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The restrictions on the Rastall theory due to application of the Newtonian limit to the theory are derived. In addition, we use the
zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp
mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained
relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-
Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of
thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic
quantities of system, including energy, entropy, and work, with their counterparts in the Einstein framework to have a better view
about the role of the Rastall hypothesis on the thermodynamics of system.

1. Introduction

For the first time, Jacobson could use thermodynamics to
derive the Einstein field equations [1].TheBekenstein entropy
is the backbone of Jackobson’s approach confirming that the
Einstein theory corresponds with the Bekenstein entropy [1].
Generalization of his approach to𝑓(𝑅) gravity shows that the
terms other than the Einstein tensor in the gravitational field
equations produce entropy and therefore modify the Beken-
stein limit of the horizon entropy [2]. In fact, such terms
and thus their corresponding entropy production terms are
the signals of the nonequilibrium thermodynamic aspects of
spacetime [2].

In order to study the mutual relation between gravity and
thermodynamics, we need a proper energy definition, and it
seems that the generalization of the Misner-Sharp mass in
various theories is a suitable candidate for this aim [3–10]. It
is also shown that, in various gravitational theory, if the grav-
itational field equations are considered as the first law of ther-
modynamics, then we can find an expression for the horizon

entropy in the spherically symmetric static spacetimes [7–
10]. This approach is used to investigate the mutual relation
between the gravitational field equations and the system ther-
modynamic properties, such as entropy, in various gravita-
tional theories [11–23]. In all of the abovementioned attempts
[1–23], authors have only studied theories in which geometry
and matter fields are coupled to each other in a minimal
way, and therefore, the energy-momentum conservation law
is met in their studies. In fact, in their studies, the lagrangian
system is equal to total sum of its lagrangian constituents
including the geometry and the matter fields.

Rastall [24] and curvature-matter coupling [25–29] the-
ories are two gravitational theories in which geometry and
matter fields are coupled to each other in a nonminimal way.
In these theories, the lagrangian of a gravitational system is
not just a simple sum of the geometry and the matter fields
lagrangians [29, 30]. For these theories, the energy-momen-
tum conservation law is not always valid, and in fact, the
divergence of the energy-momentum tensor is proportional
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to the derivative of Ricciscalar. This mutual relation between
the divergence of the energy-momentum tensor and Riccis-
calar is the backbone of the Rastall theory allowing a flux
of energy between the energy-momentum source and the
geometry. The Rastall hypothesis also modifies the Einstein
field equations, a result that increases the hopes to describe
the current phase of the universe expansion [31]. From a
classical point of view, Rastall’s theory may be supported by
the matter production process in the cosmos [32–35]. The
mutual relation between the Rastall cosmology and thermo-
dynamics has recently been studied [36].More studies on this
theory can also be found in [37–51].

Here, we are interested in studying the mutual relation
between the thermodynamics first law and the Rastall field
equations. In fact, we want to study the effects of the Rastall
hypothesis on the thermodynamic properties of the spher-
ically symmetric static spacetimes. In order to achieve this
goal, generalizing the Misner-Sharp mass of the spherically
symmetric static spacetimes to Rastall theory, we find an
expression for the horizon entropy of the spherically symmet-
ric static spacetimes. We also compare the thermodynamic
quantities of system, including energy, entropy, and work,
with their counterparts in the Einstein framework to have a
better view about the role of the Rastall hypothesis on the
thermodynamics of system. The 𝐺 = ℏ = 𝑐 = 1 units are
considered in this paper.

The paper is organized as follows. In the next section,
after referring to the Rastall theory and the Newtonian limit
constraints on this theory parameters, we use the unified
first law of thermodynamics together with the zero-zero
component of the Rastall field equations to find the Misner-
Sharpmass confined to event horizon of the static spherically
symmetric spacetimes in Rastall theory. Thereinafter, in the
third section, recasting the one-one component of the Rastall
field equations into the form of the first law of thermody-
namics, we find an expression for the horizon entropy. The
comparison of the obtained thermodynamic quantities with
their counterparts in the Einstein general relativity is also
addressed in this section. The last section is devoted to
concluding remarks.

