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The spectrum of ground state and excited baryons (N, Δ, Λ, Σ, Ξ, and Ω particles) has been investigated by using nonrelativistic
quantum mechanics under the Killingbeck plus isotonic oscillator potentials. Using the Jacobi coordinates, anzast method, and
generalized Gürsey Radicati (GR) mass formula the three-body-wave equation is solved to calculate the different states of the
considered baryons. A comparison between our calculations and the available experimental data shows that the position of the
Roper resonances of the nucleon, the ground states, and the excited multiplets up to three GeV are in general well reproduced. Also
one can conclude that the interaction between the quark constituents of baryon resonances could be described adequately by using
the combination of Killingbeck and isotonic oscillator potentials form.

1. Introduction

The hadrons spectroscopy is very important to study its
structures and the nature of the interacting forces between
its constituents. In quark models, the baryons are three-
quark states and there are number of very different model
calculations for the baryon masses [1–8]. Such a picture of
these elementary particles has been having success in explain-
ing and describing spatial ground state of the flavor 𝑆𝑈(3)
vector mesons and baryon octet. But in recent years, baryon
spectroscopy has attracted much interest because baryons
were the focal point of quark model development [9, 10].
Such a system can be studied by quantum chromodynamics
which describes what between quarks and gluon and their
interactions [11, 12].

In order to study massive baryons there are two options,
experimentally and theoretically. For example, experimen-
tally mass spectrum of singly charmed heavy baryons is
well known but the other charmed heavy baryons are not.
Recently, Abazov et al. and Aaltonen et al. have published
articles separately in which there are mass measurements
of singly bottom baryon Ξ

−

𝑏

by 𝐷0 [13] and CDF [14]
collaborations. On the other hand, from lattice QCD point of
view, there are interesting efforts about quenched calculations

such as what is done by Bowler et al., in which they presented
the results of an exploratory lattice study of heavy baryon
spectroscopy [15], or Lewis et al. who calculated masses of
singly and doubly charmed baryons in quenched lattice QCD
using an improved action of the D234 type on an anisotropic
lattice [16] and/or Mathur et al. who computed the mass
spectrum of charmed and bottom baryons on anisotropic
lattices using quenched lattice nonrelativistic QCD [17]; also
Gottlieb andTamhankar published results froma lattice study
of the semileptonic decay of Λ

𝑏

→ Λ
𝑐

𝑙]
𝑙

[18] and Ali Khan
et al. presented lattice results for the spectrum of mesons
containing one heavy quark and baryons containing one
or two heavy quarks [19], and in this discipline reader can
check [20] and for dynamical sea quark flavor simulations,
Na and Gottlieb studied the heavy baryon mass spectrum on
gauge configurations that include 2 + 1 flavors of dynamical
improved staggered quarks [21] and they present results for
the mass spectrum of charm and bottom heavy baryons,
using MILC coarse lattice configurations with 2 + 1 flavors
[22]; and also Lewis andWoloshyn bottom calculated baryon
masses based on a 2+1 flavor dynamical lattice QCD simula-
tion. Of course that for the heavy baryon mass spectrum and
most results is in fair agreement with observed values [23].
On the other handmotivation of studying light baryons is that
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it enables us to find an understating of the structures and their
interactions [24]. Actually to have fundamentalmanifestation
for the long-distance quark and gluon dynamics that is
governed inQCD, we use hadronmass spectra. As amatter of
fact, nonperturbative calculations and numerical simulation
in space-time lattice [25] lead to method to get to this matter
from QCD Lagrangian without having any approximations;
this results in determination of light quark masses as well
[26]. In the recent years considerable effort has been done in
the latticeQCD calculation of the light hadron spectrum [27–
29]. We can mention a calculation in which mass of hadron
has been calculated with accuracy of 0.5%–3% [30, 31].

As a matter of fact, the three-quark interaction can be
divided in two parts: the first one, containing the confinement
interaction, is spin and flavor independent and it is therefore
𝑆𝑈(6) invariant, while the second one violates the 𝑆𝑈(6) sym-
metry [1, 32–35]. It is well known that Gürsey Radicati mass
formula [36] describes quite well the way 𝑆𝑈(6) symmetry is
broken, at least in the lower part of the baryon spectrum. In
this work we applied the generalized Gürsey Radicati (GR)
mass formula which is presented by Giannini et al. [8] to
calculate the baryon masses. The model we used is a simple
Constituent Quark Model in which the 𝑆𝑈(6) invariant
part of the Hamiltonian is the same as in the hypercentral
Constituent Quark Model [37, 38] and the 𝑆𝑈(6) symmetry
is broken by a generalized GRmass formula. In this paper the
exact solution of the Schrodinger equation for theKillingbeck
plus quantum isotonic oscillator potentials [39–41] via wave
function ansatz is given and we introduce the generalized GR
mass formula; then we give the results obtained by fitting
the generalized GR mass formula parameters to the baryon
masses and we compare our calculation spectrum with the
experimental data.

