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We construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar
dilaton field on a time-dependent torus. This approach is applied to anisotropic cosmological Bianchi type I model for which
we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification
process. Under this approach, we present an isotropization mechanism for the Bianchi I cosmological model through the analysis
of the ratio between the anisotropic parameters and the volume of the Universe which in general keeps constant or runs into zero
for late times. We also find that the presence of extra dimensions in this model can accelerate the isotropization process depending
on the momenta moduli values. Finally, we present some solutions to the correspondingWheeler-DeWitt (WDW) equation in the
context of standard quantum cosmology.

1. Introduction

The 2015 release of Planck data has provided a detailed
map of cosmic microwave background (CMB) temperature
and polarization allowing us to detect deviations from an
isotropic early Universe [1]. The evidence given by these data
leads us to the possibility of considering that there is no exact
isotropy, since there exist small anisotropy deviations of the
CMB radiation and apparent large angle anomalies. In that
context, there have been recent attempts to fix constraints
on such deviations by using the Bianchi anisotropic models
[2]. The basic idea behind these models is to consider the
present observational anisotropies and anomalies as imprints
of an early anisotropic phase on the CMB which in turn
can be explained by the use of different Bianchi models. In
particular, Bianchi I model seems to be related to large angle
anomalies [2] (and references therein).

In a different context, attempts to understand diverse
aspects of cosmology, as the presence of stable vacua and
inflationary conditions, in the framework of supergravity and
string theory have been considered in the last years [3–10].
One of the most interesting features emerging from these

types of models consists in the study of the consequences
of higher dimensional degrees of freedom on the cosmology
derived from four-dimensional effective theories [11, 12].
The usual procedure for that is to consider compactification
on generalized manifolds, on which internal fluxes have
back-reacted, altering the smooth Calabi-Yau geometry and
stabilizing all moduli [10].

The goal of the present work is to consider in a simple
model some of the above two perspectives; that is, we will
consider the presence of extra dimensions in a Bianchi I
model with the purpose of tracking down the influence of
moduli fields in its isotropization. For that wewill consider an
alternative procedure concerning the role played by moduli.
In particular we will not consider the presence of fluxes,
as in string theory, in order to obtain a moduli-dependent
scalar potential in the effective theory. Rather, we are going
to promote some of the moduli to time-dependent fields by
considering the particular case of a ten-dimensional gravity
coupled to a time-dependent dilaton compactified on a 6-
dimensional torus with a time-dependent Kähler modulus.
With the purpose to study the influence of such fields, we
are going to ignore the dynamics of the complex structure
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modulos (for instance, by assuming that it is already stabilized
by the presence of a string field in higher scales). This will
allow us to construct classical effective models with two
moduli.

However, we are also interested in possible quantum
aspects of our model. Quantum implications on cosmology
frommore fundamental theories are expected due to different
observations. For instance, it has been pointed out that
the presence of extra dimensions leads to an interesting
connection to the ekpyrotic model [13], which generated
considerable activity [8, 9, 14]. The essential ingredient in
thesemodels (see, for instance, [11]) is to consider an effective
action with a graviton and a massless scalar field, the dilaton,
describing the evolution of the Universe, while incorporating
some of the ideas of pre-big-bang proposal [15, 16] in that
the evolution of the Universe began in the far past. On
the other hand, it is well known that relativistic theories
of gravity such as general relativity or string theories are
invariant under reparametrization of time. Quantization of
such theories presents a number of problems of principle
known as “the problem of time” [17, 18]. This problem is
present in all systems whose classical version is invariant
under time reparametrization, leading to its absence at the
quantum level. Therefore, the formal question involves how
to handle the classical Hamiltonian constraint,H ≈ 0, in the
quantum theory. Also, connected with the problem of time is
the “Hilbert space problem” [17, 18] referring to the not at all
obvious selection of the inner product of states in quantum
gravity and whether there is a need for such a structure at all.
The above features, as it is well known, point out the necessity
to construct a consistent theory of gravity at quantum level.

Analyses of effective four-dimensional cosmologies de-
rived from M-theory and Type IIA string theory were
considered in [19–21] where string fluxes are related to the
dynamical behavior of the solutions. A quantum description
of the model was studied in [22, 23] where a flat Friedmann-
Robertson-Walker geometry was considered for the extended
four-dimensional space-time, while a geometry given by 𝑆1 ×
𝑇

6 was assumed for the internal seven-dimensional space;
however, the dynamical fields are in the quintom scheme,
since one of the fields has a negative energy. Under a similar
perspective, we study the Hilbert space of quantum states on
a Bianchi I geometry with two time-dependent scalar moduli
derived from a ten-dimensional effective action containing
the dilaton and the Kähler parameter from a six-dimensional
torus compactification. We find that, in this case, the wave
function of this Universe is represented by two factors, one
depending onmoduli and the second one depending on grav-
itational fields.This behavior is a property of all cosmological
Bianchi Class A models.

