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We show the equivalence between Fujikawa’s method for calculating the scale anomaly and the diagrammatic approach to
calculating the effective potential via the background field method, for an 𝑂(𝑁) symmetric scalar field theory. Fujikawa’s method
leads to a sum of terms, each one superficially in one-to-one correspondence with a vacuum diagram of the 1-loop expansion.
From the viewpoint of the classical action, the anomaly results in a breakdown of the Ward identities due to scale-dependence of
the couplings, whereas, in terms of the effective action, the anomaly is the result of the breakdown of Noether’s theorem due to
explicit symmetry breaking terms of the effective potential.

1. Introduction

Fujikawa showed that, within the path integral formalism,
all anomalies are the result of noninvariance of the measure
under symmetry transformations [1–3]. The resulting Jaco-
bian then spoils the naive Ward identities. It is also known
that the quantum effective action preserves the symmetries
of the classical action, provided that the measure is invariant
under the symmetry transformations [4]. Therefore, there
should be a relationship between Fujikawa’s method and
the noninvariant terms of the quantum effective action. We
investigate this relationship in the context of 𝑂(𝑁), 𝜆𝜙4
theory, by comparing, term by term, the Taylor expansion
of the Fujikawa determinant with all diagrams in the 1-loop
expansion of the quantum effective potential.

The reason for embarking on this comparison is that a
framework for applying Fujikawa’s method to nonrelativistic,
classically scale-invariant systems was undertaken recently
[5–7].While the quantum effective action is a standard tool in
nonrelativistic physics (e.g., see [8, 9]), Fujikawa’s method is
not. Therefore a comparison of the two approaches, without
a coupling to a gravitational background as is done for the
relativisitic case, might be helpful in a first approximation
as a bridge between the two methods in the context of
nonrelativistic physics.

It is well known that for the chiral anomaly the choice
of regulating function 𝑓(�𝐷

2

/Λ
2
) one uses to regulate the

Jacobian is arbitrary, except for a few conditions governing
the behavior of 𝑓 and its derivatives at 0 and ∞ that
are quite reasonable [10]. The argument of the regulating
function however is not arbitrary—one must choose the
gauge invariant�𝐷. The anomaly calculated in this manner is
both finite and exact.

For the scale anomaly things are not as clear. There is
no symmetry that tells you what variable must go into the
regulating function. Moreover, if one Taylor expands the
anomaly as one does in the chiral case, certain terms are
infinite. If one ignores those terms, then one can recover the
anomaly, but it is not exact, holding only to 1-loop order. One
generally chooses the quadratic part of effective action for the
argument since it characterizes 1-loop effects [11].

In this paper we attempt to explore the connection
between certain terms in the effective potential when it is
expanded by the number of vertices and certain terms in the
Jacobian of Fujikawa’s method when it is Taylor expanded,
thereby clarifying the statement that putting the quadratic
part of the effective action in the regulating function captures
the 1-loop effects. Also, we consider 𝑂(𝑁) as opposed to a
single scalar field because, despite the problems of Fujikawa’s
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method for the case of the scale anomaly compared to the
chiral anomaly, such as only capturing the 1-loop result, it
still retains a universal quality in that it can capture the 1-loop
result for any𝑁.

In Sections 2 and 3, we give a quick review of Fujikawa’s
method and the background field method for calculating the
effective action. In Section 4 we apply Fujikawa’s method to
calculate the anomaly and the 𝛽 function of 𝑁 scalar fields
interacting via an𝑂(𝑁) symmetric𝜆𝜙4 potential. In Section 5
weuse the backgroundfieldmethod towrite an expression for
the effective potential, organized by the number of vertices,
and compare this result with the Taylor expansion resulting
from Fujikawa’s method to derive conditions on the Fujikawa
regulator for the two approaches to give the same result.
Finally, in the sixth section, we applyNoether’s theorem to the
effective action and compare it to anomalous scale-breaking
of the classical action.