2. The Used Theoretical Model

The Hamiltonian of the Schrödinger equation is as the
following form:

𝐻 =
−ℏ
2

2𝜇
∇
2

+ 𝑉 (𝑟) , (1)

where

∇
2

= [
𝑑
2

𝑑𝑟2
+ 5𝑟
−1

𝑑

𝑑𝑟
−
𝛾 (𝛾 + 4)

𝑟2
] , (2)

since the Schrödinger equation is
𝐻𝜓]𝛾 = 𝐸𝜓]𝛾, (3)

in the six dimensions, these equations for a system containing
three quarks with a potential 𝑉(𝑟) and by considering 𝜓]𝛾 =

𝑢]𝛾(𝑟)𝑟
−5/2 can be written as

𝑑
2

𝑢]𝛾 (𝑟)

𝑑𝑟2

+ 2𝜇[𝐸 − 𝑉 (𝑟) −
(2𝛾 + 5) (2𝛾 + 3)

8𝜇𝑟2
] 𝑢]𝛾 (𝑟)

= 0,

(4)

where 𝑢]𝛾(𝑟), 𝑟, and 𝛾 are the hyperradial wave function,
the hyperradius, and the grand angular quantum number,
respectively. 𝛾 is also given by 𝛾 = 2𝑛+𝑙

𝜌

+𝑙
𝜆

, 0 ≤ 𝑛 ≤ ∞with
the angular momenta 𝑙

𝜌

and 𝑙
𝜆

which are associated with the
Jacobi coordinates (�⃗� and �⃗�) [44] and ] denotes the number of
nodes of three-quark wave functions. In (4) 𝜇 is the reduced
mass which is defined as 𝜇 = 𝑚

𝜌

𝑚
𝜆

/(𝑚
𝜌

+𝑚
𝜆

) in which𝑚
𝜌

=

𝑚
1

𝑚
2

/(𝑚
1

+ 𝑚
2

), 𝑚
𝜆

= 3𝑚
3

(𝑚
1

+ 𝑚
2

)/2(𝑚
1

+ 𝑚
2

+ 𝑚
3

);
𝑚
1

,𝑚
2

, and𝑚
3

are the constituent quark masses [38]. In our
model, the interaction potential is assumed as

𝑉 (𝑟) = 𝑎𝑟
2

+ 𝑏𝑟 +
𝑐

𝑟
+
𝑑

𝑟2
+

ℎ𝑟

𝑟2 + 1
+

𝑘𝑟
2

(𝑟2 + 1)
2

. (5)

Cornell interaction (Coulomb plus linear) which is
static and spherically symmetric interaction has a physical
application in Mesonic systems, that is, Charmonium and
Bottomonium. Coulomb-like part potential is a short range
potential that arises from exchanging a massless gluon
between the quarks, whereas linear part is a long range.
Coulombic interaction is known from perturbative quantum
chromodynamics and the large distance interaction known
from lattice QCD [45–47]. We modify the Cornell potential
by adding the harmonic term.The resultant quark-antiquark
interaction is known as Killingbeck potential which is 𝑎𝑟2 +
𝑏𝑟 + 𝑐/𝑟 [48]. Notice those terms regarding isotonic-type
interaction. The energy spectrum of the isotonic potential
is isomorphous to the harmonic oscillator spectrum; that is,
it consists of an infinite set of equidistant energy levels. For
this reason this oscillator is called “the isotonic oscillator.”
Generalized isotonic oscillators can be seemed as possible
representations of realistic quantum dots [41]. The behavior
of the Killingbeck plus isotonic oscillator can be seen in
Figure 1.

By substituting (5) into (4) we obtain the following
equation:

𝑑
2

𝑢]𝛾 (𝑟)

𝑑𝑟2
= −2𝜇[𝐸 − 𝑎𝑟

2

− 𝑏𝑟 −
𝑐

𝑟
−
𝑑

𝑟2
−

ℎ𝑟

𝑟2 + 1

−
𝑘𝑟
2

(𝑟2 + 1)
2

−
(2𝛾 + 5) (2𝛾 + 3)

8𝜇𝑟2
]𝑢]𝛾 (𝑟) .

(6)

And regarding 𝑟2/(𝑟2 + 1)2 = 1/(𝑟
2

+ 1) − 1/(𝑟
2

+ 1)
2 we have

𝑑
2

𝑢]𝛾 (𝑟)

𝑑𝑟2
= [−2𝜇𝐸 + 2𝜇𝑎𝑟

2

+ 2𝜇𝑏𝑟 + 2𝜇
𝑐

𝑟
+ 2𝜇

𝑑

𝑟2

+ 2𝜇
ℎ𝑟

𝑟2 + 1
+ 2𝜇

𝑘

𝑟2 + 1
− 2𝜇

𝑘

(𝑟2 + 1)
2

+
(2𝛾 + 5) (2𝛾 + 3)

4𝑟2
]𝑢]𝛾 (𝑟) .

(7)

We suppose the following form for the wave function:

𝑢]𝛾 (𝑟) = 𝑔 (𝑟) exp (𝑓 (𝑟)) . (8)
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Figure 1: The red color shows the Cornell potential and the blue
color shows the Killingbeck plus isotonic oscillator potential for 𝑎 =
0.0072, 𝑏 = 1.16, 𝑐 = −4.59, 𝑑 = 0.0032, ℎ = −2.7904, and 𝑘 =

1.01008.