2. Rastall Field Equations and
the Misner-Sharp Mass

For Rastall’s original field equations, we have [24]

𝑇𝜇];𝜇 = 𝜆𝑅,], (1)

which finally leads to

𝐺𝜇] + 𝜅𝜆𝑔𝜇]𝑅 = 𝜅𝑇𝜇], (2)

where 𝜆 and 𝜅 are Rastall’s parameter and Rastall’s gravi-
tational coupling constant, respectively. As Rastall has been
shown [24], this equation leads to 𝑅(4𝜅𝜆 − 1) = 𝑇, indicating
that, since 𝑇 is not always zero, the 𝜅𝜆 = 1/4 case is not
allowed in this theory. Besides, it is also shown that if we
use the Newtonian limit and define the Rastall dimensionless

parameter 𝛾 = 𝜅𝜆, then for the Rastall gravitational coupling
constant (𝜅) and the Rastall original parameter (𝜆) we have

𝜅 = 4𝛾 − 16𝛾 − 18𝜋,
𝜆 = 𝛾 (6𝛾 − 1)

(4𝛾 − 1) 8𝜋 ,
(3)

indicating that the Einstein result (𝜅 = 8𝜋) is obtainable in
the appropriate limit 𝜆 = 0which is parallel to the 𝛾 = 0 limit
[51]. It is useful to mention here that as this equation shows,
since the Rastall gravitational coupling constant diverges at𝛾 = 1/6, the 𝛾 = 1/6 case is not also allowed. Finally, Rastall’s
field equations can be written as [51]

𝐺]
𝜇 + 𝛾𝑔]𝜇𝑅 = 4𝛾 − 16𝛾 − 18𝜋𝑇]

𝜇, (4)

which leads to 𝑅(6𝛾 − 1) = 8𝜋𝑇 meaning that, in agreement
with (3), the 𝛾 = 𝜅𝜆 = 1/6 case is not allowed in this theory.
Moreover, as it is obvious from (3), 𝜆 diverges at 𝛾 = 1/4,
and thus, the 𝛾 = 1/4 case is not also allowed. Therefore,
Newtonian limit indicates that, in fact, both the 𝛾 = 1/6
and 𝛾 = 1/4 cases are not allowed. In order to study the
mutual relation between the first law of thermodynamics and
the Rastall field equations, we need to generalize the Misner-
Sharp energy in this theory [3, 5, 6]. It is worthwhile men-
tioning that one can use either the conserved charge method
or the unified first law of thermodynamics in order to find the
Misner-Sharpmass in a gravitational theory [5, 6].Here, since
we are interested in having a fully thermodynamic analysis,
we use the unified first law of thermodynamics to obtain an
expression for theMisner-Sharpmass. Consider a spherically
symmetric static spacetime, with a horizon located at 𝑟ℎ,
described by

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑓 (𝑟) + 𝑟2𝑑Ω2 (5)

and filled by a source of energy-momentum 𝑇𝜇] , the work
density and energy supply vector are defined as

𝑊 = −ℎ𝑎𝑏𝑇𝑎𝑏2 ,
Ψ𝑎 = 𝑇𝑏𝑎𝜕𝑏𝑟 + 𝑊𝜕𝑎𝑟,

(6)

respectively. In the above equations, 𝑑Ω2 is the line element
on the two-dimensional sphere with radius 𝑟, and ℎ𝑎𝑏 is
metric on the two-dimensional hypersurface of (𝑡, 𝑟). In order
to generalize the Misner-Sharp mass definition to the Rastall
theory, we follow the approach of [6] and assume that the
unified first law (UFL) of thermodynamics is valid meaning
that

𝑑𝐸 ≡ 𝐴Ψ𝑎𝑑𝑥𝑎 +𝑊𝑑𝑉, (7)

in which 𝑥𝑎 denotes the coordinate on a two-dimensional
hypersurface of metric ℎ𝑎𝑏 and 𝐴 is the area of the system
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boundary and therefore 𝐴 = 4𝜋𝑟2. It is straightforward to
show that

𝑑𝐸 = 𝜌 (4𝜋𝑟2) 𝑑𝑟. (8)

Using the zero-zero component of (4) in rewriting this
equation, we obtain

𝑑𝐸 = 6𝛾 − 1
2 (4𝛾 − 1) [(1 − 2𝛾)(1 −

𝑑 (𝑟𝑓 (𝑟))
𝑑𝑟 )

+ 𝛾𝑑 (𝑟2𝑓 (𝑟))𝑑𝑟 ] 𝑑𝑟,
(9)

which finally leads to

𝐸 = (6𝛾 − 1) 𝑟
2 (4𝛾 − 1) [(1 − 2𝛾) (1 − 𝑓 (𝑟)) + 𝛾𝑟𝑓 (𝑟)] , (10)

where  denotes derivative with respect to 𝑟, for the energy
confined to radius 𝑟. In obtaining this result, we used 𝑟𝑓(𝑟) =𝑑(𝑟𝑓(𝑟))/𝑑𝑟 − 𝑓(𝑟). For a black hole with an event horizon
located at 𝑟ℎ, since 𝑓(𝑟ℎ) = 0, we find

𝐸 = 6𝛾 − 1
2 (4𝛾 − 1) [(1 − 2𝛾) 𝑟ℎ + 𝛾𝑟2ℎ𝑓 (𝑟ℎ)] . (11)

In fact, it is the Misner-Sharp mass content confined to
the mentioned horizon in the Rastall framework. The above
equation can also be written as 𝐸 = 𝐸0(1 + Γ), where

𝐸0 = 𝑟ℎ2 ,
Γ = 𝛾4𝛾 − 1 [(6𝛾 − 1) 𝑟ℎ𝑓 (𝑟ℎ) + 4 (1 − 3𝛾)] .