The work is organized in the following form. In Section 2
we present the construction of our effective action by com-
pactification on a time-dependent torus, while in Section 3
we study its Lagrangian and Hamiltonian descriptions using
as toymodel the Bianchi type I cosmologicalmodel. Section 4
is devoted to finding the corresponding classical solutions
for few different cases involving the presence or absence of
matter content and the cosmological constant term. Using

the classical solutions found in previous sections, we present
an isotropization mechanism for the Bianchi I cosmolog-
ical model, through the analysis of the ratio between the
anisotropic parameters and the volume of the Universe,
showing that, in all the cases we have studied, its value
keeps constant or runs into zero for late times. In Section 5
we present some solutions to the corresponding Wheeler-
DeWitt (WDW) equation in the context of standard quantum
cosmology and finally our conclusions are presented in
Section 6.

2. Effective Model

We start from a ten-dimensional action coupled with a
dilaton (which is the bosonic component common to all
superstring theories), which after dimensional reduction can
be interpreted as a Brans-Dicke like theory [24]. In the
string frame, the effective action depends on two spacetime-
dependent scalar fields: the dilaton Φ(𝑥𝜇) and the Kähler
modulus 𝜎(𝑥𝜇). For simplicity, in this work we will assume
that these fields only depend on time. The high-dimensional
(effective) theory is therefore given by
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where all quantities 𝑞̂ refer to the string frame while the ten-
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where𝑀,𝑁, . . . are the indices of the ten-dimensional space
and Greek indices 𝜇, ], . . . = 0, . . . , 3 and Latin indices
𝑚, 𝑛, . . . = 4, . . . , 9 correspond to the external and internal
spaces, respectively. We will assume that the six-dimensional
internal space has the form of a torus with a metric given by

ℎ
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𝛿
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, (3)

with 𝜎 being a real parameter.
Dimensionally reducing the first term in (1) to four-

dimensions in the Einstein frame (see the Appendix for
details) gives

𝑆
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where 𝜙 = Φ + (1/2) ln(̂𝑉), with ̂𝑉 given by

̂
𝑉 = 𝑒

6𝜎(𝑡)Vol (𝑋
6
) = ∫𝑑

6
𝑦. (5)

By considering only a time-dependence on the moduli, one
can notice that, for the internal volume Vol(𝑋

6
) to be small,

the modulus 𝜎(𝑡) should be a monotonic increasing function
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on time (recall that 𝜎 is a real parameter), while ̂𝑉 is time and
moduli independent.

Now, concerning the second term in (1), we will require
properly defining the ten-dimensional stress-energy tensor
̂
𝑇
𝑀𝑁

. In the string frame it takes the form

̂
𝑇
𝑀𝑁

= (
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𝑇
𝜇] 0

0
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) , (6)

where ̂𝑇
𝜇] and ̂𝑇

𝑚𝑛
denote the four- and six-dimensional

components of ̂𝑇
𝑀𝑁

. Observe that we are not considering
mixing components of ̂𝑇

𝑀𝑁
among internal and external

components although nonconstrained expressions for ̂𝑇
𝑀𝑁

have been considered in [25]. In the Einstein frame the four-
dimensional components are given by

𝑇
𝜇] = 𝑒

2𝜙
̂
𝑇
𝜇]. (7)

It is important to remark that there are some dilemmas about
what is the best frame to describe the gravitational theory.
Here in this work we have taken the Einstein frame. Useful
references to find a discussion about string and Einstein
frames and its relationship in the cosmological context are
[26–30].

Now with expression (4) we proceed to build the
Lagrangian and the Hamiltonian of the theory at the classical
regime employing the anisotropic cosmological Bianchi type
I model. The moduli fields will satisfy the Klein-Gordon like
equation in the Einstein frame as an effective theory.

