
Research Article
The Mixed Phase of Charged AdS Black Holes

Piyabut Burikham and Chatchai Promsiri

High Energy Physics Theory Group, Department of Physics, Faculty of Science, Chulalongkorn University,
Phayathai Road, Bangkok 10330, Thailand

Correspondence should be addressed to Piyabut Burikham; piyabut@gmail.com

Received 22 January 2016; Accepted 1 March 2016

Academic Editor: George Siopsis

Copyright © 2016 P. Burikham and C. Promsiri.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.
The publication of this article was funded by SCOAP3.

We study the mixed phase of charged AdS black hole and radiation when the total energy is fixed below the threshold to produce
a stable charged black hole branch. The coexistence conditions for the charged AdS black hole and radiation are derived for the
generic case when radiation particles carry charge. The phase diagram of the mixed phase is demonstrated for both fixed potential
and charge ensemble. In the dual gauge picture, they correspond to the mixed phase of quark-gluon plasma (QGP) and hadron gas
in the fixed chemical potential and density ensemble, respectively. In the nuclei and heavy-ion collisions at intermediate energies,
the mixed phase of exotic QGP and hadron gas could be produced. The mixed phase will condense and evaporate into the hadron
gas as the fireball expands.

1. Introduction

The study of black hole thermodynamics has begun when
Bardeen et al. proposed the laws of black hole mechanics
[1] demonstrating the parallel mathematical analogy between
the properties of black hole (BH) and the laws of thermo-
dynamics. The classical horizon area of the BH can only
increase in a similar way to the thermal entropy of an isolated
system. At the classical level, the horizon area of any BH
actually never decreases whilst the thermal entropy of the
subsystem can and usually does decrease during the heat
transfer between the subsystems, as long as the total entropy
of the system never decreases. Observing from the spacetime
outside a BH, the horizon appears as a boundarywhere falling
objects are smeared and frozen. Any information thrown into
the BH should then be encoded around the horizon, along
with the corresponding entropy. The proposal of Bekenstein
that BH carries entropy proportional to the horizon area
came thus as a simple and natural solution to the classical
information loss [2]. The information of fallen object is not
lost; it is encoded on the horizon.

Quantum fluctuations around the horizon cause BH to
radiate and in the process give out part of its entropy in
the form of radiation. The surprising calculation of Hawking
reveals that the radiation is purely thermal at the leading

order [3]. Consequently, Hawking radiation sends off the
entropy but not all of the information carried by the BH, at
least at the leading order. At present, the exact mechanism
of retrieving information from the BH is not known. From
the viewpoint of the holographic duality, we believe that
the information is not lost since the unitary evolution is
preserved in the dual gauge picture without gravity.

There are a number of convincing lines of evidence of
the duality between the gravitational system in AdS𝑑 space
and the gauge system living on the boundary [4–11] (also
see [12] and the references therein). At zero temperature, the
quantum fields in AdS𝑑 are dual to the conformal version of
confined “hadron” living on the AdS boundary. Extension to
finite temperature duality can be done by performing the path
integral calculation of the partition function. The thermal
AdS (AdS space filled with radiation) is then dual to the
confined “hadron gas.” When a BH horizon is introduced
into the AdS metric, the dual gauge theory demonstrates
certain deconfinement properties such as the proportionality
of entropy with 𝑁2 (for 𝑆𝑈(𝑁) on the AdS5 boundary) and
the screening of the potential between “quarks.” Gravita-
tional collapse of matter in the AdS to form a BH would
then correspond to the phase transition from the confined
to deconfined phase of a gauge system on the boundary.

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2016, Article ID 5864672, 18 pages
http://dx.doi.org/10.1155/2016/5864672



2 Advances in High Energy Physics

The duality maps the thermodynamic phases of BH in the
bulk AdS to those of the strongly coupled gauge system on
the AdS boundary.

For zero-charge AdS-BH, there are 2 possible branches, a
BHwith positive and negative heat capacitywhich henceforth
we will refer to as a pBH and nBH, respectively. There is a
minimal temperature below which the only possible thermal
phase is the pure radiation. At slightly higher Hawking-
Page temperature, the pBH phase becomes the most ther-
modynamically preferred [13]. When we put a system in
thermal contact with the heat bath at constant temperature,
the system will exchange energy with the surroundings and
reach thermal equilibriumat the temperature of the heat bath.
If there are many possible phases, the system will settle in the
phase with minimal free energy since the probability for the
system to be in that configuration is the highest.

However, if the system is isolated with fixed total energy,
it is possible that the system cannot be in the phase with the
lowest free energy if the total energy is too small. Generically,
the systemwill be in themixed phase ofmany possible phases
with the energy of each phase adding up to the total energy.
The same situation occurs whenwe put a small uncharged BH
or an nBH in an AdS box. Because the AdS space confines
radiation like a box, the small BH will not radiate away all
of the energy and become a pure radiation phase. If the box
is sufficiently small or if the size of the BH is not too small
(i.e., the temperature is not too high), the small BH can reach
thermal equilibrium with the radiation within the AdS space
[14, 15].

The implications to the dual gauge system are remarkable.
Hypothetically, we can consider injecting mass into the
AdS space until it undergoes gravitational collapse; see, for
example, [16–21]. This would correspond to increasing the
energy density of the gauge matter (hadron gas) on the AdS
boundary until the deconfinement occurs. From the dual
gauge picture, if the conformal dimension of the single-trace
fermionic operator in the underlying theory is sufficiently
large and the energy density of the gauge matter is slightly
larger than a critical density (dual to themass limit of the AdS
star), the creation of exotic quark-gluon plasma (QGP) with
negative heat capacity is inevitable [15].

To understand the property of the dual gauge matter
in the presence of the exotic QGP, consider an open string
hanging from the boundary of the AdS space with a small
BH inside. For a short string (comparing to the AdS radius),
since the string hangs itself close to the boundary, the effect
of the BH horizon becomes negligible. The quark-antiquark
potential calculated from such string will be approximately
similar to the confining potential calculated in the empty
AdS space. Typical gravity calculation of the potential at
zero temperature gives, for example, 𝑉(𝑟) ∼ 1/𝑟 for AdS5
which is unconfined, a natural consequence of the conformal
symmetry [22]. However, for global AdS𝑛+1, the boundary
is set to be a finite volume 𝑆𝑛−1 which breaks conformal
symmetry with the scale of AdS radius 𝑙, acting like a hard-
wall cutoff. Short string with 𝑟 < 𝑙 will connect two
endpoints almost linearly like a QCD string and thus gives
a confining potential. See also Section 4. On the other hand,

for a long string, it will hang down close to the horizon and
the potential will be screened. Consequently, there are two
kinds of radiation in the small AdS-BH background. One is
dual to the confined hadron gas and the other is dual to the
deconfined plasma of quarks and gluons. They coexist in the
same background.

In the heavy-ion and hadron collisions at RHIC and LHC,
the total energy is fixed by the beam energy. If the energy
is sufficiently large and the corresponding temperature and
density are also above a threshold to produce the stable phase
of QGP, it will be produced. However, if the energy is not
sufficient to produce the stable phase (dual to the large BH
or pBH), it is still possible to produce the QGP with negative
heat capacity (dual to the nBH or small BH). Similar to the
nBH in the AdS box, the dual exotic QGP will be in the
mixed phase with the hadron gas (dual to the radiation in the
AdS) [15]. It is interesting to explore the theoretical possibility
of the formation of exotic QGP with the results of the low-
energy heavy-ion collisions at CERN (see, e.g., [23] and also
[24] for high-energy but low density collision). What is the
threshold energy density to produce a QGP? Is it possible to
produce an exotic QGP coexisting with the hadron gas in the
experiment? What are the physical properties of the exotic
QGP?

In gravity picture, nBH can be in thermal equilibrium
with radiation since it is put in a confining AdS box. In the
gauge picture, it is uncommon to imagine a strongly coupled
fluid with negative heat capacity. The common thermody-
namical picture we have of a liquid-gas system (which is
an analogy of the charged AdS-BH system; see [25, 26] and
also [27] for a different interpretation of the thermodynamic
pressure and volume) is when it is free to exchange heat
with the surroundings at a constant temperature. In this
picture, the negative heat capacity phase is unstable and
usually interpreted to signal the coexistence of the two
phases. Taking into account the observed phenomenon of
constant pressure during the phase transition, Maxwell’s
equal area rule is imposed to replace the superheated liq-
uid, the negative heat capacity phase, and the supercooled
gas with the constant pressure line in the PV diagram.
In reality, however, the emergence of metastable phases is
quite common especially in the small scale, implying the
validity of the van der Waals equation below the critical
temperature.Themetastable/unstable phase can be produced
and will be produced under the appropriate conditions. For
example, the attractive force between particles in the liquid
can locally suppress the generation of the more stable gas
bubble phase. Without impurity or seeds of phase transition,
such metastable phases could exist for a long time (see, e.g.,
[28] for the case of black hole in a box).