Now for functions 𝑓(𝑟) and 𝑔(𝑟) we make use of the ansatz
[49–53]:

𝑔 (𝑟) =

{{{

{{{

{

1 ] = 0

]

∏

𝑖

(𝑟 − 𝛼
]
𝑖

) ] ≥ 1,

𝑓 (𝑟) = 𝛼𝑟
2

+ 𝛽𝑟 + 𝜆 ln 𝑟 + 𝜂 ln (𝑟2 + 1) , 𝛼 > 0.

(9)

From (8) we obtain

𝑢


],𝛾 (𝑟)

= [𝑓


(𝑟) + 𝑓
2

(𝑟) +
2𝑓 (𝑟) 𝑔



(𝑟) + 𝑔


(𝑟)

𝑔 (𝑟)
] 𝑢],𝛾 (𝑟) .

(10)

And from (9) we have

𝑓


(𝑟) = 2𝛼𝑟 + 𝛽 +
𝜆

𝑟
+

2𝜂𝑟

(𝑟2 + 1)
,

𝑓
2

(𝑟) = 4𝛼
2

𝑟
2

+ 𝛽
2

+ 4𝛼𝛽𝑟 +
𝜆
2

𝑟2
+

4𝜂
2

𝑟
2

(𝑟2 + 1)
2

+
4𝜆𝜂

𝑟2 + 1
+ 4𝛼𝜆 +

8𝛼𝜂𝑟
2

𝑟2 + 1
+
2𝛽𝜆

𝑟

+
4𝛽𝜂𝑟

𝑟2 + 1
,

𝑓


(𝑟) = 2𝛼 −
𝜆

𝑟2
+ 2𝜂

(𝑟
2

+ 1) − 2𝑟
2

(𝑟2 + 1)
2

,

𝑓


(𝑟) = 2𝛼 −
𝜆

𝑟2
+

2𝜂

(𝑟2 + 1)
−

4𝜂𝑟
2

(𝑟2 + 1)
2

.

(11)

Regarding 𝑟2/(𝑟2+1)2 = 1/(𝑟
2

+1)−1/(𝑟
2

+1)
2 and 𝑟2/(𝑟2+

1) = 1 − 1/(𝑟
2

+ 1) we have

𝑓
2

(𝑟) = 4𝛼
2

𝑟
2

+ 𝛽
2

+ 4𝛼𝛽𝑟 +
𝜆
2

𝑟2
+

4𝜂
2

𝑟2 + 1

−
4𝜂
2

(𝑟2 + 1)
2

+
4𝜆𝜂

𝑟2 + 1
+ 4𝛼𝜆 + 8𝛼𝜂

−
8𝛼𝜂

𝑟2 + 1
+
2𝛽𝜆

𝑟
+ 4𝛽𝜂

𝑟

𝑟2 + 1
,

𝑓


(𝑟) = 2𝛼 −
𝜆

𝑟2
−

2𝜂

𝑟2 + 1
+

4𝜂

(𝑟2 + 1)
2

.

(12)

Substituting (11) and (12) into (10) leads to

𝑢


]𝛾 (𝑟) = [4𝛼
2

𝑟
2

+ 𝛽
2

+ 4𝛼𝛽𝑟 +
𝜆
2

𝑟2
+

4𝜂
2

𝑟2 + 1

−
4𝜂
2

(𝑟2 + 1)
2

+
4𝜆𝜂

𝑟2 + 1
+ 4𝛼𝜆 + 8𝛼𝜂 −

8𝛼𝜂

𝑟2 + 1
+
2𝛽𝜆

𝑟

+ 4𝛽𝜂
𝑟

𝑟2 + 1
+ 2𝛼 −

𝜆

𝑟2
−

2𝜂

𝑟2 + 1
+

4𝜂

(𝑟2 + 1)
2

]

⋅ 𝑢]𝛾 (𝑟)

(13)

or

𝑢


0,𝛾

(𝑟) = [4𝛼
2

𝑟
2

+ 𝛽
2

+ 4𝛼𝜆 + 8𝛼𝜂 + 2𝛼 + 4𝛼𝛽𝑟

+
𝜆
2

𝑟2
−
𝜆

𝑟2
+
2𝛽𝜆

𝑟
+

4𝜂
2

𝑟2 + 1
+

4𝜆𝜂

𝑟2 + 1
−

2𝜂

𝑟2 + 1

−
8𝛼𝜂

𝑟2 + 1
−

4𝜂
2

(𝑟2 + 1)
2

+
4𝜂

(𝑟2 + 1)
2

+ 4𝛽𝜂
𝑟

𝑟2 + 1
]

⋅ 𝑢
0,𝛾

(𝑟) .

(14)

After some simplicity, by comparing (7) and (14), it can be
found that

𝜆
2

− 𝜆 − 2𝜇𝑑 −
(2𝛾 + 5) (2𝛾 + 3)

4
= 0,

4𝛼
2

= 2𝜇𝑎,

−4𝜂
2

+ 4𝜂 = −2𝜇𝑘,

4𝛽𝜂 = 2𝜇ℎ,

4𝜂
2

+ 4𝜆𝜂 − 8𝛼𝜂 − 2𝜂 = 2𝜇𝑘,

4𝛼𝛽 = 2𝜇𝑏,

2𝛽𝜆 = 2𝜇𝑐,

𝛽
2

+ 4𝛼𝜆 + 8𝛼𝜂 + 2𝛼 = −2𝜇𝐸.