3. Classical Hamiltonian

In order to construct the classical Hamiltonian, we are going
to assume that the background of the extended space is
described by a cosmological Bianchi type I model. For that,
let us recall here the canonical formulation in the ADM
formalism of the diagonal Bianchi Class A cosmological
models; the metric has the form
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where 𝑁(𝑡) is the lapse function, 𝛽
𝑖𝑗
(𝑡) is a 3 × 3 diagonal
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are scalar functions, known as Misner variables, and 𝜔𝑖 are
one-forms that characterize each cosmological Bianchi type
model [31] and obey the form 𝑑𝜔
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one-forms for the Bianchi type I model are𝜔1 = 𝑑𝑥,𝜔2 = 𝑑𝑦,
and𝜔3 = 𝑑𝑧. So, the correspondingmetric of the Bianchi type
I in Misner’s parametrization has the form
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}
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are the anisotropic radii and they are given by
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where 𝑉 is the volume function of this model.
The Lagrangian density, with a matter content given by

a barotropic perfect fluid and a cosmological term, has a
structure, corresponding to an energy-momentum tensor of
perfect fluid [32–36]
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that satisfies the conservation law ∇]𝑇
𝜇]
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equation of state 𝑝 = 𝛾𝜌 between the energy density and
the pressure of the comovil fluid, a solution is given by 𝜌 =
𝐶
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values of 𝛾 related to the Universe evolution stage. Then, the
Lagrangian density reads
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while the Lagrangian that describes the fields dynamics is
given by

L
𝐼
=

𝑒

3Ω

𝑁

[6
̇
Ω

2

− 6
̇
𝛽

2

+
− 6

̇
𝛽

2

−
+ 96𝜎̇

2
+ 36

̇
𝜙𝜎̇ + 2

̇
𝜙

2

+ 16𝜋𝐺𝑁

2
𝜌 + 2Λ𝑁

2
] ,

(13)
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and, introducing them into the Lagrangian density, we obtain
the canonical Lagrangian asLcanonical = Π𝑞𝜇 𝑞̇

𝜇
−𝑁H. When

we perform the variation of this canonical lagrangian with
respect to 𝑁, 𝛿Lcanonical/𝛿𝑁 = 0, implying the constraint
H

𝐼
= 0. In our model the only constraint corresponds to
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Hamiltonian density, which is weakly zero. So, we obtain the
Hamiltonian density for this model:

H
𝐼
=

𝑒

−3Ω

24

[Π

2

Ω
− Π

2

+
− Π

2

−
−

48

11

Π

2

𝜙
+

18

11

Π
𝜙
Π
𝜎

−

1

11

Π

2

𝜎
− 384𝜋𝐺

𝑁
𝜌
𝛾
𝑒

3(1−𝛾)Ω
− 48Λ𝑒

6Ω
] .

(15)

We introduce a new set of variables in the gravitational part
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volume of the Bianchi type I Universe, in similar way to the
flat Friedmann-Robetson-Walker metric (FRW) with a scale
factor. This new set of variables depends on Misner variables
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from which the Lagrangian density (13) can be transformed
as
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and the Hamiltonian density reads
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So far, we have built the classical Hamiltonian density from
a higher dimensional theory; this Hamiltonian contains a
barotropic perfect fluid, that we have added explicitly. The
next step is to analyze three different cases involving terms
in the classical Hamiltonian (18) and find solutions to each of
them in the classical regime.

3.1. Isotropization. The current observations of the cosmic
background radiation set a very stringent limit to the
anisotropy of the Universe [37]; therefore, it is important
to consider the anisotropy of the solutions. We will denote
through all our study derivatives of functions 𝐹 with respect
to 𝜏 = 𝑁𝑡 by 𝐹󸀠 (the following analysis is similar to this
presented recently in the K-essence theory, since the corre-
sponding action is similar to this approach [38]). Recalling
the Friedmann like equation to the Hamiltonian density

Ω

󸀠2
= 𝛽

󸀠2

+
+ 𝛽

󸀠2

−
+ 16𝜎

󸀠2
+

1

3

𝜙

󸀠2
+ 6𝜙

󸀠
𝜎

󸀠

+

8

3

𝜋𝐺𝜇
𝛾
𝑒

−3(1+𝛾)Ω
+

Λ

3

,

(19)

we can see that isotropization is achieved when the terms
with 𝛽󸀠2
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go to zero or are negligible with respect to the other

terms in the differential equation.We find in the literature the
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In the present case the comparison with the density should
include the contribution of the scalar field. We define an
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and the kinetic energy for the scalars fields 𝜙 and 𝜎 are
proportional to 𝑒−6Ω. This can be seen from definitions of
momenta associated with Lagrangian (13) and the above
equations.Then, defining 𝜅
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With the use of these parameters, we find the following ratios:
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We observe that for an expanding Universe the anisotropic
density is dominated by the fluid density (with the exception
of the stiff fluid) or by theΩ󸀠2 term and then at late times the
isotropization is obtained since the above ratios tend to zero.