(12)

It is also worthwhile mentioning that, in the 𝛾 → 0 limit, we
have �̃� ≡ 𝐸0Γ → 0 leading to 𝐸 → 𝐸0 which is nothing but
the Misner-Sharp mass content of the Einstein theory [3, 7],
meaning that, as expected, the Einstein result is recovered
in the appropriate limit of 𝛾 → 0. The 𝐸0Γ term comes
from the Rastall original hypothesis (1) that admits a mutual
energy exchange between spacetime and energy-momentum
source supporting the geometry. This hypothesis couples the
geometry andmatter fields in a nonminimal way and leads to
a covariant nonconservation of Rastall gravity. As two exam-
ples, calculations for the value of Γ in the Schwarzschild and
de-Sitter spacetimes lead to

𝑓 (𝑟) = 1 − 2𝑚𝑟 →
𝑟ℎ = 2𝑚 ⇒

Γsch = 3𝛾 (1 − 2𝛾)
4𝛾 − 1 ,

𝑓 (𝑟) = 1 − Λ𝑟2 →
𝑟ℎ = 1√Λ ⇒

ΓdeS = −6𝛾,

(13)

respectively. Finally, it is worthwhile mentioning that, in
order to have positive energy, we should have Γ ≥ −1 leading
to the 𝑟ℎ𝑓(𝑟ℎ) ≤ (1 + 4𝛾(3𝛾 − 2))/𝛾(6𝛾 − 1) condition for the
Rastall dimensionless parameter.

3. Horizon Entropy

Here, following the approach of [7], we recast the one-one
component of the Rastall field equations to the form of the
first law of thermodynamics and use the result of previous
section to get the horizon entropy. The one-one component
of (4) yields

𝐺11 + 𝛾𝑅 = 4𝛾 − 16𝛾 − 18𝜋𝑇11 , (14)

where 𝑇11 ≡ 𝑃(𝑟) is the radial pressure of the energy-
momentum source [7], and therefore, it finally takes the

𝑃 (𝑟) = 6𝛾 − 1
(4𝛾 − 1) 8𝜋 ( 1𝑟2 [𝑟𝑓 (𝑟) − 1 + 𝑓 (𝑟)]

− 𝛾𝑟2 [𝑟2𝑓 (𝑟) + 4𝑟𝑓 (𝑟) − 2 + 2𝑓 (𝑟)])
(15)

form. Here, prime () denotes the derivative with respect to
radius (𝑟). On the event horizon, 𝑓(𝑟ℎ) = 0 and therefore,

𝑃 (𝑟ℎ) = 6𝛾 − 1
(4𝛾 − 1) 8𝜋 ( 1𝑟2

ℎ

[𝑟ℎ𝑓 (𝑟ℎ) − 1]

− 𝛾
𝑟2
ℎ

[𝑟2ℎ𝑓 (𝑟ℎ) + 4𝑟ℎ𝑓 (𝑟ℎ) − 2]) .
(16)

Multiplying this equation by 𝑑𝑉 = 4𝜋𝑟2ℎ𝑑𝑟ℎ, one gets
𝑃 (𝑟ℎ) 𝑑𝑉 = 6𝛾 − 1

(4𝛾 − 1)
𝑓 (𝑟ℎ)4𝜋 𝑑 (𝐴4 )

− 6𝛾 − 1
2 (4𝛾 − 1)𝑑𝑟ℎ [1

+ 𝛾 (𝑟2ℎ𝑓 (𝑟ℎ) + 4𝑟ℎ𝑓 (𝑟ℎ) − 2)] ,
(17)

where 𝐴 = 4𝜋𝑟2ℎ. For the second term of the RHS of this
equation we reach

6𝛾 − 1
2 (4𝛾 − 1) [1 + 𝛾 (𝑟2ℎ𝑓 (𝑟ℎ) + 4𝑟ℎ𝑓 (𝑟ℎ) − 2)] 𝑑𝑟ℎ
= 6𝛾 − 1
2 (4𝛾 − 1) [(1 − 2𝛾) 𝑑𝑟ℎ + 𝛾𝑑 (𝑟2ℎ𝑓 (𝑟ℎ))