(15)
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Equation (15) immediately yields

𝜆 =

1 + √1 + 8𝜇𝑑 + (2𝛾 + 5) (2𝛾 + 3)

2
,

𝛼 = −√
𝜇𝑎

2
,

𝜂 =
1 + √1 + 2𝜇𝑘

2
,

𝛽 =
𝜇ℎ

2𝜂
,

𝑎 =
(2𝜆 + 1)

2

8𝜇
,

𝑏 =
2𝛼𝛽

𝜇
,

𝑐 =
𝛽𝜆

𝜇
.

(16)

And the energy can be obtained by

𝐸]𝛾 = −
1

2𝜇
(𝛽
2

+ 4𝛼𝜆 + 8𝛼𝜂 + 2𝛼) . (17)

The spin and isospin dependent interactions are not the
only source of 𝑆𝑈(6) violation. In order to study the baryon
spectrum one has to consider 𝑆𝑈(3) violation produced by
the differences in the quark masses. The Gell-Mann-Okubo
(GMO)mass formula [54]made use of a𝜆

8

violation of 𝑆𝑈(3)
in order to explain themass splittingwithin the various 𝑆𝑈(3)
multiplets. The hypercentral Constituent Quark Model is
fairly good for description of the baryon spectrum [55], but in
some cases the splitting within the various 𝑆𝑈(6)multiplets is
too low.The preceding results [35, 54, 55] show that both spin
and isospin dependent terms in the quark Hamiltonian are
important. Description of the splitting within 𝑆𝑈(6) baryon
multiplets is presented by the Gürsey Radicati mass formula
[36]:

𝑀 = 𝑀
0

+ 𝐶𝐶
2

[𝑆𝑈
𝑆

(2)] + 𝐷𝐶
1

[𝑈
𝑌

(1)]

+ 𝐼 [𝐶
2

[𝑆𝑈
𝐼

(2)] −
1

4
(𝐶
1

[𝑈
𝑌

(1)])
2

] ,
(18)

where 𝑀
0

is the average energy value of 𝑆𝑈(6) multiplet,
𝐶
2

[𝑆𝑈
𝑆

(2)] and 𝐶
2

[𝑆𝑈
𝐼

(2)] are the 𝑆𝑈(2) Casimir oper-
ators for spin and isospin, respectively, and 𝐶

1

[𝑈
𝑌

(1)] is
the Casimir operator for 𝑈(1) subgroup generated by the
hypercharge 𝑌 [56–58]. This mass formula has been tested to
be successful in the description of the ground state baryon
masses; however, as stated by the authors themselves, it is not
the most general mass formula that can be written on the
basis of a broken 𝑆𝑈(6) symmetry. In order to generalize (18),
Giannini et al. considered dynamical spin-flavor symmetry
𝑆𝑈SF(6) [43] and described 𝑆𝑈SF(6) symmetry breaking
mechanism by generalizing (18) as

𝑀 = 𝑀
0

+ 𝐴𝐶
2

[𝑆𝑈SF (6)] + 𝐵𝐶
2

[𝑆𝑈
𝐹

(3)]

+ 𝐶𝐶
2

[𝑆𝑈
𝑆

(2)] + 𝐷𝐶
1

[𝑈
𝑌

(1)]

+ 𝐼 [𝐶
2

[𝑆𝑈
𝐼

(2)] −
1

4
(𝐶
1

[𝑈
𝑌

(1)])
2

] .

(19)

Table 1: Eigenvalues of 𝐶
2

[𝑆𝑈SF(6)] and 𝐶
2

[𝑆𝑈
𝐹

(3)] Casimir
operators.

Dimension (𝑆𝑈(6)) 𝐶
2

[𝑆𝑈SF(6)] Dimension (𝑆𝑈(3)) 𝐶
2

[𝑆𝑈
𝐹

(3)]

56 45/4 8 3
70 33/4 10 6
20 21/4 1 0

In (19) the spin term (𝐶𝐶
2

[𝑆𝑈
𝑆

(2)]) represents the spin-
spin interactions, the flavor term (𝐵𝐶

2

[𝑆𝑈
𝐹

(3)]) denotes
the flavor dependence of the interactions, and the 𝑆𝑈SF(6)
term (𝐴𝐶

2

[𝑆𝑈SF(6)]) depends on the permutation symmetry
of the wave functions, representing “signature-dependent”
interactions [56, 57]. The last two terms (𝐼[𝐶

2

[𝑆𝑈
𝐼

(2)] −

(1/4)(𝐶
1

[𝑈
𝑌

(1)])
2

]) represent the isospin and hypercharge
dependence of the masses. In Table 1, we give the expectation
values of the Casimir operators 𝑆𝑈SF(6) and 𝑆𝑈

𝐹

(3) for the
allowed three-quark configurations.