4. Case of Interest

In this section we present the classical solutions for the
Hamiltonian density of Lagrangian (13) we have previously
built in terms of a new set of variables (16), focusing on three
different cases. We start our analysis on the vacuum case,
and on the case with a cosmological term Λ. Finally we will
analyze the general case considering matter content and a
cosmological term.



Advances in High Energy Physics 5

4.1. VacuumCase. To analyze the vacuumcase, wewill take in
theHamiltonian density (18) that 𝜌

𝛾
= 0 andΛ = 0, obtaining

that

H
𝐼vac
=

1

8

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

2

1
− Π

2

2
− Π

2

3
+ 2Π

1
Π
2

+ 2Π
1
Π
3
+ 2Π

2
Π
3
−

16

11

Π

2

𝜙
+

6

11

Π
𝜙
Π
𝜎
−

1

33

Π

2

𝜎
] .

(24)

The Hamilton equations for the coordinates fields 𝑞̇
𝑖
=

𝜕H/𝜕𝑃
𝑖
and the corresponding momenta ̇

𝑃
𝑖
= 𝜕H/𝜕𝑞

𝑖

become

̇
Π
𝑖
= −H ≡ 0 󳨐⇒ Π

𝑖
= constant,

̇
Π
𝜙
= 0 󳨐⇒ Π

𝜙
= constant,

̇
Π
𝜎
= 0 󳨐⇒ Π

𝜎
= constant,

𝛽

󸀠

1
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

1
+ Π

2
+ Π

3
] ,

𝛽

󸀠

2
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

2
+ Π

1
+ Π

3
] ,

𝛽

󸀠

3
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

3
+ Π

1
+ Π

2
] ,

𝜙

󸀠
= 𝜙

0
𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
,

𝜎

󸀠
= 𝜎

0
𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
.

(25)

The gravitational momenta are constant by mean of the
Hamiltonian constraint, first line in the last equation. In this
way, the solution for the sum of 𝛽

𝑖
functions becomes

𝛽
1
+ 𝛽

2
+ 𝛽

3
= ln [𝜖𝜏 + 𝑏

0
] , 𝜖 = 𝑏

1
+ 𝑏

2
+ 𝑏

3
, (26)

with 𝑏
𝑖
= Π

𝑖
and 𝑏

0
being an integration constant. Therefore,

Misner variables are expressed as

Ω = ln (𝜖𝜏 + 𝑏
0
)

1/3

,

𝛽
+
= ln (𝜖𝜏 + 𝑏

0
)

(𝜖−3𝑏
3
)/6𝜖

,

𝛽
−
= ln (𝜖𝜏 + 𝑏

0
)

(𝑏
3
+2𝑏
1
−𝜖)/2√3𝜖

,

(27)

while moduli fields are given by

𝜙 =

𝜙
0

𝜖

ln (𝜖𝜏 + 𝑏
0
) ,

𝜎 =

𝜎
0

𝜖

ln (𝜖𝜏 + 𝑏
0
) ,

(28)

where 𝜙
0
= Π

𝜙
and 𝜎

0
= Π

𝜎
. Notice that, in this case,

the associated external volume given by 𝑒3Ω and the moduli
fields 𝜙 and 𝜎 are all logarithmically increasing functions on
time, implying for the latter that the internal volume shrinks
in size for late times, as expected, while the four-dimensional
Universe expands into an isotropic flat spacetime.Theparam-
eter 𝜌

𝑎
goes to zero at very late times independently of 𝑏

0
.

4.2. Cosmological Term Λ. The corresponding Hamiltonian
density becomes

H
𝐼
=

1

8

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

2

1
− Π

2

2
− Π

2

3
+ 2Π

1
Π
2

+ 2Π
1
Π
3
+ 2Π

2
Π
3
−

16

11

Π

2

𝜙
+

6

11

Π
𝜙
Π
𝜎
−

1

33

Π

2

𝜎

− 16Λ𝑒

2(𝛽
1
+𝛽
2
+𝛽
3
)
] ,

(29)

and corresponding Hamilton’s equations are

Π

󸀠

1
= Π

󸀠

2
= Π

󸀠

3
= 4Λ𝑒

𝛽
1
+𝛽
2
+𝛽
3
,

𝛽

󸀠

1
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

1
+ Π

2
+ Π

3
] ,

𝛽

󸀠

2
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

2
+ Π

1
+ Π

3
] ,

𝛽

󸀠

3
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

3
+ Π

1
+ Π

2
] ,

𝜙

󸀠
= 𝜙

0
𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
,

𝜎

󸀠
= 𝜎

0
𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
,

(30)

where the constants𝜙
0
and𝜎

0
are the same as in previous case.