2. Fujikawa’s Method

For simplicity we will demonstrate this method for a single
scalar field: the generalization to multiple fields is straight-
forward. With a change of variables given by 𝜙(𝑥) = 𝜙(𝑥) +
𝜖𝛿𝜙(𝑥),

∫ [𝑑𝜙] 𝑒
𝑖𝑆[𝜙]
= ∫ [𝑑𝜙


]



𝛿𝜙

𝛿𝜙



𝑒
𝑖𝑆[𝜙(𝜙


)]

= ∫ [𝑑𝜙

]



𝛿
𝑑
(𝑥 − 𝑦) − 𝜖

𝛿𝛿𝜙

(𝑥)

𝛿𝜙 (𝑦)



𝑒
𝑖𝑆[𝜙

−𝜖𝛿𝜙

]

= ∫ [𝑑𝜙]



𝛿
𝑑
(𝑥 − 𝑦) − 𝜖

𝛿𝛿𝜙 (𝑥)

𝛿𝜙 (𝑦)



𝑒
𝑖𝑆[𝜙−𝜖𝛿𝜙]

= ∫ [𝑑𝜙] 𝑒
−𝜖 ∫ 𝑑

𝑑
𝑥(𝛿𝛿𝜙/𝛿𝜙)

𝑒
𝑖𝑆[𝜙]
𝑒
−𝑖𝜖 ∫ 𝑑

𝑑
𝑥(𝛿𝑆/𝛿𝜙)𝛿𝜙

= ∫ [𝑑𝜙] 𝑒
𝑖𝑆[𝜙]
(1 − 𝜖∫𝑑

𝑑
𝑥
𝛿𝛿𝜙

𝛿𝜙
− 𝑖𝜖 ∫ 𝑑

𝑑
𝑥
𝛿𝑆

𝛿𝜙
𝛿𝜙) .

(1)

Since this holds for any volume 𝑉, it follows that

⟨
𝛿𝑆

𝛿𝜙
𝛿𝜙⟩ = 𝑖⟨

𝛿𝛿𝜙 (𝑥)

𝛿𝜙 (𝑦)

𝑦=𝑥

⟩. (2)

If 𝜙 → 𝜙 + 𝜖𝛿𝜙 is a symmetry transformation, then
(𝛿𝑆/𝛿𝜙)𝛿𝜙 = −𝜕

𝜇
𝑗
𝜇, so that Fujikawa’s method tells us that

⟨𝜕
𝜇
𝑗
𝜇
⟩ = −𝑖⟨

𝛿𝛿𝜙 (𝑥)

𝛿𝜙 (𝑦)

𝑦=𝑥

⟩. (3)

The transformations we are interested in are dilations for 𝑁
scalar fields:

𝑥
𝜇
= 𝑒
−𝜌
𝑥
𝜇

𝜙


𝑖
(𝑥

) = 𝑒
𝜌
𝜙
𝑖
(𝑥) ,

(4)

so that the Jacobian is

𝐽 =
𝛿𝛿𝜙
𝑖
(𝑥)

𝛿𝜙
𝑗
(𝑦)
= (1 + 𝑥

𝜇
𝜕
𝜇
) 𝛿
4
(𝑥 − 𝑦) 𝐼

𝑛

≡ 𝜃𝛿
4
(𝑥 − 𝑦) 𝐼

𝑛
,

(5)

where 𝐼
𝑛
is the 𝑁-dimensional identity matrix and 𝜃 = (1 +

𝑥
𝜇
𝜕
𝜇
).

3. Background Field Method

We briefly review some facts about the effective action. The
generating functional 𝑊[𝐽] for the connected correlation
functions can be expressed via the path integral as

𝑒
𝑖𝑊[𝐽]

= ∫ [𝑑𝜙] 𝑒
𝑖𝑆[𝜙]+𝑖 ∫ 𝐽𝜙

. (6)

The effective action is defined as the Legendre transform:

Γ [𝜙
𝑐
] = 𝑊 [𝐽 (𝜙

𝑐
)] − ∫ 𝐽 (𝜙

𝑐
) 𝜙
𝑐
,

𝜙
𝑐
=
𝛿𝑊

𝛿𝐽
= ⟨𝜙⟩

𝐽
.