The generalized Gürsey Radicati mass formula (19) can
be used to describe the octet and decuplet baryons spectrum,
provided that two conditions are fulfilled. The first condition
is the feasibility of using the same splitting coefficients for
different 𝑆𝑈(6) multiplets. This seems actually to be the
case, as shown by the algebraic approach to the baryon
spectrum [1]. The second condition is given by the feasibility
of getting reliable values for the unperturbed mass values
𝑀
0

[32]. For this purpose we regarded 𝑆𝑈(6) invariant part
of the hCQM which provides a good description of the
baryon spectra and used the Gürsey Radicati inspired 𝑆𝑈(6)
breaking interaction to describe the splitting within each
𝑆𝑈(6) multiplet. Therefore, the baryons masses are obtained
by three-quark masses and eigenenergies (𝐸]𝛾) of the radial
Schrödinger equation with the expectation values of 𝐻GR as
follows:

𝑀 = 3𝑚 + 𝐸]𝛾 + ⟨𝐻GR⟩ . (20)

In the above equation 𝑚 is the reduced mass. 𝐻GR is in the
following form:

𝐻GR = 𝐴𝐶
2

[𝑆𝑈SF (6)] + 𝐵𝐶
2

[𝑆𝑈
𝐹

(3)]

+ 𝐶𝐶
2

[𝑆𝑈
𝑆

(2)] + 𝐷𝐶
1

[𝑈
𝑌

(1)]

+ 𝐼 [𝐶
2

[𝑆𝑈
𝐼

(2)] −
1

4
(𝐶
1

[𝑈
𝑌

(1)])
2

] .

(21)

The expectation values of 𝐻GR(⟨𝐻GR⟩) are completely iden-
tified by the expectation values of the Casimir operators
(Table 1).

Therefor we have

𝑀 = 3𝑚 + 𝐸]𝛾 + 𝐴⟨𝐶
2

[𝑆𝑈SF (6)]⟩

+ 𝐵 ⟨𝐶
2

[𝑆𝑈
𝐹

(3)]⟩ + 𝐶 ⟨𝐶
2

[𝑆𝑈
𝑆

(2)]⟩

+ 𝐷 ⟨𝐶
1

[𝑈
𝑌

(1)]⟩

+ 𝐼 [⟨𝐶
2

[𝑆𝑈
𝐼

(2)]⟩ −
1

4
⟨(𝐶
1

[𝑈
𝑌

(1)])⟩
2

] .

(22)
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Table 2: The fitted values of the parameters of (22) for𝑁, Δ, Λ, Σ, Ξ, and Ω baryons, obtained with resonances mass differences and global
fit to the experimental resonance masses [42].

Parameter 𝐴 𝐵 𝐶 𝐷 𝐼 𝑚 𝛼 𝛽 𝑑 𝜂

Value −19.616MeV 18.575MeV 38.3 −197.3MeV 38.5MeV 271MeV −0.381MeV2 0.489MeV 0.388 0.446

Table 3:Mass spectrumof baryons resonances (inMeV) calculatedwith themass formula (22).The column𝑀OurCalc contains our calculations
with the parameters of Table 2 and column𝑀[43]Calc shows calculations of Giannini et al. Column 7 indicates the percentage of relative error
for our calculations.

Baryon Status 𝑀[42]exp State 𝑀[43]Calc 𝑀OurCalc Percent of relative error for our calculation
𝑁(938)𝑃11 ∗∗∗∗ 938 28