+ 2𝑟ℎ𝑓 (𝑟ℎ) 𝑑𝑟ℎ] .
(18)

Now, bearing the 𝑓(𝑟ℎ) = 0 condition in mind, since𝑟ℎ𝑓(𝑟ℎ) = (𝑑[𝑟𝑓(𝑟)]/𝑑𝑟−𝑓(𝑟))𝑟=𝑟ℎ , one can simplify the RHS
of the recent equation and take integral from that to get (11).
Therefore, (17) can be written as follows:

𝑃 (𝑟ℎ) 𝑑𝑉 = 6𝛾 − 14𝛾 − 1
𝑓 (𝑟ℎ)4𝜋 𝑑 (𝐴4 ) − 𝑑𝐸. (19)
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Since 𝑇 = 𝑓(𝑟ℎ)/4𝜋 is the horizon temperature, comparing
this equation with the first law of thermodynamics (𝑃𝑑𝑉 =𝑇𝑑𝑆−𝑑𝐸) [7], one gets 𝑑𝑆 = ((6𝛾− 1)/(4𝛾− 1))𝑑(𝐴/4)which
finally leads to

𝑆 = (1 + 2𝛾4𝛾 − 1) 𝑆0, (20)

where 𝑆0 = 𝐴/4 is the Bekenstein entropy, for the horizon
entropy. It is now obvious that, in the 𝛾 → 0 limit, we have �̃� ≡(2𝛾/(4𝛾 − 1))𝑆0 → 0, and thus the Einstein result (the Beken-
stein entropy) is recovered. Indeed, as authors have shown
in [2, 7–11], terms other than the Einstein tensor in modified
gravitiesmodify the Bekenstein limit of the system entropy in
agreement with our result (�̃�). In addition, since entropy is a
positive quantity, the Rastall dimensionless parameter should
meet either 𝛾 < 1/6 or 𝛾 > 1/4. Here, the energy-momentum
conservation law is not valid and therefore the energy and
entropy terms differ from those of the Einstein theory [7].
In order to have a better view about our results, we compare
our results with those of the Einstein theory [7]. Bearing the�̃� and �̃� definitions in mind, one can rewrite (19) as

𝑃 (𝑟ℎ) 𝑑𝑉 = 𝑇𝑑𝑆0 − 𝑑𝐸0 + (𝑇𝑑�̃� − 𝑑�̃�) . (21)

𝑇𝑑𝑆0 − 𝑑𝐸0 ≡ 𝑑𝑊0 is the amount of work done during a
hypothetical displacement 𝑑𝑟ℎ to the horizon in the Einstein
framework [7]. Therefore, if we decompose the work term
(𝑃(𝑟ℎ)𝑑𝑉) as 𝑃(𝑟ℎ)𝑑𝑉 = 𝑑�̃� + 𝑑𝑊0, then we reach

𝑑�̃� ≡ 𝑃 (𝑟ℎ) 𝑑𝑉 − 𝑑𝑊0 = 𝑇𝑑�̃� − 𝑑�̃�, (22)

which denotes the additional work done in the Rastall theory
in comparison with the Einstein theory. Finally, it is also
useful to mention here that, as a desired result, in the absence
of the Rastall term (𝜆 = 𝛾 = 0), we have 𝑑�̃� = 𝑑�̃� = 𝑑�̃� = 0
meaning that the Einstein result is recovered [7].

4. Concluding Remarks

We saw that the Rastall theory of either 𝛾 = 1/6 or 𝛾 =1/4 is not allowed due to the fact that the Newtonian limit
should be satisfied by theRastall theory. Additionally, we used
the unified first law of thermodynamics as well as the zero-
zero component of the Rastall field equations to generalize
the Misner-Sharp mass of the static spherically symmetric
spacetimes to the Rastall theory.

Moreover, bearing the obtained Misner-Sharp mass in
mind, we started from the one-one component of the Rastall
field equations and rewrote it as the first law of thermo-
dynamics which helped us in finding an expression for the
horizon entropy in this theory. Our study shows that a term
other than the Einstein tensor in the gravitational field equa-
tions, the Rastall term (𝛾𝑔𝜇]𝑅), modifies the Bekenstein limit.
We also compared the obtained thermodynamic quantities,
including entropy, energy, and work, with their counterparts
in the Einstein case to have a better view about the obtained
quantities. As we saw, in the 𝛾 = 𝜆 = 0 limit, the results of the
Einstein theory are obtainable.
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