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Within the framework of augmented version of the superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, we derive
the superspace unitary operator (and its Hermitian conjugate) in the context of four (3 + 1)-dimensional (4D) interacting non-
Abelian 1-form gauge theory with Dirac fields. The ordinary 4D non-Abelian theory, defined on the flat 4D Minkowski spacetime
manifold, is generalized onto a (4, 2)-dimensional supermanifold which is parameterized by the spacetime bosonic coordinates 𝑥𝜇

(with 𝜇 = 0, 1, 2, 3) and a pair of Grassmannian variables (𝜃, 𝜃) which satisfy the standard relationships: 𝜃2 = 𝜃

2

= 0 and 𝜃𝜃 + 𝜃𝜃 =

0. Various consequences of the application of the above superspace (SUSP) unitary operator (and its Hermitian conjugate) are
discussed. In particular, we obtain the results of the application of horizontality condition (HC) and gauge-invariant restriction
(GIR) in the language of the above SUSP operators. One of the novel results of our present investigation is the derivation of explicit
expressions for the SUSP unitary operator (and its Hermitian conjugate) without imposing any Hermitian conjugation condition
from outside on the parameters and (super)fields of the supersymmetric version of our 4D interacting non-Abelian 1-form theory
with Dirac fields.

1. Introduction

The covariant canonical quantization of a given gauge theory
is performed within the framework of Becchi-Rouet-Stora-
Tyutin (BRST) formalism where the local gauge symmetries
of the classical gauge theory are traded with the quantum
gauge (i.e., BRST) symmetries. For a single classical local
gauge symmetry, there exist two quantum gauge symmetries
which are christened as the BRST and anti-BRST symmetries.
In one stroke, the BRST formalism provides (i) the covariant
canonical quantization, (ii) the proof of unitarity, (iii) the
physicality criteria in the quantum Hilbert space, and so
forth, for a given gauge theory. The two key mathematical
properties, associated with the above (anti-)BRST symme-
tries, are the nilpotency property and absolute anticommu-
tativity. The former property establishes the fermionic (i.e.,
supersymmetric) nature of these symmetries and the latter
property encodes the linear independence of the BRST and
anti-BRST transformations.

The superfield approach (see, e.g., [1–5]) to BRST formal-
ism provides the geometrical origin and interpretation for the
nilpotency and absolute anticommutativity properties of the
(anti-)BRST symmetries that are required for the covariant
canonical quantization of the 𝑝-form (𝑝 = 1, 2, 3, . . .)
gauge theories. In particular, the horizontality condition
(HC) plays a pivotal role in the derivation of the nilpotent
(anti-)BRST symmetry transformations connected with the
𝑝-form Abelian gauge and corresponding (anti)ghost fields
of the theory and it also leads to the systematic derivation
of the Curci-Ferrari (CF) condition(s). The latter have been
shown to be connected with the geometrical objects called
gerbes in the context of BRST description of the Abelian 2-
form and Abelian 3-form gauge theories [6, 7] in four (3 + 1)
and six (5 + 1) dimensions of the flatMinkowskian spacetime,
respectively.

The above usual superfield approach [1–5] has been
systematically generalized to incorporate the additional
restrictions on the superfields so as to derive the proper
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(anti-)BRST symmetries for thematter fields in an interacting
gauge theory (in addition to the nilpotent (anti-)BRST sym-
metries for the gauge and (anti)ghost fields that are derived
due toHC).These additional restrictions are found to be con-
sistent with the HC because the geometrical interpretations
for the (anti-)BRST symmetries remain intact. In particular,
it is the gauge-invariant restrictions involving the covariant
derivatives on the matter fields that play a decisive role in this
direction where the inputs from the HC also play a key role.
We have christened these generalized versions of superfield
approach to BRST formalism as the augmented version of
superfield formalism [8–10]. The latter (i.e., the augmented
version of superfield formalism) is basically the consistent
generalization of the usual superfield formalism (particularly
developed in [1–3]).

A superspace (SUSP) unitary operator has been shown to
exist in the superfield approach to the description of 4D non-
Abelian 1-form gauge theory within the framework of BRST
formalism (see, e.g., [1–3]). The beauty of this operator is the
observation that it maintains the explicit SU(𝑁) group struc-
ture in the transformation space of the superspace (where the
ordinary fields, defined on the 𝐷-dimensional ordinary flat
Minkowskian manifold, are generalized onto the superfields
defined on the the (𝐷, 2)-dimensional supermanifold). This
explicit group structure is somewhat hidden in the direct
application of HC. Thus, the utility of the SUSY unitary
operator has an edge over the utility of HC because the results
of the latter could be derived by using the former one (cf.
Section 5). The central theme of our present paper is to
derive this unitary operator (and its Hermitian conjugate)
explicitly by applying the augmented version of superfield
formalism [8–10] in the description of the 4D non-Abelian
interacting theory with Dirac fields. It should be noted that
this operator has been judiciously chosen in [1–3] for the
BRST description of the 4D interacting non-Abelian gauge
theory with a genericmatter field. One of the central aims of
our present investigation is to theoretically prove the sanctity
and preciseness of this choice.

Our present investigation is motivated by the following
key factors. First, the explicit computation of the SUSP
unitary operator 𝑈(𝑥, 𝜃, 𝜃) in 𝜓(𝑥) → Ψ(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃,

𝜃)𝜓(𝑥) maintains the SU(𝑁) group structure in the trans-
formation space. Second, the existence of this SU(𝑁) group
structure leads to the definition of the supercovariant deriva-
tive on the superfield which obeys the same transformation
property (i.e., 𝐷𝜓 → 𝐷̃Ψ = 𝑈(𝑥, 𝜃, 𝜃)𝐷𝜓). Third, the def-
inition of the covariant derivative and its transformation rule
yield the transformation rule for the supercurvature 2-form
(i.e., 𝐷𝐷𝜓 → 𝐷̃𝐷̃Ψ = 𝑈(𝐷𝐷𝜓) ⇒ 𝐹̃

(2)

= 𝑈𝐹
(2)

𝑈
†). Fourth,

the above arguments lead to the results that are obtained
only due to the application of HC (cf. Section 3 below).
Thus, in some sense, the derivation of the SUSP operators
𝑈(𝑥, 𝜃, 𝜃) and 𝑈

†
(𝑥, 𝜃, 𝜃) provides an alternative to the

HC where SU(𝑁) group structure is respected very clearly.
Fifth, we theoretically derive the SUSP unitary operator and
mathematically support the sanctity of the choicemade in [1–
3]. The judicious choice made in reference [1–3] is somewhat
straightforward when one knows the (anti-)BRST symmetry

transformations beforehand. However, the explicit deriva-
tion, within the framework of our superfield formalism, is a
novel result for the 4D non-Abelian 1-form gauge theory with
Dirac fields. Finally, our present attempt is the generalization
of our earlier work on the 4D Abelian 1-form interacting
gauge theory with Dirac and complex scalar fields [11] to the
4D interacting non-Abelian 1-form gauge theory with Dirac
fields.

The contents of our present investigation are organized as
follows. To set up the notations and convention, in Section 2,
we briefly recapitulate the bare essentials of the (anti-)BRST
symmetries for the 4D interacting non-Abelian gauge theory
with Dirac fields in the Lagrangian formulation. Section 3 is
devoted to a concise discussion on the horizontality condition
(HC) and the derivation of the nilpotent (anti-)BRST sym-
metries for the gauge and (anti)ghost fields. In Section 4, we
derive the nilpotent (anti-)BRST symmetry transformations
for the Dirac fields by exploiting the power and poten-
tial of gauge-invariant restriction (GIR) on the superfields
defined on the (4, 2)-dimensional supermanifold. Section 5
contains the derivation of SUSP unitary operator and it
incorporates various consequences that emerge out from
the knowledge of this unitary operator (and its Hermitian
conjugate). Finally, in Section 6, we summarize our key
results and point out a few future directions for further inves-
tigations. In Appendix, we discuss a few things for readers’
convenience.

Convention and Notations. We adopt the convention and
notations such that the 4D Minkowskian flat spacetime
manifold is endowed with a metric 𝜂𝜇] with signatures
(+1, −1, −1, −1) so that 𝜕𝜇𝐴

𝜇
= 𝜂𝜇]𝜕

𝜇
𝐴

]
= 𝜕0𝐴0 − 𝜕𝑖𝐴 𝑖,

where the Greek indices 𝜇, ], 𝜆, . . . = 0, 1, 2, 3 correspond
to the spacetime directions and Latin indices 𝑖, 𝑗, 𝑘, . . . =

1, 2, 3 stand for the space directions only. In the Lie-algebraic
space, we take dot and cross products between 𝑃

𝑎 and 𝑄
𝑎

as follows: 𝑃 ⋅ 𝑄 = 𝑃
𝑎
𝑄
𝑎 and (𝑃 × 𝑄)

𝑎
= 𝑓
𝑎𝑏𝑐

𝑃
𝑏
𝑄
𝑐,

where 𝑓
𝑎𝑏𝑐 are the structure constants that can be chosen to

be totally antisymmetric for the SU(𝑁) group with the Lie
algebra [𝑇𝑎, 𝑇𝑏] = 𝑓

𝑎𝑏𝑐
𝑇
𝑐. Here,𝑇𝑎 (with 𝑎 = 1, 2, 3, . . . , 𝑁

2
−

1) are the generators of the Lie algebra corresponding to
the SU(𝑁) group. We have used the same notation for the
covariant derivative and the dimensionality of the spacetime.
However, the different meanings, attached with the symbol
𝐷, are quite unambiguous in the whole body of the text of
our present endeavor. We have explicitly taken the covariant
derivatives on the matter field and ghost fields as follows:
𝐷𝜇𝜓 = (𝜕𝜇 + 𝑖𝐴𝜇 ⋅ 𝑇)𝜓 and 𝐷𝜇𝐶 = 𝜕𝜇𝐶 + 𝑖(𝐴𝜇 × 𝐶)

which are in the fundamental and adjoint representations,
respectively.