(7)

Γ[𝜙
𝑐
] obeys the classical equations of motion:

𝛿Γ

𝛿𝜙
𝑐

= −𝐽, (8)

and it can be expanded as

Γ [𝜙
𝑐
] =

∞

∑

𝑛=0

1

𝑛!
∫ 𝑑𝑥
1
⋅ ⋅ ⋅ 𝑑𝑥

𝑛
𝐺
(𝑛)

1PI (𝑥1, . . . , 𝑥𝑛)

⋅ 𝜙
𝑐
(𝑥
1
) ⋅ ⋅ ⋅ 𝜙

𝑐
(𝑥
𝑛
) = ∫𝑑𝑥(−𝑉eff (𝜙𝑐) +

1

2
𝑍 (𝜙
𝑐
)

⋅ 𝜕
𝜇
𝜙
𝑐
𝜕
𝜇
𝜙
𝑐
+ ⋅ ⋅ ⋅) ,

(9)

which shows that Γ[𝜙
𝑐
] is the generating functional for the 1PI

graphs and that the effective potential𝑉eff is the negative sum
of all 1PI graphs with all external lines set to 0 momentum.

In the background field method (for a review of the back-
ground field method, see [12]), we define a new generating
functional �̃�[𝐽]:

𝑒
𝑖�̃�[𝐽]

= ∫ [𝑑𝜙] 𝑒
𝑖𝑆[𝜙+�̂�]+𝑖 ∫ 𝐽𝜙

= ∫ [𝑑𝜙] 𝑒
𝑖𝑆[𝜙]+𝑖 ∫ 𝐽(𝜙−�̂�)

= 𝑒
𝑖𝑊[𝐽]
𝑒
−𝑖𝐽�̂�
.

(10)

Application of (7) to �̃�[𝐽] then gives the following relation-
ships:

�̃� [𝐽] = 𝑊 [𝐽] − 𝐽�̂�,

�̃�
𝑐
= 𝜙
𝑐
− �̂�,

Γ̃ [�̃�
𝑐
, �̂�] = Γ [�̃�

𝑐
+ �̂�] .

(11)
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Setting �̃�
𝑐
= 0 for the effective action then gives us the result

we will need:

Γ [�̂�] = Γ̃ [0, �̂�] , (12)

which states that, to calculate the effective action Γ[�̂�]
associated with the classical action 𝑆[�̂�], we need only to
calculate the 1PI vacuum graphs associated with the classical
action 𝑆[𝜙 + �̂�], that is, the original action shifted by a
background �̂�. In the following section we will relabel 𝜙 in
𝑆[𝜙 + �̂�] as 𝜂.

4. Fujikawa Calculation

Consider the conformally invariant Lagrangian

L =
1

2
𝜕
𝜇
𝜙
𝑖
𝜕
𝜇
𝜙
𝑖
−
𝜆

4
(𝜙
𝑖
𝜙
𝑖
)
2

, (13)

where repeated indices are summed and 𝑖 = 1, 2, . . . , 𝑁. The
quadratic part of the action 𝑆 expanded around the constant
background fields �̂�

𝑖
(𝜙
𝑖
= �̂�
𝑖
+ 𝜂
𝑖
) is given by

�̃�
2
=
1

2

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥𝑑
4
𝑦

𝛿
2
𝑆

𝛿𝜙
𝑗
(𝑥) 𝛿𝜙

𝑖
(𝑦)
𝜂
𝑗
(𝑥) 𝜂
𝑖
(𝑦) , (14)

which can be reexpressed in terms of the Lagrangian:

�̃�
2
=
1

2

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥(
𝜕
2L

𝜕𝜙
𝑖
𝜕𝜙
𝑗

𝜂
𝑖
(𝑥) 𝜂
𝑗
(𝑥)

+ 2
𝜕
2L

𝜕𝜙
𝑖
𝜕𝜕
𝜇
𝜙
𝑗

𝜂
𝑖
(𝑥) 𝜕
𝜇
𝜂
𝑗
(𝑥)

+
𝜕
2L

𝜕𝜕]𝜙𝑖𝜕𝜕𝜇𝜙𝑗
𝜕]𝜂𝑖 (𝑥) 𝜕𝜇𝜂𝑗 (𝑥)) .