To solve the last systemof equationswewill take the following
ansatz:

Π
1
= Π

2
+ 𝛿

2
= Π

3
+ 𝛿

3
, (31)

with 𝛿
2
and 𝛿

3
constants. By substituting into Hamiltonian

(29) we find a differential equation for the momentaΠ
1
given

by

1

Λ

Π

󸀠2

1
− 3Π

2

1
+ ]Π

1
+ 𝛿

1
= 0, (32)

where the corresponding constants are

] = 2 (𝛿
2
+ 𝛿

3
) ,

𝛿
1
(𝑞
0
) = (𝛿

2
− 𝛿

3
)

2

− 𝑞
0
,

(33)

with the constant (related to the momenta scalar field)

𝑞
0
=

16

11

Π

2

𝜙
−

6

11

Π
𝜙
Π
𝜎
+

1

33

Π

2

𝜎
. (34)

The solution for Π
1
is thus

Π
1
=

]
6

+

1

6

√]2 + 12𝛿
1
cosh (√3Λ𝜏) . (35)

Hence, using the last result (35) in the rest of equations in (30)
we obtain that

𝛽
1
+ 𝛽

2
+ 𝛽

3
= ln(1

8

√

]2 + 12𝛿
1

3Λ

sinh (√3Λ𝜏)) , (36)
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and the corresponding solutions to the moduli fields are

𝜙 =

8𝜙
2

√]2 + 12𝛿
1

ln(tanh(
√3Λ

2

𝜏)) ,

𝜎 =

8𝜎
2

√]2 + 12𝛿
1

ln(tanh(
√3Λ

2

𝜏)) .

(37)

With the last results we see that the solutions to the Misner
variables (Ω, 𝛽

±
) are given by

Ω =

1

3

ln(1
8

√

]2 + 12𝛿
1

3Λ

sinh (√3Λ𝜏)) ,

𝛽
+
=

2

3

(𝛿
2
− 2𝛿

3
)

√]2 + 12𝛿
1

ln tanh(
√3Λ

2

𝜏) ,

𝛽
−
= −

2

√3

𝛿
2

√]2 + 12𝛿
1

ln tanh(
√3Λ

2

𝜏) .

(38)

and the isotropization parameter 𝜌
𝑎
is given by

𝜌
𝑎
=

Λ

3

(𝛿
2
− 2𝛿

3
)

2

+ 𝛿

2

2

]2 + 12 ((𝛿
2
− 𝛿

3
)

2

− 𝑞
0
)

coth2 (
√3Λ

2

𝜏) . (39)

Notice that the external four-dimensional volume expands as
time 𝜏 runs and it is affectedwhether 𝑞

0
is positive or negative.

This in turn determines how fast the moduli fields evolve in
relation to each other (i.e., whether Π

𝜙
is larger or smaller

than Π
𝜎
). Therefore, isotropization is reached independently

of the values of 𝑞
0
but expansion of the Universe (and

shrinking of the internal volume) is affected by it.

4.3. Matter Content and Cosmological Term. For this case,
the corresponding Hamiltonian density becomes (18). So,
using the Hamilton equation, we can see that the momenta
associated with the scalars fields 𝜙 and 𝜎 are constants, and
we will label these constants by 𝜙

1
and 𝜎

1
, respectively:

Π

󸀠

1
= Π

󸀠

2
= Π

󸀠

3

= 4Λ𝑒

𝛽
1
+𝛽
2
+𝛽
3
+ 16𝜋𝐺 (1 − 𝛾) 𝜌

𝛾
𝑒

−𝛾(𝛽
1
+𝛽
2
+𝛽
3
)
,

𝛽

󸀠

1
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

1
+ Π

2
+ Π

3
] ,

𝛽

󸀠

2
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

2
+ Π

1
+ Π

3
] ,

𝛽

󸀠

3
=

1

4

𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
[−Π

3
+ Π

1
+ Π

2
] ,

𝜙

󸀠
= 𝜙

2
𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
,

𝜎

󸀠
= 𝜎

2
𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
.