2. Preliminaries: (Anti-)BRST Symmetries

We begin with the (anti-)BRST invariant Lagrangian densi-
tiesL𝐵 andL𝐵 (see, e.g., [12, 13]) for the 4D interacting non-
Abelian 1-form gauge theory with the massive (with mass 𝑚)
Dirac fields (𝜓, 𝜓), in the Curci-Ferrari gauge (where 𝜉 = 2)
[14, 15], as



Advances in High Energy Physics 3

L𝐵 = −

1

4

𝐹𝜇] ⋅ 𝐹
𝜇]

+ 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓

+ 𝑠𝑏𝑠𝑎𝑏 (

𝑖

2

𝐴𝜇 ⋅ 𝐴
𝜇
−

𝜉

2

𝐶 ⋅ 𝐶)

≡ −

1

4

𝐹𝜇] ⋅ 𝐹
𝜇]

+ 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓 + 𝐵 ⋅ (𝜕𝜇𝐴

𝜇
)

+

1

2

(𝐵 ⋅ 𝐵 + 𝐵 ⋅ 𝐵) − 𝑖𝜕𝜇𝐶 ⋅ 𝐷
𝜇
𝐶,

L𝐵 = −

1

4

𝐹𝜇] ⋅ 𝐹
𝜇]

+ 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓

− 𝑠𝑎𝑏𝑠𝑏 (

𝑖

2

𝐴𝜇 ⋅ 𝐴
𝜇
−

𝜉

2

𝐶 ⋅ 𝐶)

≡ −

1

4

𝐹𝜇] ⋅ 𝐹
𝜇]

+ 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓 − 𝐵 ⋅ (𝜕𝜇𝐴

𝜇
)

+

1

2

(𝐵 ⋅ 𝐵 + 𝐵 ⋅ 𝐵) − 𝑖𝐷𝜇𝐶 ⋅ 𝜕
𝜇
𝐶,

(1)

for the explicit derivation of the gauge-fixing and Faddeev-
Popov ghost terms. In other words, we have derived the
final expressions for the Lagrangian densitiesL𝐵 andL𝐵 by
taking into account the Curci-Ferrari gauge where 𝜉 = 2. It
will be noted that the above Lagrangian densities L𝐵 and
L
𝐵
are equivalent on the constrained hypersurface defined

by the field equation: 𝐵 + 𝐵 = −(𝐶 × 𝐶) which is nothing
but the Curci-Ferrari (CF) condition [16]. In the above, we
have the curvature tensor 𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 + 𝑖(𝐴𝜇 × 𝐴])

which is derived from the 2-from 𝐹
(2)

= 𝑑𝐴
(1)

+ 𝑖𝐴
(1)

∧ 𝐴
(1)

where the connection 1-from 𝐴
(1)

= 𝑑𝑥
𝜇
(𝐴𝜇 ⋅ 𝑇) defines the

vector potential 𝐴𝑎
𝜇
in the SU(𝑁) Lie-algebraic space (with

𝑎, 𝑏, 𝑐, . . . = 1, 2, 3, . . . , 𝑁
2
− 1). The fields 𝐵(𝑥) and 𝐵(𝑥)

are the Nakanishi-Lautrup auxiliary fields and the fermionic
[(𝐶
𝑎
)
2
= (𝐶

𝑎

)
2
= 0, 𝐶𝑎𝐶𝑏 + 𝐶

𝑏

𝐶
𝑎
= 0, etc.] (anti)ghost fields

(𝐶

𝑎

)𝐶
𝑎 are required for the validity of unitarity in the theory.

We have a covariant derivative on the Dirac field 𝜓 as
follows: 𝐷𝜇𝜓 = (𝜕𝜇 + 𝑖𝑔𝐴𝜇 ⋅ 𝑇)𝜓 ≡ (𝜕𝜇 + 𝑖𝐴𝜇 ⋅ 𝑇)𝜓, where
the coupling constant 𝑔 has been set equal to one for the
sake of brevity. Similarly, we have taken into consideration
the definition of the covariant derivatives (with 𝑔 = 1) on
the (anti)ghost fields as follows: 𝐷𝜇𝐶 = 𝜕𝜇𝐶 + 𝑖(𝐴𝜇 × 𝐶)

and 𝐷𝜇𝐶 = 𝜕𝜇𝐶 + 𝑖(𝐴𝜇 × 𝐶). The Dirac fields are fermionic
(𝜓2 = 𝜓

2
= 0, 𝜓𝜓+𝜓𝜓 = 0) in nature because they commute

(𝜓𝐴𝜇−𝐴𝜇𝜓 = 0,𝜓𝐵−𝐵𝜓 = 0, etc.) with all the bosonic fields
(e.g., 𝐴𝜇, 𝐵, 𝐵, and 𝐹𝜇]) but they anticommute (𝜓𝐶𝑎 +𝐶

𝑎
𝜓 =

0, 𝐶𝑎𝜓 + 𝜓𝐶
𝑎
= 0, 𝐶𝑎𝜓 + 𝜓𝐶

𝑎

= 0, etc.) with the fermionic
(anti)ghost fields (𝐶𝑎)𝐶𝑎 of our theory.The above Lagrangian
densities (1) respect the following off-shell nilpotent (𝑠2

(𝑎)𝑏
=

0), absolutely anticommuting (𝑠𝑏𝑠𝑎𝑏 + 𝑠𝑎𝑏𝑠𝑏 = 0), continuous,
and infinitesimal (anti-)BRST symmetry transformations
𝑠(𝑎)𝑏 (see, e.g., [17] and our Appendix for details):

𝑠𝑎𝑏𝐴𝜇 = 𝐷𝜇𝐶,

𝑠𝑎𝑏𝐶 = −

𝑖

2

(𝐶 × 𝐶) ,

𝑠𝑎𝑏𝐶 = 𝑖𝐵,

𝑠𝑎𝑏𝐹𝜇] = 𝑖 (𝐹𝜇] × 𝐶) ,

𝑠𝑎𝑏𝐵 = 𝑖 (𝐵 × 𝐶) ,

𝑠𝑎𝑏𝐵 = 0,

𝑠𝑎𝑏𝜓 = −𝑖 (𝐶 ⋅ 𝑇)𝜓,

𝑠𝑎𝑏𝜓 = −𝑖𝜓 (𝐶 ⋅ 𝑇) ,

𝑠𝑏𝐴𝜇 = 𝐷𝜇𝐶,

𝑠𝑏𝐶 = −

𝑖

2

(𝐶 × 𝐶) ,

𝑠𝑏𝐶 = 𝑖𝐵,

𝑠𝑏𝐹𝜇] = 𝑖 (𝐹𝜇] × 𝐶) ,

𝑠𝑏𝐵 = 0,

𝑠𝑏𝐵 = 𝑖 (𝐵 × 𝐶) ,

𝑠𝑏𝜓 = −𝑖 (𝐶 ⋅ 𝑇) 𝜓,

𝑠𝑏𝜓 = −𝑖𝜓 (𝐶 ⋅ 𝑇) .

(2)

The noteworthy points, at this stage, are as follows: (i) The
kinetic term [(−1/4)𝐹

𝜇]
⋅ 𝐹𝜇]] remains invariant under the

(anti-)BRST symmetry transformations. Geometrically, the
curvature tensor 𝐹𝜇] has its origin in the exterior derivative
𝑑 because 𝐹

(2)
= 𝑑𝐴
(1)

+ 𝑖𝐴
(1)

∧ 𝐴
(1) defines the 𝐹𝜇] tensor

(which can be explicitly written in terms of the potential 𝐴𝜇
as follows: 𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 + 𝑖[𝐴𝜇, 𝐴]], where we observe
that 𝐹𝜇] = 𝐹𝜇] ⋅ 𝑇 and 𝐴𝜇 = 𝐴𝜇 ⋅ 𝑇). (ii) The CF-condition
remains invariant (i.e., 𝑠(𝑎)𝑏[𝐵+𝐵+(𝐶×𝐶)] = 0) under the off-
shell nilpotent (anti-)BRST symmetry transformations.Thus,
it is a physical constraint that can be imposed on the 4D non-
Abelian interacting 1-form gauge theory. (iii) The Lagrangian
densitiesL𝐵 andL𝐵 both are equivalent on the hypersurface
in the 4D Minkowskian spacetime manifold due to the CF-
condition (i.e., 𝐵 + 𝐵 + (𝐶 × 𝐶) = 0). In fact, it is on
this hypersurface that the off-shell nilpotency and absolute
anticommutativity properties of the (anti-)BRST symmetry
transformations are valid (see, e.g., [12–15]) in an explicit
manner.