For a system with attractive force between particles, the
potential energy is negative.The kinetic energy which defines
the temperature is related to the negative of the potential
energy by the virial theorem. Given an amount of energy
to the system, if the potential energy is less negative, the
kinetic energy and consequently temperature will decrease.
Such system will have a negative heat capacity. A well known
example is the gravitating system [29]; attractive gravita-
tional force heats up the star as the total energy decreases.
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Below a critical temperature, the van der Waals gas also
expresses such behaviour due to the attractive force between
gas particles. Considering the strong coupling of the QGP
near the deconfinement transition (a screened but attractive
potential), it is possible that it could be supercooled without
undergoing the phase transition to the hadron gas. This is
analogous to the van der Waals gas being in the supercooled
gas phase without condensing into a liquid.

In this paper, we investigate the nBH-radiation mixed
phase of the charged AdS-BH. Thermodynamics of charged
AdS-BH have been extensively studied in [25, 26] (and the
references therein) for fixed potential and fixed charge cases.
The corresponding gauge duals are theQGP at finite chemical
potential and density, respectively. We extend their results to
consider the mixed phase of nBH-radiation when the total
energy is fixed below the threshold value to produce the stable
pBH phase. The mixed phase is found to exist in the phase
diagram up to the critical value of the potential/charge (dual
to the critical chemical potential/density). Above the critical
potential/charge, the nBH branch ceases to exist.

The paper is organized as follows. In Section 2, we
review thermodynamics of the charged AdS-BH for fixed
potential and charge, respectively. The mixed phases of nBH
and radiation for both cases are investigated in Section 3.
Section 4 discusses gauge interpretation in the dual picture.
Conclusions and discussions are in Section 5. Appendix A
shows the critical energies that distinguish nBH and pBH.
Appendix B discusses the maximal entropy conditions of the
mixed phase when the radiation particles are charged.

2. Thermodynamics of Charged
AdS Black Holes

First, we review the thermodynamics of charged AdS black
hole studied in great detail in [25, 26]. Then, we proceed to
consider the possibility of the mixed phase of the black hole
and radiation subsequently.

Start with the action of the pure Maxwell field in the AdS
space:

𝐼 =
1

16𝜋𝐺
∫𝑑
𝑛+1
𝑥√
𝑔
 [𝑅 − 𝐹

2
+
𝑛 (𝑛 − 1)

𝑙2
] . (1)

The action gives a negative cosmological constantΛ = −𝑛(𝑛−
1)/𝑙
2, where 𝑙 is the length scale of the AdS space. The

action admits a spherically symmetric solution for 𝑑 = (𝑛 +
1)-dimensional Einstein-Maxwell-AdS (EMAdS) black hole
spacetime given by

𝑑𝑠
2
= −𝑓 (𝑟) 𝑑𝑡

2
+
𝑑𝑟
2

𝑓 (𝑟)
+ 𝑟
2
𝑑Ω
2

𝑛−1
, (2)

where [25]

𝑓 (𝑟) = 1 −
16𝜋𝐺𝑀

(𝑛 − 1)𝑉𝑛−1𝑟
𝑛−2

+
𝑞
2

𝑟2𝑛−4
+
𝑟
2

𝑙2
, (3)

𝑉𝑛−1 = 2𝜋
𝑛/2
/Γ(𝑛/2) is the area of the unit sphere 𝑆𝑛−1, and 𝑞

is a charge parameter. The charge 𝑞 generates the bulk gauge
potential in the form

𝐴 = 𝐴 𝑡𝑑𝑡 = (−
1

𝑐

𝑞

𝑟𝑛−2
+
1

𝑐

𝑞

𝑟𝑛−2
+

)𝑑𝑡, (4)

where

𝑐 = √
2 (𝑛 − 2)

𝑛 − 1
. (5)

The “ground” of the gauge potential is set to be the horizon;
that is, 𝐴 𝑡(𝑟+) = 0. The potential difference between the
horizon and boundary of the AdS space is then given by

Φ =
1

𝑐

𝑞

𝑟𝑛−2
+

. (6)

We will identify Φ to be the corresponding electric potential
of the BH.We can check that the gauge potential given by (4)
generates the field strength 𝐹𝑀𝑁 such that

𝐹
2
= − (𝑛 − 1) (𝑛 − 2)

𝑞
2

𝑟2𝑛−2
(7)

solves the Einstein field equation

𝑅 = (
𝑛 − 3

𝑛 − 1
)𝐹
2
−
𝑛 (𝑛 + 1)

𝑙2
. (8)

2.1. Fixed Potential. When the potential Φ is fixed at the
boundary, the Gibbons-Hawking boundary action vanishes
since the field strength of the gauge field is zero on the
boundary. The only remaining contribution is simply the
classical action of the charged black hole in (𝑛+1) dimensions
(see (1)). Using the equation of motion (see (8)), we can
rewrite the action as

𝐼 =
1

16𝜋𝐺
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2𝐹
2
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2𝑛
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) , (9)

where the kinetic term of the gauge field 𝐹2 satisfies (7). Both
the volume factor of the AdS and the Electromagnetic (EM)
AdS black hole are infinite but the difference is finite; the
regulated action obtained by subtracting the two at the same
asymptotic radius is

𝐼 =
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𝑞
2
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2
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𝑟
𝑛

+

𝑙2
) ,

(10)

where we have used (6) in the last equation. The Hawking
temperature can be obtained from

𝛽 =
4𝜋
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=
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Figure 1: Example plot (𝑛 = 4) of (a) free energy 𝐺 and (b) mass versus 𝑇 for the fixedΦ < Φ𝑐 ensemble; both 𝑛 = 3, 4 show similar features.

Similar to the black hole with zero charge where the partition
function can be approximated from the gravity action at
the saddle point, the grand partition function Z is well
approximated by the gravity action of the charged black hole
at the saddle (given by the classical solution since itminimizes
the action). Namely,

Z ≃ 𝑒
−𝐼
, (13)

where 𝐼 is the action at the classical solution of the black
hole. Since the grand partition is the Laplace transform of
the density of states,𝑁(𝐸,N), with respect to the energy and
number of particlesN,

Z = ∫𝑁 (𝐸,N) 𝑒
−𝛽(𝐸−𝜇N)

𝑑𝐸𝑑N, (14)

the inverse Laplace transform of Z will give the density of
states𝑁(𝐸,N) which could be approximated by the value at
the saddle of the integrand

𝑁(𝐸,N) ≈Z𝑒
𝛽(𝐸−𝜇N)

(at the saddle) . (15)

Consequently, the entropy defined to be the number of states
in the log scale is given by

𝑆 = lnZ + 𝛽𝐸 − 𝛽𝜇N. (16)

The value of temperature and chemical potential at the saddle
configuration will maximize the entropy. By using (13) and
identifying 𝜇, N with Φ, 𝑄 of the black hole, the resulting
entropy of a charged BH becomes purely geometric and equal
to𝐴𝐻/4𝐺.The grand potential is thus𝐺 = 𝐸−𝑇𝑆−Φ𝑄 = 𝐼/𝛽.
Together with the first law, 𝑑𝐸 = 𝑇𝑑𝑆+Φ𝑑𝑄, thermodynamic
quantities of the system are then given by

𝐸 = (
𝜕𝐼

𝜕𝛽
)

Φ

+ Φ𝑄 = 𝑀,

𝑄 = −
1

𝛽
(
𝜕𝐼

𝜕Φ
)

𝛽

= √2 (𝑛 − 2) (𝑛 − 1) (
𝑉𝑛−1

8𝜋𝐺
) 𝑞,

(17)

for the charged-BH solution. The entropy can also be written
in terms of the action as

𝑆 = 𝛽(
𝜕𝐼

𝜕𝛽
)

Φ

− 𝐼 =
𝑉𝑛−1𝑟
𝑛−1

+

4𝐺
=
𝐴𝐻

4𝐺
, (18)

where 𝐴𝐻 is the area of the event horizon of the black hole.
The phase structure can be explored using the free energy

𝐺 derived from the action in (10). For Φ < 1/𝑐 ≡ Φ𝑐, there
are two branches of charged AdS-BH, a BHwith negative and
positive heat capacity (nBHand pBH) (see Figure 1).ThenBH
and pBH are separated by the critical mass𝑀𝑐 at which the
heat capacity (at constant Φ) diverges. For Φ ≥ 1/𝑐, the nBH
disappears into an extremal BH (EBH) at a minimal size [25].
For a fixed temperature (and volume) in the grand canonical
ensemble, the nBH branch is unstable while the pBH is
thermodynamically stable with the positive heat capacity.
The pBH will compete with the pure thermal AdS (with
background Φ in this case) for the most preferred phase.
There is a critical temperature 𝑇𝑐 where the BH branches
(pBH and nBH) emerge. For temperature lower than𝑇𝑐, there
is only one possible phase of thermal AdS without any BH.
Up until the phase transition temperature 𝑇1 (larger than
𝑇𝑐), the most thermodynamically preferred phase is still the
thermal AdS. For 𝑇1 > 𝑇 > 𝑇𝑐, the thermal AdS is preferred
over the pBH and the nBH is always the least preferred
and unstable. For 𝑇 > 𝑇1, the most preferred phase is the
pBH. For Φ = 0, 𝑇1 simply coincides with the Hawking-
Page temperature of the AdS space. Figure 2 shows the phase
transition temperature 𝑇1 versus Φ for 𝑛 = 3, 4.