1/2

[56, 0
+

] 938 938 0%
𝑁(1440)𝑃11 ∗∗∗∗ 1410–1450 28

1/2

[56, 0
+

] 1448.7 1448.51 2.73%–0.1%
𝑁(1520)𝐷13 ∗∗∗∗ 1510–1520 28

3/2

[70, 1
−

] 1543.7 1528.79 1.24%–0.57%
𝑁(1535)𝑆11 ∗∗∗∗ 1525–1545 28

1/2

[70, 1
−

] 1543.7 1528.79 0.24%–1.04%
𝑁(1650)𝑆11 ∗∗∗∗ 1645–1670 48

1/2

[70, 1
−

] 1658.6 1643.69 0.07%–1.57%
𝑁(1675)𝐷15 ∗∗∗∗ 1670–1680 48

5/2

[70, 1
−

] 1658.6 1643.69 1.57%–2.16%
𝑁(1680)𝐹15 ∗∗∗ 1680–1690 28

5/2

[56, 2
+

] 1651.4 1688.57 0.51%–0.08%
𝑁(1700)𝐷13 ∗∗∗ 1650–1750 48

3/2

[70, 1
−

] 1658.6 1643.69 0.38%–6.07%
𝑁(1710)𝑃11 ∗∗∗ 1680–1740 28

1/2

[56, 0
+

] 1795.4 1798.16 7.03%–3.34%
𝑁(1720)𝑃13 ∗∗∗∗ 1700–1750 28

3/2

[56, 2
+

] 1651.4 1688.57 0.67%–3.51%
𝑁(1875)𝐷13 ∗∗∗ 1820–1920 28

3/2

[70, 1
−

] — 1857.01 2.03%–3.28%
𝑁(1900)𝑃13 ∗∗∗ 1875–1935 28

3/2

[70, 2
+

] — 1966.7 4.89%–1.63%
𝑁(2190)𝐺17 ∗∗∗∗ 2100–2200 28

7/2

[70, 3
−

] — 2186.37 4.11%–0.61%
𝑁(2220)𝐻19 ∗∗∗∗ 2200–2300 28

9/2

[56, 4
+

] — 2237.44 1.7%–2.72%
𝑁(2250)𝐺19 ∗∗∗∗ 2200–2350 48

9/2

[70, 3
−

] — 2301.27 4.6%–2.07%
𝑁(2600)𝐼1, 11 ∗∗∗ 2550–2750 28

11/2

[70, 5
−

] — 2626.25 2.99%–4.5%
Δ(1232)𝑃33 ∗∗∗∗ 1230–1234 410

3/2

[56, 0
+

] 1232 1232.37 0.19%–0.13%
Δ(1600)𝑃33 ∗∗∗ 1500–1700 410

3/2

[56, 0
+

] 1683 1647.2 9.81%–3.1%
Δ(1620)𝑆31 ∗∗∗∗ 1600–1660 210

1/2

[70, 1
−

] 1722.8 1700.01 6.25%–2.41%
Δ(1700)𝐷33 ∗∗∗∗ 1670–1750 210

3/2

[70, 1
−

] 1722.8 1700.01 1.79%–2.85%
Δ(1905)𝐹35 ∗∗∗∗ 1855–1910 410

5/2

[56, 2
+

] 1945.4 1865.27 0.55%–2.34%
Δ(1910)𝑃31 ∗∗∗∗ 1860–1910 410

1/2

[56, 2
+

] 1945.4 1865.27 0.28%–2.34%
Δ(1920)𝑃33 ∗∗∗ 1900–1970 410

3/2

[56, 0
+

] 2089.4 1974.7 3.93%–0.23%
Δ(1930)𝐷35 ∗∗∗ 1900–2000 210

5/2

[70, 2
−

] — 1918.6 0.97%–4.07%
Δ(1950)𝐷35 ∗∗∗∗ 1915–1950 410

7/2

[56, 2
+

] 1945.4 1865.27 2.59%–4.34%
Δ(2420)𝐻3, 11 ∗∗∗∗ 2300–2500 410

11/2

[56, 4
+

] — 2303.79 0.16%–7.84%
∗∗∗∗Existence is certain, and properties are at least fairly well explored. ∗∗∗Existence ranges from very likely to certain, but further confirmation is desirable
and/or quantum numbers, branching fractions, and so forth are not well determined.

In order to simplify the solving procedure, the constituent
quarks masses are assumed to be the same for Up, Down,
and Strange quark flavors (𝑚 = 𝑚

𝑢

= 𝑚
𝑑

= 𝑚
𝑠

); therefore,
within this approximation, 𝑆𝑈(6) symmetry is only broken
dynamically by the spin and flavor dependent terms in the
Hamiltonian. We determined 𝐸]𝛾 by exact solution of the
radial Schrödinger equation for the hypercentral potential
equation (5). For calculating the baryons mass according to
(22), we need to find the unknown parameters. For this pur-
pose we choose a limited number of well-known resonances
and express theirmass differences using𝐻GR and the Casimir
operator expectation values: 𝑁(1650)𝑆11 − 𝑁(1535)𝑆11 =

3𝐶, 4𝑁(938)𝑃11 − Σ(1193)𝑃11 − 3Λ(1116)𝑃01 = 4𝐷, and
Σ(1193)𝑃11 − Λ(1116)𝑃01 = 2𝐼, leading to the numerical
values C = 38.3, D = −197.3MeV, and I = 38.5MeV. For
determining𝑚, 𝛼,𝛽,𝑑, and 𝜂 (in (17)) and the two coefficients

𝐴 and 𝐵 of (19) we have used the Newton-Raphson Method
for solving the nonlinear equations. For our purpose we
chose 𝑁(938)𝑃11, Δ(1232)𝑃33, Λ(1116)𝑃01, Σ(1193)𝑃11,
Λ(1810)𝑃01, Δ(1700)𝐷33, and Σ(1940)𝐷13 which yielded
the best reproduction (the maximum percentage of relative
error is 0.33%); then by solving seven nonlinear equations
with seven unknown parameters we calculated the free
parameters (𝑚, 𝛼, 𝛽, 𝑑, 𝜂, 𝐴, 𝐵). The fitted parameters are
reported in Table 2. The corresponding numerical values for
3 and 4 star baryons resonances are given in Tables 3 and
4, column 𝑀our Calc. In Tables 3 and 4, column M[43]Calc, we
have shown the numerical values of the calculated masses of
baryon resonances by Giannini et al., where they regarded
the confinement potential as the Cornell potential (−(𝜏/𝑥) +
𝛼𝑥). The solution of the hypercentral Schrödinger equation
with this potential cannot be obtained analytically [43];
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Table 4: Like Table 3, but for Λ, Σ, Ξ, and Ω resonances.