3. Symmetries for the Gauge and (Anti)Ghost
Fields: Horizontality Condition

In this section, we shall exploit the geometrical beauty of
𝐹
(2)

= 𝑑𝐴
(1)

+ 𝑖𝐴
(1)

∧ 𝐴
(1) in the context of HC within

the framework of superfield formalism and derive the CF-
condition:𝐵+𝐵+(𝐶×𝐶) = 0 aswell as the proper (anti-)BRST
symmetry transformations for the gauge and (anti)ghost
fields of the 4D non-Abelian 1-form gauge theory. For this
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purpose, first of all, we define the supercurvature 2-form 𝐹̃

(2)

on the (4, 2)-dimensional supermanifold 𝐹̃

(2)

=
̃
𝑑𝐴̃

(1)

+𝑖𝐴̃

(1)

∧

𝐴̃

(1)

= (1/2)(𝑑𝑍
𝑀
∧𝑑𝑍
𝑁
)𝐹̃𝑀𝑁(𝑥, 𝜃, 𝜃), where𝑍

𝑀
= (𝑥
𝜇
, 𝜃, 𝜃)

is the superspace coordinate that characterizes the (4, 2)-
dimensional supermanifold with 𝑥

𝜇
(𝜇 = 0, 1, 2, 3) as the

bosonic variables and (𝜃, 𝜃) as a pair of fermionic (𝜃2 = 𝜃

2

= 0

and 𝜃𝜃 + 𝜃𝜃 = 0)Grassmannian variables. The other symbols
of relevance, on the appropriately chosen (4, 2)-dimensional
supermanifold, are as follows [1–3, 17]:

𝑑 = 𝑑𝑥
𝜇
𝜕𝜇 󳨀→

̃
𝑑 = 𝑑𝑍

𝑀
𝜕𝑀

= 𝑑𝑥
𝜇
𝜕𝜇 + 𝑑𝜃𝜕𝜃 + 𝑑𝜃𝜕

𝜃
,

𝐴
(1)

= 𝑑𝑥
𝜇
𝐴𝜇 󳨀→ 𝐴̃

(1)

= 𝑑𝑍
𝑀
𝐴𝑀

= 𝑑𝑥
𝜇
𝐵𝜇 + 𝑑𝜃𝐹 + 𝑑𝜃𝐹,

(3)

where 𝐴𝑀 = (𝐵𝜇(𝑥, 𝜃, 𝜃), 𝐹(𝑥, 𝜃, 𝜃), 𝐹(𝑥, 𝜃, 𝜃)) constitutes
the vector multiplet and the superspace derivative 𝜕𝑀 stands
for (𝜕𝜇, 𝜕𝜃, 𝜕𝜃). The latter (i.e., 𝜕𝑀) are the components of the
superspace derivative (𝜕𝑀 = 𝜕/𝜕𝑍

𝑀) with 𝑍
𝑀

= (𝑥
𝜇
, 𝜃, 𝜃).

The requirement of the HC is to set all the Grassmannian
components of 𝐹̃𝑀𝑁(𝑥, 𝜃, 𝜃) = (𝐹̃𝜇𝜃, 𝐹̃𝜇𝜃

, 𝐹̃
𝜃𝜃
, 𝐹̃𝜃𝜃, 𝐹̃𝜃 𝜃

) equal
to zero (i.e., 𝐹̃𝜇𝜃 = 𝐹̃

𝜇𝜃
= 𝐹̃
𝜃𝜃

= 𝐹̃𝜃𝜃 = 𝐹̃
𝜃 𝜃

=

0). We know that the kinetic term [−(1/4)𝐹𝜇] ⋅ 𝐹𝜇]] for
the gauge field is (anti-)BRST invariant quantity. The HC
basically demands the independence of this quantity (i.e.,
−(1/4)𝐹̃𝑀𝑁 ⋅ 𝐹̃

𝑀𝑁

= −(1/4)𝐹𝜇] ⋅ 𝐹
𝜇]). In other words, this

gauge- (i.e., BRST-) invariant quantity should be independent
of the Grassmannian variables because the latter cannot be
realized physically in the ordinary space.This condition leads
to the derivation of the relationships between the basic and
the auxiliary fields of the Lagrangian densities L𝐵 and L

𝐵

and the secondary fields (𝑅𝜇, 𝑅𝜇, 𝑆𝜇, 𝐵1, 𝐵1, 𝐵2, 𝐵2, 𝑠, 𝑠) of the
following expansions (see, e.g., [1–3] for details):

𝐵𝜇 (𝑥, 𝜃, 𝜃) = 𝐴𝜇 (𝑥) + 𝜃𝑅𝜇 (𝑥) + 𝜃𝑅𝜇 (𝑥) + 𝑖𝜃𝜃𝑆𝜇 (𝑥) ,

𝐹 (𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝑖𝜃𝐵1 (𝑥) + 𝑖𝜃𝐵1 (𝑥) + 𝑖𝜃𝜃𝑠 (𝑥) ,

𝐹 (𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝑖𝜃𝐵2 (𝑥) + 𝑖𝜃𝐵2 (𝑥) + 𝑖𝜃𝜃𝑠 (𝑥) ,

(4)

where, as pointed out earlier, the superfields 𝐵𝜇(𝑥, 𝜃, 𝜃),
𝐹(𝑥, 𝜃, 𝜃), and 𝐹(𝑥, 𝜃, 𝜃) constitute the multiplet of the vector
superfield𝐴𝑀(𝑥, 𝜃, 𝜃). The above expansions are nothing but
the shift transformations for the superfields along the Grass-
mannian directions (1, 𝜃, 𝜃, 𝜃𝜃) of the (4, 2)-dimensional
supermanifold. The HC (i.e., 𝐹̃

𝜃𝜃
= 𝐹̃𝜃𝜃 = 𝐹̃

𝜃 𝜃
= 𝐹̃𝜇𝜃 =

𝐹̃
𝜇𝜃

= 0) yields the following interesting and very useful
relationships (with 𝐵1 = 𝐵, 𝐵2 = 𝐵) [1–3, 17]:

𝑅𝜇 = 𝐷𝜇𝐶,

𝑅𝜇 = 𝐷𝜇𝐶,

𝐵1 = −

1

2

(𝐶 × 𝐶) ,

𝑆𝜇 = 𝐷𝜇𝐵2 + 𝐷𝜇𝐶 × 𝐶 ≡ −𝐷𝜇𝐵1 − 𝐷𝜇𝐶 × 𝐶,

𝐵2 = −

1

2

(𝐶 × 𝐶) ,

𝑠 = 𝑖 (𝐵1 × 𝐶) ,

𝑠 = −𝑖 (𝐵2 × 𝐶) ,

𝐵1 + 𝐵2 = − (𝐶 × 𝐶) 󳨀→ 𝐵 + 𝐵 = − (𝐶 × 𝐶) ,

(5)

where 𝐷𝜇𝐶 = 𝜕𝜇𝐶 + 𝑖(𝐴𝜇 × 𝐶) and the last entry, in the
above, is nothing but the CF-condition. The substitution of
the above expressions for the secondary fields into (4) yields
the following:

𝐵
(ℎ)

𝜇
(𝑥, 𝜃, 𝜃) = 𝐴𝜇 + 𝜃 (𝐷𝜇𝐶) + 𝜃 (𝐷𝜇𝐶)

+ 𝜃𝜃 [𝑖 (𝐷𝜇𝐵 + (𝐷𝜇𝐶 × 𝐶))]

≡ 𝐴𝜇 + 𝜃 (𝑠𝑎𝑏𝐴𝜇) + 𝜃 (𝑠𝑏𝐴𝜇)

+ 𝑖𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐴𝜇) ,

𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝜃 (𝑖𝐵) + 𝜃 (−

𝑖

2

𝐶 × 𝐶)

+ 𝜃𝜃 (−𝐵 × 𝐶)

≡ 𝐶 + 𝜃 (𝑠𝑎𝑏𝐶) + 𝜃 (𝑠𝑏𝐶) + 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐶) ,

𝐹

(ℎ)

(𝑥, 𝜃, 𝜃) = 𝐶 (𝑥) + 𝜃 (−

𝑖

2

𝐶 × 𝐶) + 𝜃 (𝑖𝐵)

+ 𝜃𝜃 (𝐵 × 𝐶)

≡ 𝐶 (𝑥) + 𝜃 (𝑠𝑎𝑏𝐶) + 𝜃 (𝑠𝑏𝐶)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝐶) ,

(6)

where the superscript (ℎ) denotes the expansions obtained
after the application of HC. It is to be noted that the CF-
condition 𝐵 + 𝐵 + (𝐶 × 𝐶) = 0 emerges out from setting the
coefficient of (𝑑𝜃∧𝑑𝜃) equal to zero in the relationship ̃

𝑑𝐴̃

(1)