Since the potential Φ is dual to the chemical potential
of the gauge matter at the boundary, Figure 2 shows that
the deconfinement phase transition temperature decreases
as the chemical potential increases. The phase transition
temperature reduces to zero at a critical chemical potential
dual to the critical potentialΦ𝑐 = 1/𝑐.

When a BH coexists with radiation confined within the
AdS space, the total energy will be the sum of the ADMmass



Advances in High Energy Physics 5

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Φ

T
1

T1 versus Φ, AdS4

(a)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

Φ

T
1

T1 versus Φ, AdS5

(b)

Figure 2:The phase transition temperature𝑇1 between the pure radiation and pBH for fixedΦ ensemble (dual to the fixed chemical potential
ensemble).

of the BH and the radiation energy. The sum of the entropy
of BH and radiation also approximately yields the total
entropy of the BH-radiation mixture. We will demonstrate
in a subsequent section that the mixed phase of BH and
radiation is allowed in certain region of the phase diagram.

2.2. Fixed Charge. If, instead of fixing the potential, we
choose to fix the bulk charge 𝑄 of the BH, the boundary
action is now relevant [30]. The total action becomes

𝐼 = 𝐼 −
1

4𝜋𝐺
∫𝑑
𝑛
𝑥√ℎ𝐹

𝜇]
𝑛𝜇𝐴], (19)

where 𝑛𝜇 = 𝛿
𝜇

𝑟
/√𝑔𝑟𝑟 is a radial unit vector pointing outwardly

from the boundary surface and ℎ is a determinant of the
induced metric tensor in this boundary surface. The electric
charge is proportional to the integral of the dual of 𝐹 on the
boundary sphere. Fixing charge thus implies the constancy of
𝑛𝜇𝐹
𝜇𝑡 on the boundary.
Setting the asymptotic radius to be 𝑅, the surface action

at this radius becomes

1

4𝜋𝐺
∫𝑑
𝑛
𝑥√ℎ𝐹

𝜇]
𝑛𝜇𝐴] =
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8𝜋𝐺
𝛽(

𝑞
2

𝑅𝑛−2
−
𝑞
2

𝑟𝑛−2
+

) . (20)

We will regulate the action for the fixed charge ensemble
by using the extremal black hole as a ground state. For
nonextremal and extremal black hole with horizon radii 𝑟+,
and 𝑟𝑒, the Euclidean actions including the surface term can
be computed to be

𝐼 =
𝑉𝑛−1𝛽

16𝜋𝐺𝑙2
[2 (𝑅
𝑛
− 𝑟
𝑛

+
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2
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𝑞
2
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(21)

𝐼𝑒 =
𝑉𝑛−1𝛽
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2
(
𝑞
2
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−
𝑞
2

𝑟𝑛−2
𝑒

)] ,

(22)

respectively. We subtract these actions andmatch the geome-
tries between them at the same asymptotic radius 𝑅:

𝛽
√1 −

𝑚𝑒

𝑅𝑛−2
+

𝑞
2

𝑅2𝑛−4
+
𝑅
2

𝑙2
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𝑅𝑛−2
+

𝑞
2

𝑅2𝑛−4
+
𝑅
2

𝑙2
,

(23)

where the ADM mass of the black hole,𝑀, is related to the
mass parameter𝑚 by

𝑀 =
(𝑛 − 1)𝑉𝑛−1

16𝜋𝐺
𝑚. (24)

In the limit of very large 𝑅, we obtain

𝛽


𝛽
= 1 +

𝑙
2

2𝑅𝑛
(𝑚𝑒 − 𝑚) . (25)

The mass parameter𝑚𝑒 of the extremal BH can be calculated
from two conditions:

𝑓 (𝑟𝑒) = 1 −
𝑚𝑒

𝑟𝑛−2
𝑒

+
𝑞
2

𝑟2𝑛−4
𝑒
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𝑟
2

𝑒

𝑙2
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𝑓
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𝑒
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(2𝑛 − 4) 𝑞

2

𝑟2𝑛−3
𝑒

+
2𝑟𝑒

𝑙2
= 0.

(26)

The conditions give the mass and charge of an extremal black
hole as a function of 𝑟𝑒 as

𝑚𝑒 =

2𝑟
𝑛−2

𝑒
((𝑛 − 2) 𝑙

2
+ (𝑛 − 1) 𝑟

2

𝑒
)

(𝑛 − 2) 𝑙
2

,

(
𝑛

𝑛 − 2
) 𝑟
2𝑛−2

𝑒
+ 𝑙
2
𝑟
2𝑛−4

𝑒
= 𝑞
2
𝑙
2
.

(27)
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Figure 3: Example plot (𝑛 = 4) of (a) free energy 𝐹 and (b) mass versus 𝑇 for the fixed 𝑞 < 𝑞𝑐 ensemble; both 𝑛 = 3, 4 show similar features.

Using these relations, the regulated action �̃� ≡ 𝐼 − 𝐼𝑒 becomes

�̃� =
𝑉𝑛−1𝛽

16𝜋𝐺𝑙2
[𝑙
2
𝑟
𝑛−2

+
− 𝑟
𝑛

+
+
(2𝑛 − 3) 𝑞

2
𝑙
2

𝑟𝑛−2
+

−
2 (𝑛 − 1)

𝑛
𝑙
2
𝑟
𝑛−2

𝑒
−
2 (𝑛 − 1)

2

𝑛

𝑞
2
𝑙
2

𝑟𝑛−2
𝑒

] .

(28)

The inverse Hawking temperature for a fixed charge BH, 𝛽,
is given in (11). When the charge 𝑄 is fixed on the AdS
boundary, the dual particle number N is also fixed. The
ensemble becomes a canonical one where the path integral
of the partition function can be approximated by the value of
action at the saddle

𝑍 ≈ 𝑒
−�̃�
. (29)

In this case, the partition function is the Laplace transform of
the density of states𝑁(𝐸)

𝑍 = ∫𝑁 (𝐸) 𝑒
−𝛽𝐸
𝑑𝐸. (30)

The inverse Laplace transform yields 𝑁(𝐸) which we can
approximate by the value at the saddle as

𝑁(𝐸) ≈ 𝑍𝑒
𝛽𝐸
, (31)

where the saddle condition is

𝐸 = −
𝜕 ln𝑍
𝜕𝛽

. (32)

The entropy is then given by

𝑆 = ln𝑍 + 𝛽𝐸 = −�̃� + 𝛽𝐸. (33)

In this canonical ensemble, the free energy is thus 𝐹 = 𝐸 −

𝑇𝑆 = �̃�/𝛽. Finally, using the first law, 𝑑𝐸 = 𝑇𝑑𝑆+(Φ−Φ𝑒)𝑑𝑄,

the thermodynamic quantities of the system can be expressed
in terms of �̃� as follows:

𝐸 = (
𝜕�̃�

𝜕𝛽
)

𝑄

= 𝑀 −𝑀𝑒, (34)

𝑆 = 𝛽(
𝜕�̃�

𝜕𝛽
)

𝑄

− �̃� =
𝐴𝐻

4𝐺
, (35)

Φ =
1

𝛽
(
𝜕�̃�

𝜕𝑄
)

𝛽

=
1

𝑐
(
𝑞

𝑟𝑛−2
+

−
𝑞

𝑟𝑛−2
𝑒

) . (36)

For a fixed charge AdS-BH background, the black hole
thermodynamics are dual to the QGP at a fixed number den-
sity. For a fixed temperature, this is the canonical ensemble.
When 𝑞 = 0, if the temperature is lower than the critical
temperature 𝑇𝑐, the only possible phase is pure radiation. If
𝑇 > 𝑇𝑐, the BH branches are possible but only when 𝑇 >

𝑇HP is the pBH more thermodynamically preferred than the
pure radiation. For nonzero 𝑞, the phase structure changes
dramatically. The ground state becomes the EBH phase
instead of the pure radiation in theAdS. In contrast to the case
with zero charge, there is an additional pBH phase that comes
to existence with even lower free energy than the EBH phase.
Consequently, the deconfined charged-BH phase is always
more thermodynamically preferred than the confined phase
of EBH plus radiation at 𝑇 = 1/𝛽

 (EBH can be in thermal
equilibrium with radiation at any temperature [31]).