(15)

Plugging (13) into (15) gives

�̃�
2
=
1

2

⋅

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥 ([−2𝜆�̂�

𝑖
�̂�
𝑗
− 𝜆 (�̂�

𝑘
�̂�
𝑘
) 𝛿
𝑖𝑗
] 𝜂
𝑖
(𝑥) 𝜂
𝑗
(𝑥)

+ 𝜕
𝜇
𝜂
𝑖
(𝑥) 𝜕
𝜇
𝜂
𝑖
(𝑥)) =

1

2

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥𝜂
𝑖
(𝑥) (𝐵

𝑖𝑗
+ 𝐷
𝑖𝑗
)

⋅ 𝜂
𝑗
(𝑥) =

1

2

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥𝜂
𝑖
(𝑥)𝑀

𝑖𝑗
𝜂
𝑗
(𝑥) ,

(16)

where

𝐷
𝑖𝑗
= −𝛿
𝑖𝑗
𝜕
2
,

𝐵
𝑖𝑗
= [−2𝜆�̂�

𝑖
�̂�
𝑗
− 𝜆 (�̂�

𝑘
�̂�
𝑘
) 𝛿
𝑖𝑗
] .

(17)

We choose𝑀
𝑖𝑗
as the argument of our regulating matrix so

that

A = tr [𝑅(𝑀
Λ2
) 𝜃𝛿
4
(𝑥 − 𝑦) 𝐼

𝑛
]

𝑥=𝑦
. (18)

Going into Fourier space,

A = tr∫ 𝑑
4
𝑘

(2𝜋)
4
[𝑅(

𝑀

Λ2
) 𝜃𝑒
𝑖𝑘⋅(𝑥−𝑦)

𝐼
𝑛
]

𝑥=𝑦

= tr∫ 𝑑
4
𝑘

(2𝜋)
4
[𝑅(

𝑀

Λ2
) (1 + 𝑥

𝜇
𝑘
𝜇
) 𝐼
𝑛
]

= Λ
4tr∫ 𝑑

4
𝑘

(2𝜋)
4
[𝑅(𝐷 +

𝐵

Λ2
) 𝐼
𝑛
] ,

(19)

where in the second line 𝑦 has been set equal to 𝑥 and 𝐷
𝑖𝑗
=

−𝛿
𝑖𝑗
𝜕
2
→ 𝛿
𝑖𝑗
𝑘
2. 𝐷
𝑖𝑗
is even in 𝑘2; therefore the 𝑥

𝜇
𝑘
𝜇
term

vanishes upon integration. Since [𝐷, 𝐵] = 0, 𝑅(𝐷 + 𝐵/Λ2)
admits a power series expansion about𝐷:

A = Λ
4tr∫ 𝑑

4
𝑘

(2𝜋)
4
[𝑅 (𝐷) + 𝑅


(𝐷)

𝐵

Λ2

+
1

2!
𝑅

(𝐷) (

𝐵

Λ2
)

2

+ ⋅ ⋅ ⋅] .