+

𝑖𝐴̃

(1)

∧ 𝐴̃

(1) which results in the condition 𝜕𝜃𝐹
(ℎ)

+ 𝜕
𝜃
𝐹

(ℎ)

−

𝑖{𝐹
(ℎ)

, 𝐹

(ℎ)

} = 0. It is elementary to check that the explicit
substitutions from (6) into this restriction yield the CF-
condition (𝐵 + 𝐵 + (𝐶×𝐶) = 0).The (anti-)BRST invariance
of the CF-condition can be captured within the framework
of superfield formalism as it can be readily checked that
𝜕𝜃[𝜕𝜃𝐹

(ℎ)
+ 𝜕
𝜃
𝐹

(ℎ)

− 𝑖{𝐹
(ℎ)

, 𝐹

(ℎ)

}]|
𝜃=0

= 0 and 𝜕
𝜃
[𝜕𝜃𝐹
(ℎ)

+

𝜕
𝜃
𝐹

(ℎ)

− 𝑖{𝐹
(ℎ)

, 𝐹

(ℎ)

}]|𝜃=0 = 0 which physically imply the
(anti-)BRST invariance (𝑠(𝑎)𝑏[𝐵 + 𝐵 + (𝐶 × 𝐶)] = 0) of
the CF-condition defined on the ordinary 4D Minkowskian
spacetime manifold as the constrained field equation.
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4. (Anti-)BRST Symmetries for the Matter
Fields: Gauge-Invariant Restriction

We exploit the strength of the gauge-invariant restriction
(GIR) on the superfields, defined on the (4, 2)-dimensional
supermanifold, to obtain the proper (anti-)BRST symmetry
transformations for the matter fields of the interacting 4D
non-Abelian gauge theory with Dirac fields. This appropriate
condition (which incorporates the results of HC (cf. (6))) is
as follows [17]:

Ψ(𝑥, 𝜃, 𝜃) (
̃
𝑑 + 𝑖𝐴̃

(1)

(ℎ)
)Ψ (𝑥, 𝜃, 𝜃)

= 𝜓 (𝑥) (𝑑 + 𝑖𝐴
(1)

) 𝜓 (𝑥) ,

(7)

where the super 1-form connection on the l.h.s., derived
after the application of HC, is 𝐴̃

(1)

(ℎ)
= 𝑑𝑥

𝜇
𝐵
(ℎ)

𝜇
(𝑥, 𝜃, 𝜃) +

𝑑𝜃𝐹

(ℎ)

(𝑥, 𝜃, 𝜃) + 𝑑𝜃𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) and the superfields Ψ(𝑥, 𝜃, 𝜃)

andΨ(𝑥, 𝜃, 𝜃) have the following expansions along the Grass-
mannian directions (𝜃, 𝜃) of the appropriately chosen (4, 2)-
dimensional supermanifold (see, e.g., [17]):

Ψ(𝑥, 𝜃, 𝜃) = 𝜓 (𝑥) + 𝑖𝜃𝑏1 (𝑥) + 𝑖𝜃𝑏1 (𝑥) + 𝑖𝜃𝜃𝑓 (𝑥) ,

Ψ (𝑥, 𝜃, 𝜃) = 𝜓 (𝑥) + 𝑖𝜃𝑏2 (𝑥) + 𝑖𝜃𝑏2 (𝑥) + 𝑖𝜃𝜃 𝑓 (𝑥) .

(8)

Here, 𝑏1 ≡ 𝑏1 ⋅ 𝑇, 𝑏2 ≡ 𝑏2 ⋅ 𝑇, 𝑏1 ≡ 𝑏1 ⋅ 𝑇, and 𝑏2 ≡ 𝑏2 ⋅ 𝑇

are the bosonic secondary fields in the above expansions and
𝑓 ≡ 𝑓⋅𝑇 and𝑓 ≡ 𝑓⋅𝑇 are the fermionic secondary fields. It is
obvious that the above superfields are the generalizations of
the ordinary 4D fermionic Dirac fields 𝜓(𝑥) and 𝜓(𝑥) onto
the (4, 2)-dimensional supermanifold because, in the limit
𝜃 = 𝜃 = 0, we retrieve the latter fields from the above
superfield expansions. We also note that the r.h.s. of the GIR
(7) is a gauge-invariant quantity. Furthermore, the decisive
feature of GIR (7) is the key observation that this relationship
blends the ideas of HC and GIR together in a meaningful
manner where the expansions of (𝐵(ℎ)

𝜇
(𝑥, 𝜃, 𝜃), 𝐹(ℎ)(𝑥, 𝜃, 𝜃),

and 𝐹

(ℎ)

(𝑥, 𝜃, 𝜃)) (cf. (6)) play very important role (as the
super 1-form 𝐴̃

(1)

(ℎ)
= 𝑑𝑥

𝜇
𝐵
(ℎ)

𝜇
(𝑥, 𝜃, 𝜃) + 𝑑𝜃𝐹

(ℎ)

(𝑥, 𝜃, 𝜃) +

𝑑𝜃𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) contains these results from the HC and it
appears on the l.h.s. of the GIR (7)). Thus, we note that (7)
incorporates the results of HC.

Taking into account the expansions from (8) and the
expressions obtained after the application of the HC (cf.
(6)), we obtain the following relationships [17] between the
secondary fields of (8) and the basic and auxiliary fields of
the Lagrangian densitiesL𝐵 andL

𝐵
:

𝑏1 = − (𝐶 ⋅ 𝑇) 𝜓,

𝑏1 = − (𝐶 ⋅ 𝑇)𝜓,

𝑏2 = −𝜓 (𝐶 ⋅ 𝑇) ,

𝑏2 = −𝜓 (𝐶 ⋅ 𝑇) ,

𝑓 = −𝑖 [𝐵 + 𝐶𝐶]𝜓,

𝑓 = 𝑖𝜓 [𝐵 + 𝐶𝐶] .

(9)

It will be noted that this is slightly different from the results
obtained in [15] for the values of 𝑓 and 𝑓. However, our
present results and relationships in (9) are correct. The
substitution of the above values of the secondary fields into
expansions (8) yields the following:

Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) = 𝜓 (𝑥) + 𝜃 (−𝑖𝐶 ⋅ 𝑇)𝜓 + 𝜃 (−𝑖𝐶 ⋅ 𝑇) 𝜓

+ 𝜃𝜃 (𝐵 + 𝐶𝐶)𝜓

= 𝜓 (𝑥) + 𝜃 (𝑠𝑎𝑏𝜓) + 𝜃 (𝑠𝑏𝜓)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝜓) ,

Ψ

(𝑔)

(𝑥, 𝜃, 𝜃) = 𝜓 (𝑥) + 𝜃 [𝜓 (−𝑖𝐶 ⋅ 𝑇)]

+ 𝜃 [𝜓 (−𝑖𝐶 ⋅ 𝑇)]

+ 𝜃𝜃 [𝜓 (−𝐵 − 𝐶𝐶)]

= 𝜓 (𝑥) + 𝜃 (𝑠𝑎𝑏𝜓) + 𝜃 (𝑠𝑏𝜓)

+ 𝜃𝜃 (𝑠𝑏𝑠𝑎𝑏𝜓) ,

(10)

where the superscript (𝑔) denotes the superfield expansions
after the application of GIR.Thus, we observe that the coeffi-
cients of 𝜃, 𝜃 and 𝜃𝜃 yield the symmetry transformations cor-
responding to 𝑠𝑎𝑏, 𝑠𝑏 and 𝑠𝑏𝑠𝑎𝑏, respectively. In other words,
we have obtained a relationship between the translational
generators (𝜕𝜃, 𝜕𝜃) along the Grassmannian directions (𝜃, 𝜃)
of the (4, 2)-dimensional supermanifold and the (anti-)BRST
transformations 𝑠(𝑎)𝑏 for the matter fields 𝜓 and 𝜓 in the
ordinary 4D spacetime (cf. (2)). The appropriate mapping
between these quantities of interest is as follows: 𝑠𝑏𝜓 =

𝜕
𝜃
Ψ
(𝑔)

(𝑥, 𝜃, 𝜃)|𝜃=0, 𝑠𝑎𝑏𝜓 = 𝜕𝜃Ψ
(𝑔)

(𝑥, 𝜃, 𝜃)|
𝜃=0

, and 𝑠𝑏𝑠𝑎𝑏𝜓 =

𝜕
𝜃
𝜕𝜃Ψ
(𝑔)

(𝑥, 𝜃, 𝜃).