For small charges, 𝑞 < 𝑞𝑐, where [25]

𝑞
2

𝑐
=

𝑙
2𝑛−4

(𝑛 − 1) (2𝑛 − 3)
(
(𝑛 − 2)

2

𝑛 (𝑛 − 1)
)

𝑛−2

, (37)

there are 3 branches of the charged AdS-BH: 1 nBH and 2
pBH branches [25] (see Figure 3). From small to large 𝑟+,
we will call them branch 1 (pBH1), branch 2 (nBH), and
branch 3 (pBH3), respectively. For low temperature, only
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Figure 4: The phase transition temperature 𝑇
1,𝑞

between the pBH1 (branch 1) and pBH3 (branch 3) for fixed 𝑄 ensemble (dual to the fixed
density ensemble).

pBH1 exists. At certain temperature, branch 2 and branch 3
appear together with larger free energies than the pBH1. The
nBH and pBH3 are separated by the critical mass𝑀𝑐 at which
the heat capacity (at constant 𝑄) diverges. At slightly higher
temperature, 𝑇1,𝑞 (see Figures 3 and 4), the free energies of
pBH1 and pBH3 become equivalent and we have a first-order
phase transition frompBH1 to pBH3phase since the latter has
lower free energy for 𝑇 > 𝑇1,𝑞. Note that the phase transition
temperature 𝑇1,𝑞 becomes the Hawking-Page temperature
when the charge 𝑞 = 0.

In the dual gauge picture where 𝑄 corresponds to the
number density, Figure 4 is the temperature-density phase
diagram of the gaugematter.The deconfinement temperature
𝑇1,𝑞 decreases as the density increases. Above the critical
point, the nBH branch disappears as the pBH1 and pBH3
merge. This corresponds to the existence of a single QGP
phase.

It is interesting to note that, for 0 < 𝑞 < 𝑞𝑐, the nBH
can only exist up to a maximal temperature 𝑇𝑎 in contrast
to the zero-charge AdS-BH which can exist up to arbitrarily
high temperature.We will explore more of𝑇𝑎 in a subsequent
section when we study the nBH-radiation mixed phase.

If, instead of fixing the temperature, we fix the energy,
the appropriate ensemble will be microcanonical. For the
range of energy below the critical mass (dividing BH into
the positive and negative heat capacity branches, pBH3
and nBH, Figure 3) but larger than the pBH1 range, the
nBH branch can be produced. Even though the nBH is
less thermodynamically preferred than the EBH and other
branches, generically it could coexist with radiation in the
AdS box since the system is isolated.

3. Mixed Phase of BH and Radiation

AdS-BH behaves like a BH in a box; all massive particles
are confined within the interior spacetime. Massless particles
can reach the boundary but they will go back to the original
position in finite time, 𝜋𝑙, determined by the AdS radius
𝑙. Once the BH is formed, it will radiate via quantum

fluctuations near the horizon. The radiation will go to the
AdS boundary and then bounce back to the horizon of the
BH. We can categorize the thermal configurations of the
AdS space into 3 types: pure radiation, BH with negative
heat capacity (nBH), and BH with positive heat capacity
(pBH). Consideration of the free energy 𝐺 for the AdS-BH
with fixed Φ reveals that the nBH configuration is always
less thermodynamically preferred than the pure radiation
with the free energy being positive (the action regulation
defines the free energy of the pure radiation to be zero for
the purpose) [25]. On the other hand, for fixed 𝑄 ensemble,
the free energy 𝐹 is regulated with respect to the charged
ground state EBH.The nBH solution has positive free energy
around the emerging temperature but becomes negative as
𝑇 increases. However, there are always pBH branches which
have lower 𝐹 and thus the nBH branch is thermodynamically
unstable.

With respect to the parameters 𝑟+ and Φ or 𝑞, the free
energies 𝐺 = 𝑇𝐼 and 𝐹 = 𝑇�̃� show multiple branches of
BH configurations depending on the range of Φ and 𝑞. For
intermediate values of Φ < 1/𝑐 (𝑞 < 𝑞𝑐), there are 2 (3)
branches of the charged BH when the potential (charge) is
fixed. For fixed Φ, similar to the AdS-BH with no charges,
it requires sufficiently high temperature 𝑇 ≥ 𝑇𝑐 for the BH
configurations to exist, both nBHandpBH. In this section, we
will demonstrate that the critical temperature 𝑇𝑐 approaches
zero asΦ increases, that is, approaching the extremal limit, as
shown in Figure 5. Interestingly, for the case of fixed charge
𝑞, the critical temperature 𝑇𝑐, where the branches nBH and
pBH3 emerge, drops to a nonzero positive value at critical 𝑞𝑐.
This is shown in Figure 7.

Generically, the radiation from a BH can be charged. A
detailed analysis in Appendix B reveals that the parameter
space of the allowed region of the nBH-radiationmixed phase
is remarkably profound, for both positive and negative charge
cases of radiation. From Figure 11(b), the charge condition for
negative and zero radiation charge (𝑒 ≤ 0, 𝑦 ≤ 1) is satisfied
for the entire 𝑞 < 𝑞total = 0.9𝑞𝑐 region of the parameter space
(and 𝑟 > 𝑟𝑒).The allowed region for themixed phase becomes
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Figure 5: The heat capacity condition 𝑆(𝐸𝑟) < 0 is characterized by the sizes 𝑧2 and 𝑧𝑐. Allowed region is the area between 𝑧2 and 𝑧𝑐. In (a)
and (b): the saturation size 𝑧2, the critical size 𝑧𝑐, and the corresponding temperatures versus the bulk potential Φ for AdS4. In (c) and (d):
the saturation size 𝑧2 and the critical size 𝑧𝑐 and the corresponding temperatures versus the bulk potential Φ for AdS5. For all plots, we set
𝑔𝑏 = 𝑔𝑓 = 2.

smaller as the charge of the radiation is turned on positively,
as shown in, for example, Figure 11(a). For radiation with
negative charge (𝑦 < 1), the allowed region for the mixed
phase becomes larger as we can see from Figures 10 and 11.
For radiation with positive charge (𝑦 > 1), the allowed region
becomes considerably smaller; for example, only𝑦 ≳ 1, 𝑒 ≪ 1

remain as is shown in Figure 12.
If the radiation is negatively charged, that is, opposite

charge to the BH, the hole naturally absorbs the surrounding
charges and becomes less charged. Finally, the preferred con-
figuration would be the nBH surrounded by small positive
charges at the fixed total energy. Namely, for a fixed total
charge and energy, the nBH-radiationmixed phase should be
dominated by the configuration with 𝑦 ∼ 1 + 𝜖 (1 ≫ 𝜖 > 0).
Consequently, in this section, we present the phase diagram
of the nBH-radiation mixed phase for zero-charge radiation.
When the radiation carries no charges, there are 2 cases of
fixed potential and fixed charge for the BH.

3.1. Fixed Potential. The potential of the bulk theory can be
fixed by setting 𝐴 𝑡(𝑟+) = 0, Φ = 𝐴 𝑡(𝑟 → ∞) = 𝑞/(𝑐𝑟

𝑛−2

+
).

The unnormalizable potential Φ will behave like a chemical
potential of certain global 𝑈(1) symmetry on the boundary,
analogous to the baryon chemical potential. For fixed Φ, BH
with varying 𝑞 will also have differing value of 𝑟+ and there-
fore the charge of the BH will change with size in this case.

Generically, when the system is free to exchange energy
with the surroundings, the system will transit to the phase
with the lowest free energy. On the other hand, in the
situation where the total energy is fixed, BH will coexist
with radiation in the background AdS. If we fix total energy,
𝐸 = 𝐸𝑟 + 𝐸bh, and maximize the entropy, 𝑆 = 𝑆𝑟 + 𝑆bh,
configuration with the highest probability will be the mixture
of AdS-BH and the radiation if the total energy is smaller than
the critical value to produce a pBH branch [14]. The general
conditions for the maximal entropy are

𝜕𝑆

𝜕𝐸𝑟

= 0,

𝜕
2
𝑆

𝜕𝐸2
𝑟

< 0.