(20)

𝐷 is diagonal; hence we can write 𝑅(𝑛)(𝐷) = 𝑓(𝑛)(𝑘2)𝐼
𝑛
for

some scalar function 𝑓(𝑘2), so that (20) becomes

A = Λ
4
𝑁∫

𝑑
4
𝑘

(2𝜋)
4
𝑓 (𝑘
2
) + Λ
2
(tr𝐵)∫ 𝑑

4
𝑘

(2𝜋)
4
𝑓

(𝑘
2
)

+
1

2!
(tr𝐵2) ∫ 𝑑

4
𝑘

(2𝜋)
4
𝑓

(𝑘
2
) + ⋅ ⋅ ⋅

= Λ
4
𝑁∫

𝑑
4
𝑘

(2𝜋)
4
𝑓 (𝑘
2
)

+ Λ
2
(tr𝐵)∫

Ω
3
𝑑𝑘
2

2 (2𝜋)
4
𝑘
2
𝑓

(𝑘
2
)

+
1

2!
(tr𝐵2) ∫

Ω
3
𝑑𝑘
2

2 (2𝜋)
4
𝑘
2
𝑓

(𝑘
2
)

+

∞

∑

𝑛=3

1

Λ(2𝑛−4)

1

𝑛!
(tr𝐵𝑛) ∫

Ω
3
𝑑𝑘
2

2 (2𝜋)
4
𝑘
2
𝑓
(𝑛)
(𝑘
2
) ,

(21)

where Ω
3
= 2𝜋
2 is the solid angle. The minimum conditions

on 𝑓(𝑘2) required to produce the anomaly are

𝑓 (0) = 1,

𝑓 (∞) = 0,

[𝑘
2
𝑓

(𝑘
2
)]


∞

0
= 0,

(22)
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(a) (b)

Figure 1: Lowest-loop 1PI vacuum graphs with 3 and 4 vertices.

which are the same conditions for the chiral anomaly [10].
However, for simplicity we will specialize to 𝑓(𝑘2) = 𝑒−𝑘

2

,
which satisfies (22) but, in addition, has the nice property that

∫𝑑𝑘
2
𝑘
2
𝑓
(𝑛)
(𝑘
2
) = (−1)

𝑛
, (23)

so that plugging this regulator into (21) gives us

A =
∞

∑

𝑛=0

(−1)
𝑛

Λ(2𝑛−4)

1

𝑛!
(tr𝐵𝑛)

Ω
3

2 (2𝜋)
4

= Λ
4
(tr𝐵0)

Ω
3

2 (2𝜋)
4
− Λ
2
(tr𝐵)

Ω
3

2 (2𝜋)
4

+
1

2!
(tr𝐵2)

Ω
3

2 (2𝜋)
4

+

∞

∑

𝑛=3

(−1)
𝑛

Λ(2𝑛−4)

1

𝑛!
(tr𝐵𝑛)

Ω
3

2 (2𝜋)
4
.

(24)

The first term in (24) is independent of the coupling 𝜆 so
it would be present even in the free theory. Since the free
theory is taken to be nonanomalous, we ignore this term [13].
The second term, proportional to Λ2, is removed by mass
renormalization: the precise meaning of this is discussed
in the next section. The third term is the only remaining
nonvanishing term in the Λ → ∞ limit and is independent
of Λ. Evaluating (tr𝐵2) = 𝐵

𝑖𝑗
𝐵
𝑗𝑖
by substituting in 𝐵

𝑖𝑗
from

(17) gives

A =
1

2!
[𝜆
2
(𝑁 + 8) (�̂�

𝑘
�̂�
𝑘
)
2

]
Ω
3

2 (2𝜋)
4

=
𝜆
2
(𝑁 + 8)

32𝜋2
(�̂�
𝑘
�̂�
𝑘
)
2

= 𝛽 (𝜆)

(�̂�
𝑘
�̂�
𝑘
)
2

4

= 𝛽 (𝜆)
𝜕H
𝐼

𝜕𝜆
,

(25)

where 𝛽(𝜆) = 𝜆2(𝑁 + 8)/8𝜋2 and H
𝐼
is the interacting

Hamiltonian.