5. SUSP Unitary Operator: Key Consequences

It is clear from expansions (10) that we have already derived
the (anti-)BRST symmetry transformations 𝑠(𝑎)𝑏 for the Dirac
fields which turn out to be the coefficients of (𝜃)𝜃 in these
expansions. Furthermore, the coefficients of (𝜃𝜃) turn out to
be (𝑠𝑏𝑠𝑎𝑏𝜓) and (𝑠𝑏𝑠𝑎𝑏𝜓), respectively. These expansions (cf.
(10)) can be reexpressed as follows:

Ψ
(𝑔)

(𝑥, 𝜃, 𝜃)

= [1 + 𝜃 (−𝑖𝐶) + 𝜃 (−𝑖𝐶) + 𝜃𝜃 (𝐵 + 𝐶𝐶)]𝜓 (𝑥)
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≡ 𝑈 (𝑥, 𝜃, 𝜃) 𝜓 (𝑥) ,

Ψ

(𝑔)

(𝑥, 𝜃, 𝜃)

= 𝜓 (𝑥) [1 + 𝜃 (𝑖𝐶) + 𝜃 (𝑖𝐶) + 𝜃𝜃 (−𝐵 − 𝐶𝐶)]

≡ 𝜓 (𝑥)𝑈
†
(𝑥, 𝜃, 𝜃) ,

(11)
where all the fields are defined in the Lie-algebraic space (e.g.,
𝐶 = 𝐶 ⋅ 𝑇, 𝐶 = 𝐶 ⋅ 𝑇, 𝐵 = 𝐵 ⋅ 𝑇, and 𝐵 = 𝐵 ⋅ 𝑇). Thus, it
is obvious that we have derived the SUSP unitary operator
𝑈(𝑥, 𝜃, 𝜃) and its Hermitian conjugate 𝑈

†
(𝑥, 𝜃, 𝜃) in a very

natural fashion. It is elementary to check that the criterion
for the unitarity condition is satisfied by the above SUSP
operators:

𝑈(𝑥, 𝜃, 𝜃)𝑈
†
(𝑥, 𝜃, 𝜃) = 𝑈

†
(𝑥, 𝜃, 𝜃)𝑈 (𝑥, 𝜃, 𝜃) = 1. (12)

We emphasize that we have taken into account the fermionic
nature (i.e., 𝜃𝐶 + 𝐶𝜃 = 0, 𝐶𝜃 + 𝜃𝐶 = 0, 𝜃𝐶 + 𝐶𝜃 = 0, etc.)
of the Grassmannian variables (𝜃, 𝜃) and (anti)ghost fields
(𝐶)𝐶 in the above proof of unitarity. The above SUSP unitary
operators can be exponentiated, in a mathematically precise
fashion, as follows:

𝑈(𝑥, 𝜃, 𝜃) = exp[𝜃 (−𝑖𝐶 ⋅ 𝑇) + 𝜃 (−𝑖𝐶 ⋅ 𝑇)

+ 𝜃𝜃(𝐵 ⋅ 𝑇 +

(𝐶 × 𝐶)

2

⋅ 𝑇)] ,

𝑈
†
(𝑥, 𝜃, 𝜃) = exp[𝜃 (𝑖𝐶 ⋅ 𝑇) + 𝜃 (𝑖𝐶 ⋅ 𝑇)

+ 𝜃𝜃(−𝐵 ⋅ 𝑇 −

(𝐶 × 𝐶)

2

⋅ 𝑇)] .

(13)

We mention that {𝐶, 𝐶} = (𝐶 × 𝐶) has been taken into
account due to [𝑇

𝑎
, 𝑇
𝑏
] = 𝑓
𝑎𝑏𝑐

𝑇
𝑐 and the fermionic (𝐶𝑎𝐶𝑏 +

𝐶

𝑏

𝐶
𝑎
= 0) nature of the (anti)ghost fields (𝐶)𝐶. The above

exponential form of the unitary operator respects the SU(𝑁)

group structure in the transformation superspace because

𝜓 (𝑥) 󳨀→ Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) = exp[𝜃 (−𝑖𝐶) + 𝜃 (−𝑖𝐶)

+ 𝜃𝜃(𝐵 +

(𝐶 × 𝐶)

2

)]𝜓 (𝑥) ≡ 𝑈 (𝑥, 𝜃, 𝜃) 𝜓 (𝑥) ,

𝜓 (𝑥) 󳨀→ Ψ

(𝑔)

(𝑥, 𝜃, 𝜃) = 𝜓 (𝑥) exp[𝜃 (𝑖𝐶) + 𝜃 (𝑖𝐶)

+ 𝜃𝜃(−𝐵 −

(𝐶 × 𝐶)

2

)] ≡ 𝜓 (𝑥)𝑈
†
(𝑥, 𝜃, 𝜃) .

(14)

In other words, we note that the SUSP unitary operators
𝑈(𝑥, 𝜃, 𝜃) and 𝑈

†
(𝑥, 𝜃, 𝜃) generate the shift transformations

(cf. (10)) along the Grassmannian directions 𝜃 and 𝜃 because
we note that the ordinary fields𝜓(𝑥) and𝜓(𝑥) are the limiting
cases of the superfieldsΨ(𝑔)(𝑥, 𝜃, 𝜃) andΨ

(𝑔)

(𝑥, 𝜃, 𝜃)when the
limit is taken to be 𝜃 = 𝜃 = 0 in (14).

The relationship 𝜓(𝑥) → Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝜓(𝑥),
where the SU(𝑁) group structure is maintained in the
transformation superspace, allows us to define the covariant
derivative in terms of the super exterior derivative and super
1-form connection with the following inherent property for
the 4D non-Abelian 1-form SU(𝑁) gauge theory:

𝐷𝜓 (𝑥) 󳨀→ 𝐷̃Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) = 𝑈 (𝑥, 𝜃, 𝜃)𝐷𝜓 (𝑥) , (15)

where 𝐷𝜓(𝑥) = (𝑑 + 𝑖𝐴
(1)

(𝑥))𝜓(𝑥) and 𝐷̃Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) =

(
̃
𝑑 + 𝑖𝐴̃

(1)

(ℎ)
(𝑥, 𝜃, 𝜃))Ψ

(𝑔)
(𝑥, 𝜃, 𝜃). Equation (15) above leads to

the following explicit transformation rule for the connection
super 1-form in the superspace:

𝐴̃

(1)

(ℎ)
(𝑥, 𝜃, 𝜃) = 𝑈 (𝑥, 𝜃, 𝜃)𝐴

(1)
(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃)

+ 𝑖 (
̃
𝑑𝑈 (𝑥, 𝜃, 𝜃))𝑈

†
(𝑥, 𝜃, 𝜃) .

(16)

The substitution of the expressions for 𝑈(𝑥, 𝜃, 𝜃) and
𝑈
†
(𝑥, 𝜃, 𝜃), from (11), leads to the following explicit results

from the second term of the r.h.s. of (16):

𝑑𝑥
𝜇
[𝜃 (𝜕𝜇𝐶) + 𝜃 (𝜕𝜇𝐶) + 𝑖𝜃𝜃 (𝜕𝜇𝐵 + 𝜕𝜇𝐶 × 𝐶)]

+ 𝑑𝜃 [𝐶 + 𝜃 (−

𝑖

2

(𝐶 × 𝐶)) + 𝜃 (𝑖𝐵)

+ 𝜃𝜃 ([𝐵, 𝐶])] + 𝑑𝜃 [𝐶 + 𝜃 (−𝑖𝐵 − 𝑖𝐶 × 𝐶)

+ 𝜃 (−

𝑖

2

(𝐶 × 𝐶)) + 𝜃𝜃 ([𝐵 + 𝐶 × 𝐶, 𝐶])] .

(17)

Comparing with the coefficients of (𝑑𝜃) and (𝑑𝜃) that are
present on the l.h.s. of the super 1-form connection [𝐴̃

(1)

(ℎ)
=

𝑑𝑥
𝜇
𝐵
(ℎ)

𝜇
(𝑥, 𝜃, 𝜃)+𝑑𝜃𝐹

(ℎ)

(𝑥, 𝜃, 𝜃)+𝑑𝜃𝐹
(ℎ)

(𝑥, 𝜃, 𝜃)], we observe
that we have already derived the correct expressions for the
superfields 𝐹(ℎ)(𝑥, 𝜃, 𝜃) and 𝐹

(ℎ)

(𝑥, 𝜃, 𝜃) where, as is evident,
𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) and𝐹

(ℎ)

(𝑥, 𝜃, 𝜃) are the expansions that have been
obtained after the application of the HC. A close look at the
coefficients of𝑑𝜃 in (17) shows that if we use theCF-condition
𝐵 + 𝐵 + (𝐶 × 𝐶) = 0, we have an alternative form of the last
entry in (17); namely,

𝑑𝜃 [𝐶 + 𝜃 (𝑖𝐵) + 𝜃 (−

𝑖

2

(𝐶 × 𝐶)) + 𝜃𝜃 (−𝐵 × 𝐶)] . (18)

This expression (when compared with 𝑑𝜃𝐹
(ℎ)

(𝑥, 𝜃, 𝜃) from
the l.h.s.) yields the transformations 𝑠𝑏𝐶(𝑥), 𝑠𝑎𝑏𝐶(𝑥), and
𝑠𝑏𝑠𝑎𝑏𝐶(𝑥) as the coefficients of 𝜃, 𝜃, and 𝜃𝜃, respectively. To
fully derive the results of HC, we have to explicitly compute
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the coefficients of (𝑑𝑥𝜇) from the r.h.s. of (16).The coefficient
of 𝑑𝑥𝜇, from the sum of the first term and second term on the
r.h.s. of transformations (16), yields the following:

𝑑𝑥
𝜇
[𝐴𝜇 (𝑥) + 𝜃 (𝐷𝜇𝐶) + 𝜃 (𝐷𝜇𝐶)

+ 𝑖𝜃𝜃 (𝐷𝜇𝐵 + 𝐷𝜇𝐶 × 𝐶)] ,

(19)

where the above equation is nothing but the sum of the
following:

𝑑𝑥
𝜇
(𝐴𝜇 + 𝑖𝜃 [𝐴𝜇, 𝐶] + 𝑖𝜃 [𝐴𝜇, 𝐶]

+ 𝜃𝜃 (− [𝐴𝜇, 𝐵] − {[𝐴𝜇, 𝐶] 𝐶})) ,

𝑑𝑥
𝜇
[𝜃 (𝜕𝜇𝐶) + 𝜃 (𝜕𝜇𝐶) + 𝑖𝜃𝜃 (𝜕𝜇𝐵 + 𝜕𝜇𝐶 × 𝐶)] .