Baryon Status 𝑀[42]exp State 𝑀[43]Calc 𝑀OurCalc Percent of relative error for our calculation
Λ(1116)𝑃01 ∗∗∗∗ 1116 28

1/2

[56, 0
+

] 1116 1116.05 0.004%
Λ(1600)𝑃01 ∗∗∗ 1560–1700 28

1/2

[56, 0
+

] 1626.7 1647.99 5.64%–3.05%
Λ(1670)𝑆01 ∗∗∗∗ 1660–1680 28

1/2

[70, 1
−

] 1721.7 1706.84 2.82%–1.59%
Λ(1690)𝐷03 ∗∗∗∗ 1685–1695 28

3/2

[70, 1
−

] 1721.7 1706.84 1.29%–0.69%
Λ(1800)𝑆01 ∗∗∗ 1720–1850 48

1/2

[70, 1
−

] 1836.6 1821.74 5.91%–1.52%
Λ(1810)𝑃01 ∗∗∗ 1750–1850 28

1/2

[70, 0
+

] 1973.4 1816.04 3.77%–1.83%
Λ(1820)𝐹05 ∗∗∗∗ 1815–1825 28

5/2

[56, 2
+

] 1829.4 1866.62 2.84%–2.28%
Λ(1830)𝐷05 ∗∗∗∗ 1810–1830 48

5/2

[70, 1
−

] 1836.6 1821.74 0.64%–0.45%
Λ(1890)𝑃03 ∗∗∗∗ 1850–1910 28

3/2

[56, 2
+

] 1829.4 1866.62 0.89%–2.27%
Λ(2100)𝐺07 ∗∗∗∗ 2090–2110 21

7/2

[70, 3
−

] — 2089.04 0.04%–0.99%
Λ(2110)𝐹05 ∗∗∗∗ 2090–2140 48

5/2

[70, 2
+

] 1995 2149.96 2.86%–0.46%
Λ(2350)𝐻09 ∗∗∗ 2340–2370 28

9/2

[56, 4
+

] — 2360.52 0.87%–0.4%
Λ
∗

(1405)𝑆01 ∗∗∗∗ 1402–1410 21
1/2

[70, 1
−

] 1657.9 1433.91 2.27%–1.69%
Λ
∗

(1520)𝐷01 ∗∗∗∗ 1518–1520 21
3/2

[70, 1
−

] 1657.9 1433.91 5.53%–5.66%
Σ(1193)𝑃11 ∗∗∗∗ 1193 28

1/2

[56, 0
+

] 1193 1193.05 0.004%
Σ(1660)𝑃11 ∗∗∗ 1630–1690 28

1/2

[56, 0
+

] 1703.7 1616.12 0.05%–4.37%
Σ(1670)𝐷13 ∗∗∗∗ 1665–1685 28

3/2

[70, 1
−

] 1798.7 1783.74 7.13%–5.85%
Σ(1750)𝑆11 ∗∗∗ 1730–1800 28

1/2

[70, 1
−

] 1798.7 1783.74 3.1%–0.9%
Σ(1775)𝐷15 ∗∗∗∗ 1770–1780 48

5/2

[70, 1
−

] 1913.6 1789.87 1.12%–0.55%
Σ(1915)𝐹15 ∗∗∗∗ 1900–1935 28

5/2

[56, 2
+

] 1906.4 1910.7 0.56%–1.25%
Σ(1940)𝐷13 ∗∗∗ 1900–1950 28

3/2

[56, 1
−

] 1913.6 1943.62 2.29%–0.32%
Σ
∗

(1385)𝑃13 ∗∗∗∗ 1383–1385 410
3/2

[56, 0
+

] — 1363.67 1.39%–1.54%
Σ
∗

(2030)𝐹17 ∗∗∗∗ 2025–2040 410
7/2

[56, 2
+

] 2085.0 2004.82 0.99%–1.72%
Ξ(1318)𝑃11 ∗∗∗∗ 1314–1316 28

1/2

[56, 0
+

] 1332.6 1332.6 1.41%–1.26%
Ξ(1690)𝑆11 ∗∗∗ 1680–1700 28

1/2

[70, 1
−

] — 1706.1 1.55%–0.35%
Ξ(1820)𝐷13 ∗∗∗ 1818–1828 28

3/2

[70, 1
−

] 1938.3 1923.39 5.79%–5.21%
Ξ
∗

(1530)𝑃13 ∗∗∗∗ 1531–1532 410
3/2

[56, 0
+

] 1511.1 1503.2 1.81%–1.87%
Ω(1672)𝑃03 ∗∗∗∗ 1672–1673 410

3/2

[56, 0
+

] 1650.7 1643 1.73%–1.79%
Ω(2250)𝐷03 ∗∗∗ 2243–2261 210

3/2

[70, 1
−

] — 2227.87 0.67%–1.46%
∗∗∗∗Existence is certain, and properties are at least fairly well explored. ∗∗∗Existence ranges from very likely to certain, but further confirmation is desirable
and/or quantum numbers, branching fractions, and so forth are not well determined.

therefore Giannini et al. used the dynamic symmetry 𝑂(7)
of the hyperCoulomb problem to obtain the hyperCoulomb
Hamiltonian and eigenfunctions analytically and also they
regarded the linear term as a perturbation. Comparison
between our results and the experimental masses [42]
shows that our model has improved the results of model
in [43], particularly in Λ(1810), Λ(2110)𝐹05, Λ∗(1405)𝑆01,
Λ
∗