(38)
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For a BH with heat capacity 𝐶, the conditions under the
constraint of fixed total energy lead to the equilibrium
condition 𝑇𝑟 = 𝑇bh ≡ 𝑇 and

𝐶
−1
> −

𝑇

(𝑛 + 1) 𝐸𝑟

, (39)

for 𝐸𝑟 = 𝑎𝑇
𝑛+1. The constant 𝑎 depends on the bosonic

(𝑔𝑏) and fermionic (𝑔𝑓) degrees of freedom of the free field
composing the radiation given by

𝑎 = 𝑙
𝑛
(𝑔𝑏 + (1 − 2

−𝑛
) 𝑔𝑓)

√𝜋

2𝑛−1

Γ (𝑛 + 1) 𝜁 (𝑛 + 1)

Γ ((𝑛 + 1) /2) Γ (𝑛/2)
. (40)

The condition is trivially satisfied by a pBH with 𝐶 > 0

while, for an nBH, it becomes nontrivial. The total energy 𝐸
determines whether the formation of BH results in a pBH
or an nBH. We define the critical mass 𝑀𝑐 to be the mass
distinguishing a pBH with positive 𝐶 from an nBH with
negative 𝐶. For 𝐸 > 𝑀𝑐, a pBH will most likely be formed.
For 𝐸 < 𝑀𝑐, an nBH could be formed in an equilibrium with
the radiation. In the case of fixed potential, the critical mass
is given by

𝑀𝑐,Φ =
(𝑛 − 1)𝑉𝑛−1𝑟

𝑛

𝑐

(𝑛 − 2) 8𝜋𝐺𝑙
2
(
𝑛 − 1 + 𝑐

2
Φ
2

1 − 𝑐2Φ2
) , (41)

where

𝑟𝑐 = 𝑙
√
𝑛 − 2

𝑛
(1 − 𝑐2Φ2). (42)

The black hole with size larger than 𝑟𝑐 will be the pBH branch.
The example plot of the critical energy for 𝐺, 𝑙 = 1 is given in
Appendix A.

The heat capacity for the fixed potential case can be
calculated in a straightforward manner:

𝐶Φ = (
𝜕𝑀

𝜕𝑇
)

Φ

=

(𝑛 − 1)𝑉𝑛−1𝑟
𝑛−1

+
(𝑛𝑟
2

+
+ (𝑛 − 2) 𝑙

2
(1 + 𝑐

2
Φ
2
))

4𝐺 (𝑛𝑟2
+
− (𝑛 − 2) 𝑙

2 (1 − 𝑐2Φ2))
.

(43)

From the coexistence condition (39), we define the
saturation size 𝑟2 to be the horizon of the nBHwhich saturates
this inequality. The nBH with the radius smaller than 𝑟2 will
violate the coexistence condition.

In Figure 5, the critical size 𝑧𝑐 ≡ 𝑟𝑐/ℓ and the saturation
size 𝑧2 ≡ 𝑟2/ℓ and the corresponding temperatures are shown.
The region of the phase diagrambetween the two curves is the
mixed nBH-radiation phase, satisfying condition (39).

As a demonstration, we plot the energy constraint 𝐸 <

0.9𝑀𝑐,Φ overlapping with the allowed region from the max-
imal entropy condition in Figure 6. The region between
the two red curves, 𝑢2, 𝑢3 and 𝑇(𝑢2), 𝑇(𝑢3), is the region
of the phase diagram which satisfies the energy condition.
The parameter 𝑢 is the radial coordinate expressed in unit
of 𝑙 that we use to demonstrate the energy condition. The
overlapping region is depicted as the shade area in the figure.
Note that 𝑧 and 𝑢 are two independent radial parameters we
used to express the maximal entropy and energy conditions,
respectively.

3.2. Fixed Charge. When the charge 𝑄 is fixed, the ground
state becomes the EBH with zero temperature. In contrast to
the zero-charge case where the BH action is regulated with
respect to the thermal AdS at finite𝑇, the action �̃� is regulated
with respect to the EBH. EBH is a special object; it even has
zero temperature, and it can be in thermal equilibrium with
radiation at any temperature [31]. Mathematically, when we
regulate the action with respect to the EBH andmatching the
geometry at asymptotically large radius, we assume there is
radiation at temperature𝑇 = 1/𝛽 in the EBH as the reference
phase. Physically, this reference phase becomes irrelevant
since the free energy of the BH phases is always smaller. We
have seen in the previous section that there are 3 possible
phases, all containing BH: pBH1, nBH, and pBH3. When the
system is allowed to exchange energy with the surroundings
at a fixed temperature, it will tend to be in the phase with the
lowest free energy. From zero temperature, pBH1 is the most
preferred phase. At 𝑇1,𝑞, pBH3 becomes more preferred and
phase transition is likely to occur.

For an isolated system at a fixed energy, however, it is pos-
sible to generate the nBH phase coexisting with the radiation.
As shown in Figure 3(b), if the total energy of the system
is too small to produce the pBH3 but too large to produce
the pBH1, the system will inevitably produce the nBH (e.g.,
via collision, scattering, or gravitational collapse). Once it
is produced, quantum fluctuations generate the Hawking
radiation into the AdS space. According to condition (39)
which applies to both fixed Φ and fixed 𝑄 cases, the most
probable configuration contains radiation energy less than
the saturation value−𝐶𝑇/𝑑.ThenBHshould continue to emit
radiation and eventually reach thermal equilibrium with the
radiation in the AdS box if the coexistence condition is still
satisfied.

The heat capacity for the fixed charge case is given by

𝐶𝑄 = (
𝜕𝑀

𝜕𝑇
)

𝑄

=

(𝑛 − 1)𝑉𝑛−1𝑟
𝑛−1

+
(𝑛𝑟
2𝑛+2

+
+ (𝑛 − 2) 𝑙

2
(𝑟
2𝑛

+
− 𝑞
2
𝑟
4

+
))

4𝐺 (𝑛𝑟2𝑛+2
+

− (𝑛 − 2) 𝑙
2 (𝑟2𝑛
+
− (2𝑛 − 3) 𝑞

2𝑟4
+
))

.

(44)

Figure 7 shows the phase diagram of the coexistence phase of
nBH-radiation for the fixed𝑄 ensemble subject to inequality
(39).The region between the curves of 𝑧𝑎-𝑧𝑐 (𝑇𝑎-𝑇𝑐) and 𝑧𝑏-𝑧2
(𝑇𝑏-𝑇2) satisfies the coexistence condition. Appearance of the
pBH1 phase in a sense limits the range of temperature where
the nBH could exist. As we can see from Figure 3, instead
of continuing to arbitrarily high temperature, the nBH phase
truncates at a temperature,𝑇𝑎, where it merges with the pBH1
and disappears. Above 𝑇𝑎, only the pBH3 phase remains. In
Figure 7, the size of the EBH is denoted by 𝑧𝑒. The size 𝑧0
only exists in AdS5, where inequality (38) saturates; that is,
𝑆

(𝐸𝑟) = 0. Note that the EBH automatically saturates the

inequality since the temperature is zero. Since 𝑧0 < 𝑧𝑒, the
corresponding temperature𝑇(𝑧0) is negative andwe interpret
it as unphysical.

There is one more condition on the energy of the system
in order for the nBH-radiation mixed phase to be thermody-
namically viable. The total energy needs to be smaller than



10 Advances in High Energy Physics

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6
u2 and u3 versus Φ for E = 0.9Mc,Φ

u
2

an
d
u
3

u2

u3

Φ

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4
T(u2) and T(u3) versus Φ for E = 0.9Mc,Φ

T
(u

2
) a

nd
T
(u

3
)

T(u2)

T(u3)

Φ

(b)

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8
u2 and u3 versus Φ for E = 0.9Mc,Φ

u
2

an
d
u
3

u2

u3

Φ

(c)

0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6
T(u2) and T(u3) versus Φ for E = 0.9Mc,Φ

T
(u

2
) a

nd
T
(u

3
) T(u2)

T(u3)

Φ

(d)

Figure 6: The energy condition 𝐸 < 0.9𝑀𝑐,Φ overlapping with the heat capacity condition for the fixed potential case. Allowed region is the
shade area. In (a) and (b): 𝑢2 and 𝑢3 and the corresponding temperatures versus the bulk chargeΦ for AdS4. In (c) and (d): 𝑢2 and 𝑢3 and the
corresponding temperatures versus the bulk chargeΦ for AdS5. For all plots, we set 𝑔𝑏 = 𝑔𝑓 = 2.

the critical mass to produce the pBH3; namely, 𝐸 < 𝑀𝑐 is
required (see Appendix A, e.g., plot of𝑀𝑐 for 𝐺, 𝑙 = 1). For
the fixed charge case, the critical mass to produce pBH3 is
given by the regulated energy in (34) at the critical radius

𝑀𝑐 = 𝐸 (𝑧𝑐) , (45)

where 𝑧𝑐 ≡ 𝑟𝑐/𝑙 is the largest root of 1/𝐶𝑄 = 0 or

𝑛𝑧
2+2𝑛

− (𝑛 − 2) (𝑧
2𝑛
− (2𝑛 − 3)

𝑞
2

𝑙2𝑛−4
𝑧
4
) = 0. (46)

As an illustration in Figure 8, we plot the region which
satisfies the energy condition, 𝐸 < 0.9𝑀𝑐, overlapping with
the coexistence condition (i.e., maximal entropy condition)
region in the phase diagram. Note that 𝑧 and 𝑢 are two
independent radial coordinates measured in unit of 𝑙, used
to express the maximal entropy and energy conditions,
respectively. For AdS4 with 𝑢 ≡ 𝑟/𝑙, the region between the
curves (in red) 𝑢𝑏-𝑢2 (𝑇(𝑢𝑏)-𝑇(𝑢2)) and 𝑢3 (𝑇(𝑢3)) has the
total energy𝐸 < 0.9𝑀𝑐. For AdS5, it is the region between the
curves 𝑢𝑎-𝑢2 (𝑇(𝑢𝑎)-𝑇(𝑢2)) and 𝑢3 (𝑇(𝑢3)).Themixed phase
is allowed in the shade region of the phase diagram.

