𝑃-𝑇 diagrams for the topological dilaton black hole in 5-dimensional AdS spacetime. In each
diagram, the longest curves (red) correspond to 𝑏 = 0.01, the curves with medium length (green) meet 𝑏 = 0.02, and the shortest ones (blue)
are with 𝑏 = 0.05.

increasing 𝑄 for fixed 𝑏 and 𝛼. But 𝐿 is increment with 𝛼 for
certain 𝑏 and𝑄. Among the parameters 𝑏,𝛼, and𝑄, 𝐿 receives
the most effect from 𝑏, then 𝛼, and lastly 𝑄.

5. Discussions and Conclusions

The charged topological dilaton AdS black hole is regarded
as a thermodynamic system, and its state equation has been
derived. But when temperature is below critical temperature,

thermodynamic unstable situation appears on isotherms,
and when temperature reduces to a certain value negative
pressure emerges, which can be seen in Figures 1 and 2.
However, by Maxwell equal law we established a phase
transition process and the problems can be resolved. The
phase transition process at a defined temperature happens at a
constant pressure, where the system specific volume changes
along with the ratio of the two coexistent phases. According
to Ehrenfest scheme the phase transition belongs to the first-
order one. We draw the isothermal phase transition process
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Figure 4: 𝐿-𝑇 curves for the topological dilaton black hole in 𝑛-dimensional AdS spacetime as 𝑛 = 5. In each diagram, the highest curves
(red) correspond to 𝑏 = 0.01, the middle curves (green) meet 𝑏 = 0.02, and the lowest curves (blue) are with 𝑏 = 0.05.

and depict the boundary of two-phase coexistence region in
Figure 2.

Taking black hole as an thermodynamic system, many
investigations show that the phase transition of some black
holes in AdS spacetime and dS spacetime is similar to that
of van der Waals-Maxwell liquid-gas system [3, 5, 13–20, 36–
38, 40–44], and phase transition of some otherAdS black hole
is alike to that of multicomponent superfluid or supercon-
ducting system [6, 8–10]. It would make sense if we can seek
some observable system, such as van der Waals gas, to back
analyze physical nature of black holes by their similar thermo-
dynamic properties. That would help to further understand
the thermodynamic quantities, such as entropy, temperature,

and heat capacity, of black holes and that is significant for
improving self-consistent thermodynamics theory of black
holes.

Clapeyron equation of some usual thermodynamic sys-
tems agree well with experimental result. In this paper
we have plotted the two-phase equilibrium curves in 𝑃-𝑇
diagrams, derived the slope of the curves, and acquired
information on latent heat of phase change by Clapey-
ron equation, which could create condition for find-
ing some usual thermodynamic systems similar to black
holes in thermodynamic properties and provide theoret-
ical basis for experimental research on analogous black
holes.
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