(1520)𝐷01, Δ(1905)𝐹35, Δ(1910)𝑃31, Δ(1920)𝑃33, and
Σ(1775)𝐷15 (refer to Tables 3 and 4). These improvements
in reproduction of baryons resonance masses are obtained
by using a suitable form for confinement potential and exact
analytical solution of the radial Schrödinger equation for
our proposed potential. The percentage of relative error for
our calculations is between 0 and 10% (column 7, in Tables
3 and 4). The corresponding numerical values for some of
1 and 2 star baryons resonances mass up to 2.1 GeV are
given in Table 5, column𝑀our Calc. The percentage of relative
error for our calculations is between 0.07 and 9% (column
6, in Table 5). Comparison between our results and the
experimental masses [42] shows that the baryon spectra are,
in general, fairly well reproduced.

3. Conclusion

In this paper we have computed the baryon resonances
spectrum up to 3GeV within a nonrelativistic quark model
based on the three identical quarks Schrödinger equation
and the algebraic approach. We have solved the Schrodinger
equation numerically to obtain the energy eigenvalues under
the Killingbeck plus isotonic oscillator interaction potentials.
Then, we fitted the generalized GR mass formula parameters
to the baryons energies and calculated the baryon masses.
The overall good description of the spectrum which we
obtain by our proposed model shows that our theoretical
model can also be used to give a fair description of the
energies of the excited multiplets up to 3GeV and not only
for the ground state octets but also decuplets. Moreover, our
model reproduces the position of the Roper resonances of the
nucleon andnegative-parity resonance.There are problems in
the reproduction of the experimental masses in Δ(1620)𝑆31

and Σ(1670)𝐷13 that turn out to have predicted mass about
100MeV above the experimental value. A better agreement
may be obtained either using the square of the mass [1] or
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Table 5: Mass spectrum of some of 1 and 2 star baryons resonances (in MeV) up to 2.1 GeV calculated with the mass formula (22). column
𝑀OurCalc contains our calculations with the parameters of Table 2 and column 6 indicates the percentage of relative error for our calculations.

Baryon Status 𝑀[42]exp State 𝑀OurCalc Percent of relative error for our calculation
𝑁(1860)𝐹15 ∗∗ 1820–1960 28

5/2

[70, 2
+

] 1966.7 8.06%–0.34%
𝑁(1880)𝑃11 ∗∗ 1835–1905 48

1/2

[70, 2
+

] 1971.9 7.46%–3.51%
𝑁(1895)𝑆11 ∗∗ 1880–1910 28

1/2

[70, 1
−

] 1857.01 1.22%–2.77%
𝑁(1990)𝐹17 ∗∗ 1995–2125 48

7/2

[70, 2
+

] 1971.9 1.15%–7.2%
𝑁(2000)𝐹15 ∗∗ 1950–2150 48

5/2

[70, 2
+

] 1971.9 1.12%–8.28%
𝑁(2040)𝑃13 ∗ 2031–2065 48

3/2

[70, 2
+

] 1971.9 2.9%–4.5%
𝑁(2060)𝐷15 ∗∗ 2045–2075 48

5/2

[70, 2
−

] 1971.9 3.57%–4.96%
𝑁(2120)𝐷13 ∗∗ 2090–2210 28

3/2

[56, 1
−

] 2127.52 1.79%–3.73%
Δ(1750)𝑃31 ∗ 1708–1780 210

1/2

[70, 0
+

] 1754.5 2.72%–1.43%
Δ(1900)𝑆31 ∗∗ 1840–1920 210

1/2

[70, 1
−

] 1918.6 4.27%–0.07%
Δ(1940)𝐷33 ∗∗ 1940–2060 210

3/2

[70, 1
−

] 1918.6 1.1%–6.86%
Δ(2000)𝐹35 ∗∗ ≈2000 210

5/2

[70, 2
+

] 2028.2 1.41%
Σ(1580)𝐷13 ∗ ≈1580 48

3/2

[70, 1
−

] 1574.12 0.37%
Σ(1620)𝑆11 ∗∗ ≈1620 28

1/2

[70, 0
−

] 1674.97 3.39%
Σ(1770)𝑃11 ∗ ≈1770 28

1/2

[70, 0
+

] 1783.84 0.78%
Σ(1880)𝑃11 ∗∗ ≈1880 28

1/2

[20, 1
+

] 1842.68 1.98%
Σ(2000)𝑆11 ∗ ≈2000 28

1/2

[70, 1
−

] 2002.47 0.12%
Σ(2070)𝐹15 ∗ ≈2070 48

5/2

[70, 2
+

] 2117.37 2.28%
Σ
∗

(1840)𝑃13 ∗ ≈1840 410
3/2

[56, 0
+

] 1895.6 3.02%
Σ
∗

(2080)𝑃13 ∗∗ ≈2080 210
3/2

[70, 2
+

] 2058.2 1.04%
∗∗Evidence of existence is only fair. ∗Evidence of existence is poor.

trying to include a spatial dependence in the 𝑆𝑈(6) breaking
part.
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