4. Gauge Theory Interpretation

The mixed phase of the charged AdS-BH should correspond
to certain mixed phase of the dual gauge system on the
boundary. To obtain a better understanding of the properties
of the dual mixed phase, whether it is the mixture of hadron
gas and exotic QGP with genuine deconfinement or the
mixture of hadron gas and new kind of gauge matter, we
embed the BH in the supergravity background. For 𝑛 = 3

and 4, the supergravity background is AdS4 × 𝑆
7 and AdS5 ×

𝑆
5, respectively. Even though the holographic dictionary
between the geometry and gauge parameters is based on the
brane, we will assume it is applicable to the AdS-BH as well.
For simplicity, we will first consider 𝑁 (of the dual 𝑆𝑈(𝑁)
gauge group) dependence of the entropies of the AdS-BH at
zero charge and interpret them in terms of the gauge degrees
of freedom. If the power of𝑁 is positive (zero or negative), the
dual gauge theory is expected to be in a deconfined (confined)
phase.

AdS4. The radii of 𝑆7 and AdS4 are related to the gauge and
gravity parameters by 𝑅𝑠𝑝 = 2𝑙 = 𝑙𝑝(32𝜋

2
𝑁)
1/6, where 𝑙𝑝
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Figure 7: The heat capacity condition 𝑆(𝐸𝑟) < 0 is characterized by the sizes 𝑧𝑒, 𝑧𝑎, 𝑧𝑏, 𝑧2, and 𝑧𝑐. Allowed region is the area between the
line 𝑧𝑎-𝑧𝑐 and line 𝑧𝑏-𝑧2. In (a) and (b): the sizes 𝑧𝑒, 𝑧𝑎, 𝑧𝑏, 𝑧2, 𝑧𝑐 and the corresponding temperatures versus the bulk charge 𝑞 for AdS4. In (c)
and (d): the sizes 𝑧𝑒, 𝑧𝑎, 𝑧𝑏, 𝑧2, and 𝑧𝑐 and the corresponding temperatures versus the bulk charge 𝑞 for AdS5. For all plots, we set 𝑔𝑏 = 𝑔𝑓 = 2.

is the Planck scale in 11 dimensions [8, 9]. The gravitational
constant in AdS4 is given by 𝐺4 ≡ 𝑙



𝑝

2
= 𝑙𝑝
9
𝑙
−7.

The energy of a BH is given by 𝑓(𝑟+) = 0:

𝐸 =
𝑉𝑛−1 (𝑛 − 1)

16𝜋𝐺
𝑟
𝑛−2

+
(1 +

𝑟
2

+

𝑙2
) . (47)

In the limit of extreme nBH (𝑟+/𝑙 ≪ 1) and pBH (𝑟+/𝑙 ≫ 1),
we have 𝐸 ∼ 𝑎𝑟

𝑛−2

+
/𝐺 and 𝐸 ∼ 𝑟

𝑛

+
/𝐺𝑙
2, respectively. On the

other hand, the entropy is simply 𝑆 = 𝐴𝐻/4𝐺. These results
are generic in any dimensions. For 𝑛 = 3, we can specifically
express the entropy and energy as

𝑆 ∼ (
𝑟+

𝑙
)

2

(
𝑙

𝑙𝑝

)

9

,

𝐸𝑙 ∼ (
𝑟+

𝑙
)

𝑟(𝑛)

(
𝑙

𝑙𝑝

)

𝑠(𝑛)

,

(48)

where 𝑟(𝑛) = 1, 3 and 𝑠(𝑛) = 8, 9 for the (extreme) nBH and
pBH branch, respectively. The entropy can be expressed in
terms of energy and𝑁 as

𝑆 ∼ (𝐸𝑙)
𝛼(𝑛)

𝑁
𝛽(𝑛)
, (49)

where 𝛼(𝑛) = 2, 2/3 and 𝛽(𝑛) = −7/6, 1/2 for the (extreme)
nBH and pBH branch, respectively. Note that the energy on
the gauge boundary is measured in unit of 1/𝑙. Since the
entropy of the gas of𝑁 free particles is

𝑆 ∼ 𝐸
(𝑛−1)/𝑛

𝑁
1/𝑛
, (50)

the pBH phase in AdS4 (𝑛 = 3) behaves like a gas of 𝑁3/2
(free) particles. The extreme nBH (𝑟+/𝑙 ≪ 1) has the entropy
proportional to𝑁−7/6 and thus represents a confined phase.

However, the nBH in themixed phase is different from the
extreme nBH since both terms in (47) cannot be neglected;
that is, 𝑟+ ≲ 𝑙 and 𝑟+/𝑙 is of order 𝑂(1). The entropy of
such nBH has both𝑁−7/6𝐸2 and𝑁1/2𝐸2/3 contributions. For
relatively high energy (short distance, 𝐸𝑙 > 1), the confined
𝑁
−7/6 contribution dominates. The deconfined contribution
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Figure 8:The energy condition 𝐸 < 0.9𝑀𝑐 overlapping with the heat capacity condition for the fixed charge case. Allowed region is the shade
area. In (a) and (b): 𝑢𝑎, 𝑢𝑏, 𝑢2, and 𝑢3 and the corresponding temperatures versus the bulk charge 𝑞 for AdS4. In (c) and (d): 𝑢𝑎, 𝑢2, and 𝑢3
and the corresponding temperatures versus the bulk charge 𝑞 for AdS5. For all plots, we set 𝑔𝑏 = 𝑔𝑓 = 2.

𝑁
1/2 becomes important for long distances or relatively low

energy (𝐸𝑙 < 1). This is consistent with the hanging string
picture of the mesonic states. Short string hangs close to the
boundary, and thus the potential is approximately a confining
potential. Long string trails closer to the horizon of the small
BH and the potential is screened.

AdS5. The radius of 𝑆5 is related to the gauge and gravity
parameters by (𝑙/𝑙𝑠)

4
= 𝑔
2

𝑌𝑀
𝑁, (𝑙𝑝/𝑙𝑠)

4
= 𝑔
2

𝑌𝑀
, where 𝑙𝑠 and

𝑙𝑝 are the string scale and Planck scale in 10 dimensions. The
gravitational constant in AdS5 is given by 𝐺5 ≡ 𝑙𝑝

8
𝑙
−5.

Similar to the AdS4 case, the entropy and energy of the
BH can be expressed as

𝑆 ∼ (
𝑟+

𝑙
)

3

(
𝑙

𝑙𝑝

)

8

,

𝐸𝑙 ∼ (
𝑟+

𝑙
)

𝑟(𝑛)

(
𝑙

𝑙𝑝

)

𝑠(𝑛)

,

(51)

where 𝑟(𝑛) = 2, 4 and 𝑠(𝑛) = 8, 8 for the (extreme) nBH and
pBH branch, respectively.The entropy as a function of energy

is also given by (49) with 𝛼(𝑛) = 3/2, 3/4 and 𝛽(𝑛) = −1, 1/2
for the (extreme) nBH and pBH branch, respectively. Note
that the pBH of both AdS4 and AdS5 has the same 𝑁1/2
dependence. For AdS5, 𝑛 = 4, the pBH entropy behaves like a
gas of𝑁2 (free) particles.

Again, the nBH in the mixed phase (with 𝑟+ ≲ 𝑙 and 𝑟+/𝑙
of order 𝑂(1)) has both𝑁−1𝐸3/2 and𝑁1/2𝐸3/4 contributions.
For short distances (high energy, 𝐸𝑙 > 1), the confined 𝑁−1
contribution dominates. As we go to large distances (larger
than 𝑙), the deconfined 𝑁1/2 contribution takes over. The
potential becomes screened and the “quarks” and “gluons” are
effectively free.