5. Equivalence of Fujikawa with
Background Field Calculation

Wenowapply the backgroundfieldmethod to the Lagrangian
in (13). We make the shift 𝜙

𝑖
(𝑥) = �̂�

𝑖
+ 𝜂
𝑖
(𝑥) so that the 𝑂(𝑁)

Lagrangian becomes

L̃ =
1

2

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥𝜂
𝑖
(𝑥) (𝐷

𝑖𝑗
+ 𝐵
𝑖𝑗
) 𝜂
𝑗
(𝑥)

+L (�̂�
𝑖
, 𝜕
𝜇
�̂�
𝑖
) +L

𝑇
+L
𝐼
.

(26)

In the above expression, L(�̂�
𝑖
, 𝜕
𝜇
�̂�
𝑖
) is the original 𝑂(𝑁)

Lagrangian with the background field substituted for 𝜙. This
term has no dependence on 𝜂 and contributes to the 1PI
vacuum graphs at tree-level (i.e., with respect to the 𝜂 field,
this term is like a cosmological constant).L

𝑇
are terms that

contain only one 𝜂 field: these produce tadpole diagrams
which are reducible, soL

𝑇
can be neglected in calculation of

1PI graphs. 𝐿
𝐼
are terms involving 𝜂3 and 𝜂4 interactions. For

1PI vacuum graphs, these interactions contribute beginning
at the 2-loop level and hence can be ignored for a 1-loop
calculation (see Figure 1).

So the Lagrangian we will use to calculate the 1PI vacuum
graphs at 1-loop is

L̃ =
1

2

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥𝜂
𝑖
(𝑥)𝐷
𝑖𝑗
𝜂
𝑗
(𝑥)

+
1

2

𝑁

∑

𝑖,𝑗=1

∫𝑑
4
𝑥𝜂
𝑖
(𝑥) 𝐵
𝑖𝑗
𝜂
𝑗
(𝑥) .

(27)

Since the background field �̂�
𝑖
(contained in 𝐵

𝑖𝑗
of (17)) is

constant and the Lagrangian is only quadratic in 𝜂, we could
sum all the 1-loop vacuum graphs at once by calculating the
determinant 𝐷

𝑖𝑗
+ 𝐵
𝑖𝑗
[14]. However, instead we choose as

the propagator𝐷−1
𝑖𝑗

and treat interaction 𝐵
𝑖𝑗
as an interaction

vertex that joins two propagators and categorize the loops by
the number of vertices 𝐵

𝑖𝑗
which corresponds to twice the

number of background fields �̂� (see Figure 2). We do this to
match the result of (24) from Fujikawa’s method, which is an
expansion in powers of 𝐵

𝑖𝑗
.

The Feynman rules are straightforward. For each vertex
we write 𝑖𝐵

𝑖𝑗
, as the 1/2 in (27) accounts for swapping

connections of the two propagators to which each vertex
connects. For each propagator we write 𝑖𝐷−1

𝑖𝑗
, where the 1/2

takes care of which end of the propagator connects to a vertex.
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(a) (b) (c)

Figure 2: 1-loop 1PI vacuum graphs with 1, 2, and 3 vertices.

An overall symmetry factor is required that depends on the
number of vertices 𝐵

𝑖𝑗
. This symmetry factor is 1/2𝑛 where 𝑛

is the number of vertices: the 2 is due to reflection symmetry
and 𝑛 to cyclic permutation of the vertices.

For an 𝑛-vertex diagram,

−𝑖𝑉
𝑛

eff =
1

2𝑛
∫
𝑖𝑑
4
𝑘

(2𝜋)
4
(
𝑖

−𝑘2
)

𝑛

tr [(𝑖𝐵)𝑛]

=
𝑖

2𝑛

Ω
3

(2𝜋)
4
tr𝐵𝑛 (∫

Λ

0

𝑑𝑘
𝑘
3

𝑘2𝑛
) ,

(28)

where a Wick rotation was performed. The anomaly in
Fujikawa’s method was given in (24) as A = ∑