(20)

We note that contributions (20) come out explicitly from the
first and second terms on the r.h.s. of (16). When the above
expression is compared with the l.h.s. of the definition 𝐴̃

(1)

(ℎ)
=

𝑑𝑥
𝜇
𝐵
(ℎ)

𝜇
(𝑥, 𝜃, 𝜃) + 𝑑𝜃𝐹

(ℎ)

(𝑥, 𝜃, 𝜃) + 𝑑𝜃𝐹
(ℎ)

(𝑥, 𝜃, 𝜃), we obtain
the expansion for 𝐵

(ℎ)

𝜇
(𝑥, 𝜃, 𝜃) that has been derived due to

HC in (6).
The transformations on 𝐹̃

(2)

= [(𝑑𝑍
𝑀

∧𝑑𝑍
𝑁
)/2!]𝐹̃𝑀𝑁(𝑥,

𝜃, 𝜃) in the superspace can also be computed by establishing
a connection between 𝐹̃

(2) and 𝐹
(2)

= [(𝑑𝑥
𝜇
∧𝑑𝑥

]
)/2!]𝐹𝜇](𝑥).

In this endeavor, the property of the successive operations of a
couple of covariant derivatives and their connection with the
curvature 2-form plays an important role. For instance, in the
ordinary 4D Minkowskian flat spacetime, we know that

𝐷𝐷𝜓 (𝑥) = 𝑖𝐹
(2)

(𝑥) 𝜓 (𝑥) , 𝐷 = 𝑑 + 𝑖𝐴
(1)

. (21)

This relation can be generalized onto (4, 2)-dimensional su-
permanifold as

𝐷𝐷𝜓 󳨀→ 𝐷̃𝐷̃Ψ
(𝑔)

(𝑥, 𝜃, 𝜃)

= 𝑖𝐹̃

(2)

(𝑥, 𝜃, 𝜃)Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) ,

(22)

where 𝐷̃ =
̃
𝑑 + 𝑖𝐴

(1)

(ℎ)
(𝑥, 𝜃, 𝜃) and Ψ

(𝑔)
(𝑥, 𝜃, 𝜃) = 𝑈(𝑥,

𝜃, 𝜃)𝜓(𝑥). Actually, the relationships of the kind in (21)
and (22) are covariant relations [due to Ψ

(𝑔)
(𝑥, 𝜃, 𝜃) =

𝑈(𝑥, 𝜃, 𝜃)𝜓(𝑥) and 𝐷̃Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝐷𝜓(𝑥)]. Thus,
we have the following explicit relationship:

𝐷̃𝐷̃Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) = 𝑖𝐹̃

(2)

(𝑥)𝑈 (𝑥, 𝜃, 𝜃) 𝜓 (𝑥)

≡ 𝑖𝑈 (𝑥, 𝜃, 𝜃) 𝐹
(2)

(𝑥) 𝜓 (𝑥) .

(23)

The above equation emerges out from (22) [with 𝐷̃ =

𝑈(𝑥, 𝜃, 𝜃)𝐷𝑈
†
(𝑥, 𝜃, 𝜃) and Ψ

(𝑔)
(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝜓(𝑥)].

From relation (23), it is clear that we have the following
explicit relationship:

𝐹̃

(2)

(𝑥, 𝜃, 𝜃) = 𝑈 (𝑥, 𝜃, 𝜃) 𝐹
(2)

(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃) , (24)

which has been mentioned earlier, too, as the transformation
property of the curvature 𝐹(2)(𝑥) in the superspace.

There is an altogether different theoretical method to
derive the transformation property of 𝐹(2)(𝑥) in the super-
space by exploiting the celebrated Maurer-Cartan type of
equation. It will be noted that the exact Maurer-Cartan
equation is somewhat different from the relationship that
defines the curvature 2-form. However, it looks similar in
appearance. From (16), it is evident thatwe have the following:

̃
𝑑𝐴̃

(1)

(ℎ)
(𝑥, 𝜃, 𝜃) = (

̃
𝑑𝑈)𝐴

(1)
(𝑥)𝑈
†
+ 𝑈𝑑𝐴

(1)
(𝑥)𝑈
†

− 𝑈𝐴
(1)

(𝑥)
̃
𝑑𝑈
†
− 𝑖 (

̃
𝑑𝑈) (

̃
𝑑𝑈
†
) ,

(25)

where we have used the properties ̃𝑑(𝑈𝑈
†
) = 0 ⇒ (

̃
𝑑𝑈)𝑈

†
=

−𝑈(
̃
𝑑𝑈
†
), ̃𝑑
2

= 0, and ̃
𝑑𝐴
(1)

(𝑥) = 𝑑𝐴
(1)

(𝑥). We further
observe, from (16), that

𝑖𝐴̃

(1)

(ℎ)
(𝑥, 𝜃, 𝜃) ∧ 𝐴̃

(1)

(ℎ)
(𝑥, 𝜃, 𝜃)

= 𝑈 (𝑖𝐴
(1)

(𝑥) ∧ 𝐴
(1)

(𝑥))𝑈
†
+ 𝑈𝐴
(1)

(𝑥) (
̃
𝑑𝑈
†
)

− (
̃
𝑑𝑈)𝐴

(1)
(𝑥)𝑈
†
+ 𝑖 (

̃
𝑑𝑈) (

̃
𝑑𝑈
†
) ,

(26)

where, once again, we have used the inputs from the differen-
tial geometry (i.e., ̃𝑑

2

= 0) and (
̃
𝑑𝑈)𝑈

†
+ 𝑈(

̃
𝑑𝑈
†
) = 0. The

sum of (25) and (26) yields

(
̃
𝑑𝐴̃

(1)

(ℎ)
+ 𝑖𝐴̃

(1)

(ℎ)
∧ 𝐴̃

(1)

(ℎ)
) = 𝑈 (𝑥, 𝜃, 𝜃)

⋅ [𝑑𝐴
(1)

(𝑥) + 𝑖𝐴
(1)

(𝑥) ∧ 𝐴
(1)

(𝑥)]𝑈
†
(𝑥, 𝜃, 𝜃) .

(27)

The above relation is basically the relationship 𝐹̃

(2)

(𝑥, 𝜃, 𝜃) =

𝑈(𝑥, 𝜃, 𝜃)𝐹
(2)

(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃) that has been derived in (24)

by exploiting the property of covariant derivatives. Ulti-
mately, we conclude that there are, at least, two different
and distinct theoretical methods to compute the relation-
ships (𝐹̃(2)(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝐹

(2)
(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃)) between

𝐹̃

(2)

(𝑥, 𝜃, 𝜃) and 𝐹
(2)

(𝑥) which are the super and ordinary
curvature 2-forms in our (4, 2)-dimensional SUSY and (3 +
1)-dimensional ordinary theories, respectively.

We would like to briefly comment on the relationships
between the GIR (invoked in (7)) and the SUSP operators
(that have been derived in (11) and (13)). Towards this
goal in mind, we focus on the basic definitions of the
(super)covariant derivatives that have been quoted in (15).
In fact, in its explicit form, this equation can be written as
follows:

(
̃
𝑑 + 𝑖𝐴̃

(1)

(ℎ)
)Ψ (𝑥, 𝜃, 𝜃)

= 𝑈 (𝑥, 𝜃, 𝜃) (𝑑 + 𝑖𝐴
(1)

(𝑥)) 𝜓 (𝑥) .