5. Conclusions and Discussions

The mixed phase of charged BH and radiation in the AdS
space has been explored.When the total energy of the system
is fixed below a critical mass to produce the pBH branch, the
nBH could be produced in coexistence with the radiation.
Since the AdS space behaves like a confining box, the nBH
can be in thermal equilibrium with the radiation. The phase
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Figure 9: The critical energy to produce (a) a pBH for the fixed potential case and (b) a pBH3 for the fixed charge case.
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Figure 10: Allowed region of the mixed phase for AdS5 from the energy constraint 𝐸 < 0.9𝑀𝑐 for radiation with positive (𝑒 = 1) (a) and
negative (𝑒 = −1) (b) charge, respectively. The allowed region from the heat capacity condition 𝑆(𝐸𝑟) < 0 is the region between the lines
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in order to compare with the zero-charge (𝑒 = 0) case with 𝑔𝑏 = 𝑔𝑓 = 2.
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Figure 11: Allowed region of the mixed phase for AdS
5
from the charge constraint 𝑄 < 0.9𝑄
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0.00 0.05 0.10 0.15 0.20
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q

Allowed region, e = 0.1

u
,�

, a
nd

z

z3
�3

u3

u2

za

z2
zb ua ue

ub
�2

(a)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

q

Allowed region, e = 0.1

u
,�

, a
nd

z

z3

�3

�a

u3 za

z2
zb ua ue

u2

�2

(b)

Figure 12: Allowed region (shaded) of themixed phase for (a) AdS4 and (b) AdS5 for the energy and charge constraints𝐸 < 0.9𝑀𝑐,𝑄 < 0.9𝑄𝑐;
the charge of the radiation particle is set to be 𝑒 = 0.1. For all plots, we set 𝑔𝑏 = 0, 𝑔𝑓 = 30/7, 62/15 for AdS4,5 in order to compare with the
zero-charge case with 𝑔𝑏 = 𝑔𝑓 = 2.

diagrams of the mixed nBH-radiation phase are dominated
by the zero-charge radiation region as demonstrated in
Appendix B. For the zero-charge radiation case, the phase
diagrams are shown in Figures 6 and 8 (as an illustration, the
energy constraint is set to be 𝐸 < 0.9𝑀𝑐). The overlapping
region between themaximal entropy condition (see (39)) and
the energy constraint, 𝐸 < 𝑀𝑐, is the area where we expect
to find the mixed phase. For both cases of fixed potential
and charge, the mixed phase can exist up until the critical
value of the potential and charge,Φ𝑐 and 𝑞𝑐 (corresponding to
the critical chemical potential and density in the dual gauge
picture), above which the nBH branch ceases to exist.

In the dual gauge picture, the implication is the pro-
duction of exotic QGP with negative heat capacity mixing
with the confined “hadron gas.” The mixed phase exhibits
confinement at relatively small distances and deconfinement

for large distances. In the situation where we cause two
nuclei to collide at very high energy, the normal QGP with
positive heat capacity will most likely be produced. However,
if the energy of colliding nuclei is less than the critical
energy density to produce the normal QGP (dual to the
critical mass 𝑀𝑐 to produce the pBH) but not too small
and the temperature is sufficiently large, it is possible to
create the QGP with negative heat capacity mixing with
hadron gas. Once produced, if the mixed phase is put in a
box, it could be stable thermodynamically with the exotic
QGP and hadron gas being at the same temperature. In
the nuclei or heavy-ion collisions, however, the produced
matter is free to expand. Therefore, the produced mixed
phase will quickly condense and evaporate into the hadron
gas with the expansion. Even though it temporarily exists, the
QGP should still exhibit the elliptic flow and jet quenching
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phenomena. It is interesting to investigate the relatively low-
energy nuclei/heavy-ion collision experiments whether there
is any signature of such mixed-phase production.

Appendix

A. The Critical Energy

The critical energy below which the nBH could be produced
in a mixed phase with radiation is given in Figure 9 for both
cases of fixed potential and charge where we set 𝐺 = 1,
𝑙 = 1. According to (41) and (42), the critical mass in the
fixed potential case approaches zero asΦ → 1/𝑐. For the fixed
charge case, the curve truncates at 𝑞𝑐 where the nBH ceases
to exist as the two pBH branches merge into one single phase.

B. The Maximal Entropy Conditions on
the BH-Radiation Mixed Phase

In this section, we present a general analysis of the maximal
entropy conditions of the BH-radiation mixed phase. The
entropy of a system in thermal equilibrium is given by

𝑑𝑆 =
1

𝑇
𝑑𝐸 +

𝑃

𝑇
𝑑𝑉 −

Φ

𝑇
𝑑𝑄, (B.1)

where𝑄 is the charge andΦ is the corresponding potential. In
the isolatedmixed systemwith two components, themaximal
entropy condition becomes

0 = 𝑑𝑆 = 𝑑𝑆1 + 𝑑𝑆2

= (
1

𝑇1

−
1

𝑇2

)𝑑𝐸1 + (
𝑃1

𝑇1

−
𝑃2

𝑇2

)𝑑𝑉1

− (
Φ1

𝑇1

−
Φ2

𝑇2

)𝑑𝑄1,

(B.2)

where we have used the conservation of extensive quantities
𝑑𝐸1 = −𝑑𝐸2, 𝑑𝑉1 = −𝑑𝑉2, and 𝑑𝑄1 = −𝑑𝑄2, respectively.
Since the BH-radiation systemhas 2 independent parameters,
𝑇 and 𝑞, and it is not clear how to interpret the pressure
equilibrium of the BH and radiation at the horizon, we will
simply consider the entropy conditions on the fluctuations of
energy and charge, 𝑑𝐸 and 𝑑𝑄. Consequently, the maximal
entropy conditions become

𝑇1 = 𝑇2,

Φ1 = Φ2,

(B.3)

𝜕
2
𝑆

𝜕𝐸
2

1

𝑄
1

,
𝜕
2
𝑆

𝜕𝑄
2

1

𝐸
1

< 0. (B.4)

Note that the latter conditions are equivalent to

𝜕
2
𝑆1

𝜕𝐸
2

1

𝑄
1

+
𝜕
2
𝑆2

𝜕𝐸
2

2

𝑄
2

< 0, (B.5)

𝜕
2
𝑆1

𝜕𝑄
2

1

𝐸
1

+
𝜕
2
𝑆2

𝜕𝑄
2

2

𝐸
2

< 0. (B.6)

Namely, the rules for coexistence are “extensive quantities
add, intensive quantities equivalent.” Generically, the condi-
tions in (B.3) are referred to as the condition for thermal
and chemical equilibrium of the mixing components, respec-
tively. The first inequality of (B.4) leads to the conditions on
the heat capacities at constant charge

1

𝐶
1

𝑄

+
1

𝐶
2

𝑄

> 0. (B.7)

The latter inequality of (B.4) can be expressed as the follow-
ing:

𝜕Φ1

𝜕𝑄1

+
𝜕Φ2

𝜕𝑄2

−
Φ

𝑇
(
𝜕𝑇1

𝜕𝑄1

+
𝜕𝑇1

𝜕𝑄2

) > 0, (B.8)

where the derivatives are evaluated at fixed energies and 𝑇 =
𝑇1 = 𝑇2, Φ = Φ1 = Φ2.

For radiation of particlewith charge 𝑒, the number density
is given by

𝑛 (𝑇,Φ) = ∫
𝑑
𝑛
𝑝

(2𝜋)
𝑛

1

𝑒𝛽(𝜖−𝑒Φ) ± 1
, (B.9)

for plus (minus) sign corresponding to fermion (boson),
respectively. The energy density of the radiation for the
massless particle is thus

𝜌 =
𝑉𝑛−1

(2𝜋)
𝑛
∫

∞

0

𝑑𝑝
𝑝
𝑛

𝑒𝛽(𝜖−𝑒Φ) ± 1

=
𝑉𝑛−1

(2𝜋)
𝑛
𝑇
𝑛+1
Γ (𝑛 + 1) 𝐿𝑛+1 (𝑦) ,

(B.10)

where 𝑦 ≡ exp(𝛽𝑒Φ) and 𝐿𝑛+1(𝑦) ≡ −𝐿𝑖𝑛+1(−𝑦) (𝐿𝑖𝑛+1(𝑦))

for fermion (boson), respectively. Note that the polyloga-
rithm function is defined as 𝐿𝑖𝑛(𝑥) = ∑

∞

𝑘=1
𝑥
𝑘
/𝑘
𝑛. The total

energy of the radiation in the AdS space is thus given by

𝐸𝑟 = 𝑔∫

∞

0

𝑑𝑟𝑉𝑛−1𝑟
𝑛−1
𝜌

=
𝑔𝑙
𝑛
𝑉
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(2𝜋)
𝑛
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2

Γ (𝑛/2)

Γ ((𝑛 + 1) /2)
𝑇
𝑛+1

(B.11)

≡ 𝑎𝑇
𝑛+1
, (B.12)

where 𝑔 is the number of degrees of freedom of the particle
in the radiation. We have used the redshift relation of the
intensive quantities, Φ(𝑟)/Φ = 𝑇(𝑟)/𝑇 = 1/√1 + 𝑟2/𝑙2,
for the temperature and potential of the radiation in the
AdS space, assuming the backreaction of the radiation to
the metric is negligible [32]. Note that the quantity 𝑦 =

exp(𝑒Φ/𝑇) is constant along the radial coordinate of the AdS
space.