∞

𝑛=0
((−1)
𝑛
/

2𝑛!)(Ω
3
/(2𝜋)
4
)(tr𝐵𝑛)Λ4−2𝑛. Following the renormalization

group analysis of [15], we apply the operator 𝜕/𝜕 lnΛ =

Λ(𝜕/𝜕Λ) to (28). Then, from the fundamental theorem of
calculus Λ(𝜕/𝜕Λ) ∫Λ

0
(𝑘
3
/𝑘
2𝑛
) = Λ

4−2𝑛, we get the following
result:

−
𝜕

𝜕 lnΛ
𝑉eff =

∞

∑

𝑛=1

1

2𝑛

Ω
3

(2𝜋)
4
(tr𝐵𝑛) Λ4−2𝑛. (29)

Only for 𝑛 = 2 does this match the anomaly given by
Fujikawa’s method. Indeed, it is impossible to construct
a regulator in Fujikawa’s method that exactly produces (29).
However, the terms for 𝑛 ≥ 3 vanish in the limit Λ →
∞. Since diagrams for which 𝑛 ≥ 3 are convergent,
they do not contribute to the anomaly, and in Fujikawa’s
method they correspond to the vanishing 𝑛 ≥ 3 terms in
the Taylor expansion. The anomaly is contained entirely in
Figure 2(b).The quadratic divergence in Figure 2(a) is a well-
known artifact of cutoff regularization and can be avoided
by dimensional regularization, where the loop integral is
zero [16]. However, Fujikawa’s method does not work with
dimensional regularization since, in 𝑑 − 2𝜖 dimensions,
the 𝛿-function is zero [17] (however, in the nonrelativistic
context, this need not be the case [18]). Within the context of
dimensional regularization, the anomaly arises from the fact
that 𝜆𝜙4 in 𝑑−2𝜖 dimensions is not conformally invariant [19]
rather than through the noninvariance of the path integral
measure.

This can readily be seen by calculating the effective
potential. The effective potential is given by summing across
all 𝑛 of (28):

𝑉eff = −
∞

∑

𝑛=1

1

2𝑛
∫
𝑑
4
𝑘

(2𝜋)
4
(
1

𝑘2
)

𝑛

tr𝐵𝑛. (30)

One can swap the integral with the summation: this avoids
the need for an IR regulator, as the summation results
in a log which is IR-free. However, we are interested in
the contribution of each 𝑛-vertex diagram—therefore we
introduce a fictitious mass𝑚 to regulate the theory in the IR
and a cutoff Λ to regulate the theory in the UV:

−𝑉eff =
∞

∑

𝑛=1

1

2𝑛
∫
𝑑
4
𝑘

(2𝜋)
4
(

1

𝑘2 + 𝑚2
)

𝑛

tr𝐵𝑛

=
1

2
∫
𝑑
4
𝑘

(2𝜋)
4
(

1

𝑘2 + 𝑚2
) tr𝐵

+
1

4
∫
𝑑
4
𝑘

(2𝜋)
4
(

1

𝑘2 + 𝑚2
)

2

tr𝐵2

+

∞

∑

𝑛=3

1

2𝑛
∫
𝑑
4
𝑘

(2𝜋)
4
(

1

𝑘2 + 𝑚2
)

𝑛

tr𝐵𝑛.

(31)

The integrals are standard, and the result in the𝑚2 → 0 limit
is

1

2
∫
𝑑
4
𝑘

(2𝜋)
4
(

1

𝑘2 + 𝑚2
) tr𝐵 = − Λ

2

32𝜋2
tr𝐵,

1

4
∫
𝑑
4
𝑘

(2𝜋)
4
(

1

𝑘2 + 𝑚2
)

2

tr𝐵2

=
1

64𝜋2
[1 − log(Λ

2

𝑚2
)] tr𝐵2,

∞

∑

𝑛=3

1

2𝑛
∫
𝑑
4
𝑘

(2𝜋)
4
(

1

𝑘2 + 𝑚2
)

𝑛

tr𝐵𝑛

=
1

128𝜋2
tr [−3𝐵2 + 2𝐵2log(−𝐵

𝑚2
)] .