(28)



8 Advances in High Energy Physics

Using the fundamental definitions of ̃𝑑 and 𝐴̃

(1)

(ℎ)
from (3) and

(16), we obtain the following equalities when we compare the
l.h.s. with the r.h.s. of the above equation:

𝑑𝑥
𝜇
[𝜕𝜇Ψ + 𝑖𝑈𝐴𝜇 (𝑥)𝑈

†
Ψ − (𝜕𝜇𝑈)𝑈

†
Ψ]

= 𝑑𝑥
𝜇
(𝑈𝜕𝜇𝜓 (𝑥) + 𝑖𝑈𝐴𝜇𝜓 (𝑥)) ,

𝑑𝜃 [𝜕𝜃Ψ(𝑥, 𝜃, 𝜃) − (𝜕𝜃𝑈)𝑈
†
Ψ(𝑥, 𝜃, 𝜃)] = 0,

𝑑𝜃 [𝜕
𝜃
Ψ(𝑥, 𝜃, 𝜃) − (𝜕

𝜃
𝑈)𝑈
†
Ψ(𝑥, 𝜃, 𝜃)] = 0,

(29)

where we have used the abbreviations 𝑈 ≡ 𝑈(𝑥, 𝜃, 𝜃) and
𝑈
†

≡ 𝑈
†
(𝑥, 𝜃, 𝜃). It is quite elementary to observe that

the solution Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝜓(𝑥) does satisfy the
top two equations in (29). It is interesting to note that this
solution also satisfies the last equation that is present in
(29). If we substitute the exact form of 𝑈(𝑥, 𝜃, 𝜃) from (11)
into this relationship, we obtain the result in (10) which are
derived due to the application of GIR. We further point
out that the solution Ψ

(𝑔)
(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝜓(𝑥) implies

that we also have Ψ

(𝑔)

(𝑥, 𝜃, 𝜃) = 𝜓(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃). If we

substitute the exact mathematical expression for 𝑈
†
(𝑥, 𝜃, 𝜃)

from (11) into this relationship, we obtain the (anti-)BRST
symmetry transformations for 𝜓(𝑥) field as quoted in (10).
Ultimately, we lay emphasis on our key observation that the
exact mathematical derivation of the SUSP operators 𝑈 and
𝑈
† provides, in some sense, the alternative to HC as well as

GIR (where the SU(𝑁) group structure of the non-Abelian
theory is very explicitly maintained in the superspace).

Before we end this section, we would like to lay emphasis
on our observation that we have derived the SUSP operators
𝑈(𝑥, 𝜃, 𝜃) and 𝑈

†
(𝑥, 𝜃, 𝜃) without invoking any Hermitian

conjugation condition from outside on the parameters (𝜃, 𝜃)
and fields (𝐶, 𝐶, 𝐵) of our SUSY theory. However, it can be
checked explicitly that if we apply the following Hermitian
conjugation operations from outside, namely,

𝜃
†
= ∓𝜃,

𝜃

†

= ∓𝜃,

𝐶
†
= ±𝐶,

𝐶

†

= ±𝐶,

𝐵
†
= 𝐵,

𝑖
†
= −𝑖,

(𝜃𝜃)

†

= 𝜃

†

𝜃
†
= −𝜃𝜃,

(𝐶𝐶)

†

= 𝐶

†

𝐶
†
= 𝐶𝐶,

(30)

the SUSP unitary operators interchange (i.e., 𝑈(𝑥, 𝜃, 𝜃) ↔

𝑈
†
(𝑥, 𝜃, 𝜃)). In otherwords, by using the above operations, we

can obtain𝑈
†
(𝑥, 𝜃, 𝜃) from𝑈(𝑥, 𝜃, 𝜃) and vice versa.Thus, our

theory does support a set of Hermitian conjugate symmetry
transformations, too. It should be noted that the Hermitian
conjugation conditions, quoted in (30), are not unique. Our
theory might support another set of Hermitian conjugation
conditions, as well.

6. Conclusions

In our present investigation, we have explicitly computed
mathematically precise form of the SUSP unitary operator
𝑈(𝑥, 𝜃, 𝜃) that appears in the transformation superspace of
the Dirac field 𝜓(𝑥) → Ψ

(𝑔)
(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝜓(𝑥). We

have also computed the Hermitian conjugate SUSP operator
(i.e., 𝑈†(𝑥, 𝜃, 𝜃)) that appears in the transformation of the
Dirac field 𝜓(𝑥) → Ψ

(𝑔)

(𝑥, 𝜃, 𝜃) = 𝜓(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃). We

have shown that 𝑈𝑈
†

= 𝑈
†
𝑈 = 1 which proves the

unitarity of this SUSP operator. The key point, to be noted,
is the observation that 𝑈(𝑥, 𝜃, 𝜃) and 𝑈

†
(𝑥, 𝜃, 𝜃) appear

very naturally from the transformation properties of 𝜓(𝑥)

and 𝜓(𝑥) to Ψ
(𝑔)

(𝑥, 𝜃, 𝜃) and Ψ

(𝑔)

(𝑥, 𝜃, 𝜃), respectively. We
have not invoked any Hermitian conjugation operation from
outside on the parameters (𝜃, 𝜃) and fields (𝐶, 𝐶, 𝐵, etc.)
of our theory for the computation of 𝑈

†
(𝑥, 𝜃, 𝜃) from the

known expression for 𝑈(𝑥, 𝜃, 𝜃). However, to demonstrate
that our theory also supports a set of Hermitian conjugation
operations, we have listed a couple of such operations in
(30) on the parameters as well as appropriate fields of our
theory which provide a connection between 𝑈(𝑥, 𝜃, 𝜃) and
𝑈
†
(𝑥, 𝜃, 𝜃).
The above SUSP transformations (which maintain the

SU(𝑁) group structure) lead to the definition of the covariant
derivative on the (4, 2)-dimensional supermanifold. This
definition, in turn, enables us to obtain the transformation
(𝐴(1) → 𝐴̃

(1)

(ℎ)
) on the 1-form connection (cf. (16)). This

relationship immediately leads to the derivation of the results
of HC. In other words, we derive expansions (6) in terms
of the SUSP operators 𝑈(𝑥, 𝜃, 𝜃) and 𝑈

†
(𝑥, 𝜃, 𝜃) due to the

appearance of (16) in our present endeavor. Thus, the precise
derivation of SUSP unitary operators 𝑈 and 𝑈

† provides an
alternative to theHCwhere the group structure ismaintained
explicitly in the superspace. In fact, these SUSP operators
have also enabled us to obtain the results of GIR where,
once again, the idea of covariant derivative has played an
important role. We have discussed the derivation of the
relationships Ψ

(𝑔)
(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝜓(𝑥), Ψ(𝑔)(𝑥, 𝜃, 𝜃) =

𝜓(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃) in equations (28) and (29) (cf. Section 5)

where the mathematical forms of SUSP operators 𝑈(𝑥, 𝜃, 𝜃)

and 𝑈
†
(𝑥, 𝜃, 𝜃) play crucial roles.

As we know, two successive applications of the covariant
derivative 𝐷 = (𝑑 + 𝑖𝐴

(1)
) on the Dirac field 𝜓(𝑥) (i.e.,

𝐷𝐷𝜓) lead to the definition of the curvature 2-form 𝐹
(2)

(i.e., 𝐷𝐷𝜓 = 𝑖𝐹
(2)

𝜓). This relation is a covariant relation
and one can tap the potential of this relationship to obtain
its SUSY version (i.e., 𝐷𝐷𝜓 → 𝐷̃𝐷̃Ψ

(𝑔)
= 𝑖𝐹̃

(2)

Ψ
(𝑔)).

Now, using the well-known relationship of the covariant
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derivative 𝐷̃Ψ
(𝑔)

= 𝑈𝐷𝜓, we obtain the relationship
𝐹̃

(2)

𝑈(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝐹
(2)

(𝑥) ⇒ 𝐹̃

(2)

(𝑥, 𝜃, 𝜃) = 𝑈(𝑥,

𝜃, 𝜃)𝐹
(2)

(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃) which leads to the derivation of the

(anti-)BRST transformations for the curvature tensor 𝐹𝜇]

(i.e., 𝑠𝑏𝐹𝜇] = 𝑖(𝐹𝜇] ×𝐶) and 𝑠𝑎𝑏𝐹𝜇] = 𝑖(𝐹𝜇] ×𝐶)) in the context
of our 4D non-Abelian theory. The above precise relationship
(i.e., 𝐹̃(2)(𝑥, 𝜃, 𝜃) = 𝑈(𝑥, 𝜃, 𝜃)𝐹

(2)
(𝑥)𝑈
†
(𝑥, 𝜃, 𝜃)) reduces to

its Abelian counterpart 𝐹̃(2)(𝑥, 𝜃, 𝜃) = 𝐹
(2)

(𝑥) that has been
discussed in our earlier work [11] on the interacting Abelian
𝑈(1) gauge theorywithDirac and complex scalar fields where
there is an explicit coupling between the gauge field and
matter fields.

In our earlier works [18–20], we have derived the nilpo-
tent (anti-)BRST and (anti-)co-BRST symmetry transforma-
tions for the Stueckelberg-modified version of the 2D Proca
theory [18], the modified version of the 2D anomalous gauge
theory [19], and the 2D self-dual chiral bosonic field theory
[20] by exploiting the tools and techniques of the augmented
version of geometrical superfield formalism [8–10]. We lay
emphasis on the fact that, in these theories [18–20], we have
the presence of the matter as well as gauge fields which are
coupled to one another in a specific fashion.Thus, it would be
very nice idea to find out the SUSP unitary operators for these
theories where not only the off-shell nilpotent (anti-)BRST
symmetry transformations but also the off-shell nilpotent
(anti-)co-BRST symmetries exist, too, for the matter, gauge,
and (anti)ghost fields. We are currently intensively involved
with these ideas. In this connection, it is gratifying to
state that we have partially accomplished this goal in our
very recent work [21] where we have discussed only the
(anti-)BRST symmetries and corresponding SUSP unitary
operators 𝑈(𝑥, 𝜃, 𝜃) and 𝑈

†
(𝑥, 𝜃, 𝜃). The discussion about

the nilpotent (anti-)co-BRST symmetry transformations and
the corresponding dual SUSP unitary operators has been
achieved in our very recent work [22]. In this context, it is
very gratifying to state that we have also derived the dual
SUSP unitary operator and its Hermitian conjugate which
lead to the derivation of the proper (anti-)co-BRST symmetry
transformations for some of the interesting Abelian models
[18–20] of the Hodge theory.