The charge density of the radiation is consequently

𝜌𝑞 = 𝑒𝑛 (𝑇,Φ) = 𝑒
𝑉𝑛−1

(2𝜋)
𝑛
𝑇
𝑛
Γ (𝑛) 𝐿𝑛 (𝑦) , (B.13)
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leading to the total charge in the AdS space,

𝑄𝑟 = 𝑔∫

∞

0

𝑑𝑟𝑉𝑛−1

𝑟
𝑛−1
𝜌𝑞

(1 + 𝑟2/𝑙2)
1/2

=
𝑔𝑒𝑙
𝑛
𝑉
2

𝑛−1

(2𝜋)
𝑛
Γ (𝑛) 𝐿𝑛 (𝑦)

√𝜋

2

Γ (𝑛/2)

Γ ((𝑛 + 1) /2)
𝑇
𝑛

≡ 𝑒𝑏Γ (𝑛) 𝐿𝑛 (𝑦) 𝑇
𝑛
.

(B.14)

From the energy expression of the radiation (see (B.11)), we
can calculate the heat capacity at fixed charge of the radiation
to be

𝐶
𝑟

𝑄
= 𝑎𝑇
𝑛
(1 + 𝑛 +

𝐿𝑛 (𝑦)

𝐿𝑛+1 (𝑦)
𝑒 (

𝜕Φ

𝜕𝑇

𝑄

−
Φ

𝑇
)) , (B.15)

where

𝜕Φ

𝜕𝑇

𝑄

=
Φ

𝑇
−
𝑛

𝑒

𝐿𝑛 (𝑦)

𝐿𝑛−1 (𝑦)
(B.16)

is obtained from differentiating (B.14) with respect to 𝑇 at
fixed 𝑄. Equation (B.15) is used to evaluate the heat capacity
condition (B.7) as a constraint for the mixed phase. Using
(B.11) and (B.14), we also obtain

𝜕𝑇

𝜕𝑄

=
𝑇
1−𝑛

𝑏𝑒

𝐿𝑛 (𝑦)

Γ (𝑛) (𝑛𝐿
2
𝑛
(𝑦) − (𝑛 + 1) 𝐿𝑛+1 (𝑦) 𝐿𝑛−1 (𝑦))

(B.17)

and the relation

𝜕Φ

𝜕𝑄
−
Φ

𝑇

𝜕𝑇

𝜕𝑄
= −

1

𝑒
((𝑛 + 1)

𝜕𝑇

𝜕𝑄

𝐿𝑛+1 (𝑦)

𝐿𝑛 (𝑦)
) , (B.18)

where the derivatives are evaluated at fixed energy.
For BH, we obtain

𝜕Φ

𝜕𝑄

𝐸

=
4𝜋𝐺𝑟
2−𝑛

+

(𝑛 − 2)𝑉𝑛−1

(1

−
2 (𝑛 − 2) 𝑞

2
𝑟
4

+

(𝑛 − 2) 𝑞
2𝑟4
+
− 𝑟2𝑛
+
(𝑛 − 2 + 𝑛𝑟2

+
/𝑙2)

) ,

𝜕𝑇

𝜕𝑄

𝐸

= (
𝑛

4𝜋𝑙2
−

(𝑛 − 2) (1 − 𝑐
2
Φ
2
)

4𝜋𝑟2
+

)
𝜕

𝜕𝑄
𝑟+

𝐸

−
2 (𝑛 − 2) 𝑐

2
Φ

4𝜋𝑟+

𝜕Φ

𝜕𝑄

𝐸

,

(B.19)

where

𝜕

𝜕𝑄
𝑟+

𝐸

= 𝜕𝑄𝑞
2𝑞𝑟
5

+

(𝑛 − 2) 𝑞
2𝑟4
+
− 𝑟2𝑛
+
(𝑛 − 2 + 𝑛𝑟2

+
/𝑙2)

. (B.20)

Note that 𝜕𝑄𝑞 = 8𝜋𝐺/𝑉𝑛−1√2(𝑛 − 1)(𝑛 − 2). By substituting
(B.17), (B.18), and (B.19) into (B.8), we can study constraint
(B.6) on the parameter space of the nBH-radiation mixed
phase.

For radiation of charged bosonic particles, there exists
superradiant instability from the low-energy spectrum of the
Hawking radiation. When energy of the radiation particle
𝜖 < 𝑒Φ, the number density (see (B.9)) becomes negative
implying the instability of the BH to emit more charged
bosons at low energies. The instability could trigger a phase
transition to the Bose condensate solitonic configuration
for the near-extremal charged AdS-BH in the theory where
gravity couples to charged scalar field; see, for example, [33–
35]. In this section, we avoid such complications from the
superradiance by considering only the radiation from the
charged fermions. This is justified since the allowed region
of the nBH-radiation mixed phase found below is not in the
near-extremal region of the parameter space.

Generically, the radiation energy and total charge are
proportional to the degrees of freedom𝑔𝑖 as well as the charge
𝑞𝑖 (through 𝑦) of the particle species 𝑖 in the radiation. Since
the dependence on 𝑦 is not linear, we thus cannot define the
effective degrees of freedom and effective charge to represent
physical parameters of the radiationwithout loss of generality
(the temperature dependencies in 𝑦 are different). In this
section, however, we consider the case when there is only
one species of radiation particles to simplify the analysis. In
the future work, it would be interesting to explore the phase
diagram of the BH-radiation mixture in the general case
where there is more than one species of radiation particles.

In total, there are 4 conditions on the parameter space
of the nBH-radiation mixed phase: the maximal entropy
conditions (B.7) and (B.8), the energy condition 𝐸 < 𝑀𝑐,
and the charge condition 𝑄 < 𝑄𝑐 (the latter two are the
conditions for the nBH to be produced). The constraints on
the parameter space (𝑞, 𝑟+) (scaled by 𝑙) of the AdS5-BH are
demonstrated in Figures 10 and 11. In the figures, the energy
and charge conditions are set to be 𝑄 = 𝑄𝑏 + 𝑄𝑟 < 0.9𝑄𝑐,
𝐸 = 𝐸𝑏 +𝐸𝑟 < 0.9𝑀𝑐 for illustrative purpose.The parameters
V, 𝑧, and 𝑢 are simply the sizes of the BH scaled by 𝑙 that we
use to identify the allowed region from each condition. In
particular, we use parameter labels 𝑢 and V for the energy and
charge conditions in Figures 10 and 11 and parameter label 𝑧
for the heat capacity condition in Figure 10(c), respectively.
Note that 𝑢𝑒 = 𝑧𝑒 = 𝑟𝑒 and we set 𝑙 = 1.

In Figure 11(a), the charge condition𝑄 < 0.9𝑄𝑐 constrains
the mixed phase to exist in the region between the line V2 and
V3 and line V𝑏 and 𝑟𝑒 (near-extremal) for 𝑒 = 1. For 𝑒 = −1,
the allowed region is the region above 𝑟𝑒 and V𝑏 as shown in
Figure 11(b). In Figure 10(c), the heat capacity condition (B.7)
constrains the mixed phase to exist between the lines 𝑧𝑏-𝑧2
and 𝑧𝑎-𝑧𝑐 (𝑧 ≡ 𝑟/𝑙). The energy condition allows the mixed
phase to exist in the region between the line 𝑢2 and 𝑢3 and
line 𝑢𝑎 and 𝑢𝑒 for 𝑒 = 1 as shown in Figure 10(a). For 𝑒 = −1,
the allowed region from the energy condition is between the
lines 𝑢𝑎-𝑢2 and 𝑢3 (𝑢 ≡ 𝑧/𝑙) as shown in Figure 10(b).

On the other hand, 𝑆(𝑄𝑟) < 0 constraint (see (B.8))
is always satisfied for any value of 𝑒 for both AdS4 and
AdS5. Therefore, we do not present the plot of the allowed
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region from this constraint. The allowed region for the nBH-
radiationmixed phase is the overlapping region of all of these
constrained regions of the parameter space.

From Figures 10 and 11, the allowed region of the nBH-
radiation mixed phase is larger for radiation with negative
charges. However, nBH surrounded by such negative charge
radiation is unstable under the electric force between the
BH and the radiation with opposite charges. BH will absorb
the radiation and become less charged. Finally, the stable
configuration would be the BH surrounded by radiation with
small positive charges.

As an example, an allowed region for the nBH-radiation
mixed phase for 𝑒 = 0.1 is shown in Figure 12. It is
apparent that the charge condition opens up almost the entire
parameter space for radiation particle with small positive
charge. The overlapping region is determined dominantly
from the energy and heat capacity conditions.
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