(32)

One can see that diagrams with 𝑛 ≥ 3 are independent of
Λ and that −𝜕/𝜕 lnΛ acting on 𝑛 = 2 produces the anomaly.
Both tr𝐵 = −𝜆(𝑁+2)𝜙

𝑘
𝜙
𝑘
and tr𝐵2 = 𝜆2(𝑁+8)(𝜙

𝑘
𝜙
𝑘
)
2 are of

the form of the original Lagrangian, so they can be cancelled
by counterterms. Adding all the terms in (32) gives

𝑉eff = −
Λ
2

32𝜋2
tr𝐵 − tr𝐵2

128𝜋2
+
1

64𝜋2
tr [𝐵2 log(−𝐵

Λ2
)] . (33)

The result is independent of 𝑚2 as it should be. The 𝑛 ≥ 3
terms have produced a nonpolynomial log interaction, and
the 𝑛 = 2 term has provided the scale for this interaction.
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6. Noether’s Theorem and
Dimensional Transmutation

The field 𝜙
𝑐
obeys the classical equations of motion (8),

with the effective action Γ[𝜙
𝑐
] replacing the classical one

𝑆[𝜙
𝑐
]. Therefore, Noether’s theorem, which is based on the

classical EOM, would apply if Γ[𝜙
𝑐
] retains the symmetry.

In general the quantum corrections will create terms in
Γ[𝜙
𝑐
] that explicitly break scale symmetry. The measure of

symmetry-breaking is∑𝑁
𝑖=1
(𝜕𝑉eff/𝜕𝜙𝑖𝑐)𝜙𝑖𝑐 −4𝑉eff , which gives

zero for the classically scale-invariant tree-level contribution
𝑉 = (𝜆/4)(𝜙

𝑖𝑐
𝜙
𝑖𝑐
)
2 to the effective potential. Specializing to

𝑁 = 1, effective potential (33) reads

𝑉eff =
𝜆𝜙
4

𝑐

4
+
9𝜆
2
𝜙
4

𝑐

64𝜋2
(ln(

3𝜆𝜙
2

𝑐

Λ2
) −
1

2
) . (34)

Applying ∑𝑁
𝑖=1
(𝜕𝑉eff/𝜕𝜙𝑖𝑐)𝜙𝑖𝑐 − 4𝑉eff to (34), we get the scale

anomaly:

A =
9𝜆
2
𝜙
4

𝑐

32𝜋2
, (35)

in agreement with (25). From the viewpoint of classical
physics, a term like 𝜙4

𝑐
ln𝑀2 is scale-invariant, acting like a

𝜙
4

𝑐
potential. It is 𝜙4

𝑐
ln𝜙2
𝑐
term that breaks scale-invariance.

Both terms are related since dimensional transmutation of the
𝑛 = 2 graph provides the scale for the 𝑛 ≥ 3 graphs which
generate nonpolynomial interactions.

7. Conclusion

The scale anomaly and anomalies in general are the result of
the failure tomaintain classical symmetry upon quantization.
One cannot regularize the system in a way to preserve all
the symmetries of the theory. The absence of dimensionful
parameters in the action is sufficient for the classical theory
to be scale-invariant. However, the introduction of a dimen-
sionful parameter through regularization can provide a scale
to support noninvariant 𝜙2𝑛 interactions with 𝑛 ≥ 3 in the
𝑂(𝑁) quantum theory. Fujikawa’s method is equivalent to the
1-loop calculation of the anomaly in the effective potential.

We plan to investigate these connections and apply the
insights gained to the nonrelativistic case in order to study
questions of interest in atomic and molecular physics, in
particular in the field of ultracold atoms where, unlike the
situation in particle physics, the manifestations of the scale
anomaly in these systems have only now been accessible to
experimentalists in this decade.
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Hernández, and C. R. Ordóñez, “Anomalous commutator
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