Appendix

More on the (Anti-)BRST
Invariant Lagrangian Densities in
the Curci-Ferrari Gauge

For the readers’ convenience, we discuss explicitly a few
more key points, connected with the form of our Lagrangian
densitiesL𝐵 andL𝐵 in theCurci-Ferrari gauge [cf. (1)] of our
present investigation (where we have already taken 𝜉 = 2). It
is very interesting to note that (modulo some total spacetime
derivatives)

L𝐵 = −

1

4

𝐹𝜇] ⋅ 𝐹
𝜇]

+ 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓

+ 𝑠𝑏𝑠𝑎𝑏 (

𝑖

2

𝐴𝜇 ⋅ 𝐴
𝜇
− 𝐶 ⋅ 𝐶) ,

L
𝐵
= −

1

4

𝐹𝜇] ⋅ 𝐹
𝜇]

+ 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓

− 𝑠𝑎𝑏𝑠𝑏 (

𝑖

2

𝐴𝜇 ⋅ 𝐴
𝜇
− 𝐶 ⋅ 𝐶) ,

(A.1)

where the covariant derivative on thematter field [i.e.,𝐷𝜇𝜓 =

(𝜕𝜇 + 𝑖𝐴𝜇 ⋅ 𝑇)𝜓] is in the fundamental representation of the
SU(𝑁) Lie algebra. We note that the following are true:

𝑠𝑏𝑠𝑎𝑏 (

𝑖

2

𝐴𝜇 ⋅ 𝐴
𝜇
) = 𝐵 ⋅ (𝜕𝜇𝐴

𝜇
) − 𝑖𝜕𝜇𝐶 ⋅ 𝐷

𝜇
𝐶

− 𝜕𝜇 (𝐴
𝜇
⋅ 𝐵) ,

−𝑠𝑎𝑏𝑠𝑏 (

𝑖

2

𝐴𝜇 ⋅ 𝐴
𝜇
) = −𝐵 ⋅ (𝜕𝜇𝐴

𝜇
) − 𝑖𝐷𝜇𝐶 ⋅ 𝜕

𝜇
𝐶

− 𝜕𝜇 (𝐴
𝜇
⋅ 𝐵) .

(A.2)

Here, the covariant derivative 𝐷𝜇𝐶 = 𝜕𝜇𝐶 + 𝑖(𝐴𝜇 × 𝐶) is in
the adjoint representation of the SU(𝑁) Lie algebra.Thus, we
note that the gauge-fixing and Faddeev-Popov ghost terms
of the Lagrangian densities L𝐵 and L

𝐵
are derived from

(A.2) modulo a total spacetime derivative term. In the above
derivations, we have not used the CF-conditions anywhere.

Now, we concentrate on the computations of the follow-
ing equivalent expressions:

𝑠𝑏𝑠𝑎𝑏 (−𝐶 ⋅ 𝐶) = 𝑠𝑎𝑏𝑠𝑏 (𝐶 ⋅ 𝐶) , (A.3)

where we have to use the CF-condition because the absolute
anticommutativity (𝑠𝑏𝑠𝑎𝑏 + 𝑠𝑎𝑏𝑠𝑏) = 0 is satisfied only on the
hypersurface where 𝐵 + 𝐵 + 𝐶 × 𝐶 = 0 is true in the 4D
Minkowskian spacetime manifold. In this context, we note
that we have the following:

𝑠𝑏𝑠𝑎𝑏 (−𝐶 ⋅ 𝐶) = − (𝐵 + 𝐵) ⋅ (𝐶 × 𝐶) − 𝐵 ⋅ 𝐵

+

1

4

(𝐶 × 𝐶) ⋅ (𝐶 × 𝐶)

≡ − (𝐵 + 𝐵) ⋅ (𝐶 × 𝐶) − 𝐵 ⋅ 𝐵

−

1

2

(𝐶 × 𝐶) ⋅ (𝐶 × 𝐶) .

(A.4)

Now, using the CF-condition (𝐶 × 𝐶) = −(𝐵 + 𝐵), we obtain
the following:

𝑠𝑏𝑠𝑎𝑏 (−𝐶 ⋅ 𝐶) =

1

2

(𝐵 ⋅ 𝐵 + 𝐵 ⋅ 𝐵) . (A.5)

We note that the gauge-fixing and Faddeev-Popov ghost
terms of the Lagrangian densities L𝐵 and L

𝐵
of (1) are

nothing other than the appropriate sum of (A.2) and (A.5).
It is straightforward to note that 𝑠𝑎𝑏𝑠𝑏(𝐶 ⋅ 𝐶) produces the
same result as in (A.5) (when we use the CF-condition).
The (anti-)BRST symmetry transformations 𝑠(𝑎)𝑏 of the above
Lagrangian densities yield the following total spacetime
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derivatives plus terms that are zero on the hypersurface where
the CF-condition is valid:

𝑠𝑏L𝐵 = 𝜕𝜇 [𝐵 ⋅ 𝐷
𝜇
𝐶] ,

𝑠𝑎𝑏L𝐵 = 𝜕𝜇 [−𝐵 ⋅ 𝐷
𝜇
𝐶] ,

𝑠𝑎𝑏L𝐵 = 𝜕𝜇 [− {𝐵 + (𝐶 × 𝐶)} ⋅ 𝜕
𝜇
𝐶]

+ (𝐵 + 𝐵 + 𝐶 × 𝐶) ⋅ 𝐷𝜇 (𝜕
𝜇
𝐶)

≡ 𝜕𝜇 [𝐵 ⋅ 𝜕
𝜇
𝐶] + (𝐵 + 𝐵 + 𝐶 × 𝐶)

⋅ 𝐷𝜇 (𝜕
𝜇
𝐶) ,

𝑠𝑏L𝐵 = 𝜕𝜇 [{𝐵 + (𝐶 × 𝐶)} ⋅ 𝜕
𝜇
𝐶]

− (𝐵 + 𝐵 + 𝐶 × 𝐶) ⋅ 𝐷𝜇 (𝜕
𝜇
𝐶)

≡ 𝜕𝜇 [−𝐵 ⋅ 𝜕
𝜇
𝐶] − (𝐵 + 𝐵 + 𝐶 × 𝐶)

⋅ 𝐷𝜇 (𝜕
𝜇
𝐶) .

(A.6)

Thus, as far as the symmetry properties are concerned, the
Lagrangian densities L𝐵 and L

𝐵
are equivalent on the

hypersurface (in the 4D Minkowskian spacetime manifold)
where the CF-condition 𝐵+𝐵+𝐶×𝐶 = 0 is satisfied. In fact,
the absolute anticommutativity property (𝑠𝑏𝑠𝑎𝑏 + 𝑠𝑎𝑏𝑠𝑏 = 0)

of the (anti-)BRST symmetry transformations 𝑠(𝑎)𝑏 is also
true only on this hypersurface. We end this Appendix with
the remark that the Lagrangian densitiesL𝐵 andL

𝐵
can be

expressed as follows:

L𝐵 = −

1

4

𝐹
𝜇]

⋅ 𝐹𝜇] + 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓 + 𝐵 ⋅ (𝜕𝜇𝐴

𝜇
)

+ 𝐵 ⋅ 𝐵 + 𝐵 ⋅ (𝐶 × 𝐶) +

1

2

(𝐶 × 𝐶)

⋅ (𝐶 × 𝐶) − 𝑖𝜕𝜇𝐶 ⋅ 𝐷
𝜇
𝐶,

L
𝐵
= −

1

4

𝐹
𝜇]

⋅ 𝐹𝜇] + 𝜓 (𝑖𝛾
𝜇
𝐷𝜇 − 𝑚)𝜓 − 𝐵 ⋅ (𝜕𝜇𝐴

𝜇
)

+ 𝐵 ⋅ 𝐵 + 𝐵 ⋅ (𝐶 × 𝐶) −

1

2

(𝐶 × 𝐶)

⋅ (𝐶 × 𝐶) − 𝑖𝐷𝜇𝐶 ⋅ 𝜕
𝜇
𝐶.

(A.7)

The equations of motion (i.e., 𝜕L𝐵/𝜕𝐵 = 0 and 𝜕L
𝐵
/𝜕𝐵 = 0)

with respect to 𝐵 and 𝐵 yield the following:

𝜕𝜇𝐴
𝜇
+ 2𝐵 + (𝐶 × 𝐶) = 0,

−𝜕𝜇𝐴
𝜇
+ 2𝐵 + (𝐶 × 𝐶) = 0.

(A.8)

The sum of the above relationships leads to the derivation of
the CF-condition.
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