(40)

Follow the same steps as in Section 4.2, we see that it is
possible to relate the momenta associated with 𝛽

1
, 𝛽

2
, and 𝛽

3

in the following way:

Π
1
= Π

2
+ 𝑘

1
= Π

3
+ 𝑘

2
. (41)

Also, the differential equation for fields 𝜙 and 𝜎 can be
reduced to quadrature as

𝜙 = 𝜙
2
∫ 𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
𝑑𝜏,

𝜎 = 𝜎
2
∫ 𝑒

−(𝛽
1
+𝛽
2
+𝛽
3
)
𝑑𝜏.

(42)

We proceed to consider specific values for 𝛾.

4.3.1. 𝛾 = ±1 Cases. Let us introduce the generic parameter

𝜆 =

{

{

{

4Λ, 𝛾 = 1

4Λ + 32𝜋𝐺𝜌
−1
, 𝛾 = −1

(43)

for whichΠ󸀠
1
= 𝜆𝑒

𝛽
1
+𝛽
2
+𝛽
3 . Substituting this intoHamiltonian

(18) we find the differential equation for the momenta Π
1
as

4

𝜆

Π

󸀠2

1
− 3Π

2

1
+ ]Π

1
+ 𝛿

1
= 0, (44)

with the solution given by Π
1
is

Π
1
=

]
6

+

1

6

√]2 + 12𝛿
1
cosh(

√3𝜆

2

𝜏) . (45)

On the other hand, using the last result (45) we obtain from
Hamilton equations that

𝛽
1
+ 𝛽

2
+ 𝛽

3
= ln(1

4

√

𝛿
3
+ 12𝛿

1

3𝜆

sinh(
√3𝜆

2

𝜏)) . (46)

The corresponding solutions to the moduli fields (42) can be
found as

𝜙 =

8𝜙
2

√]2 + 12𝛿
1

ln tanh(
√3𝜆

4

𝜏) ,

𝜎 =

8𝜎
2

√]2 + 12𝛿
1

ln tanh(
√3𝜆

4

𝜏) .

(47)
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The solutions to Misner variables (16), (Ω, 𝛽
±
), are given by

Ω =

1

3

ln(1
4

√

𝛿

2
+ 12𝛿

1

3𝜆

sinh(
√3𝜆

2

𝜏)) ,

𝛽
+
=

2

3

(𝛿
2
− 2𝛿

3
)

√]2 + 12𝛿
1

ln tanh(
√3𝜆

2

𝜏)

+

1

6

ln(1
4

√

]2 + 12𝛿
1

3𝜆

) ,

𝛽
−
= −

2

√3

𝛿
2

√]2 + 12𝛿
1

ln tanh(
√3𝜆

2

𝜏)

−

1

2√3

ln(1
4

√

]2 + 12𝛿
1

3𝜆

) .

(48)

It is remarkable that (42) for the fields 𝜙 and 𝜎 aremaintained
for all Bianchi Class A models, and in particular, when we
use the gauge𝑁 = 𝑒𝛽1+𝛽2+𝛽3 , the solutions for these fields are
independent of the cosmological models, whose solutions are
𝜙 = (𝜙

0
/8)𝑡 and 𝜎 = (𝜎

0
/8)𝑡.

After studying the 𝛾 = 0 case we will comment on the
physical significance of these solutions.

4.3.2. 𝛾 = 0 Case. TheHamilton equations are

Π

󸀠

1
= Π

󸀠

2
= Π

󸀠

3
= 4Λ𝑒

𝛽
1
+𝛽
2
+𝛽
3
+ 𝛼

0
, 𝛼

0
= 16𝜋𝐺𝜌

0

Π

󸀠

𝜙
= 0, Π

𝜙
= 𝜙

1
= 𝑐𝑡𝑒,

(49)

from which the momenta Π
1
fulfil the equation

1

Λ

Π

󸀠2

1
− 3Π

2

1
+ 𝜇Π

1
+ 𝜉

1
= 0, (50)

where

𝜉
1
= 𝛿

1
−

𝛼

2

0

Λ

.
(51)

The solution is given by

Π
1
=

]
6

+

1

6

√]2 + 12𝜉
1
cosh (√3Λ𝜏) . (52)

Using this result in the corresponding Hamilton equations,
we obtain that

𝛽
1
+ 𝛽

2
+ 𝛽

3
= ln(1

8

√

]2 + 12𝜉
1

3Λ

sinh (√3Λ𝜏)) , (53)

and the corresponding solutions to the dilaton field 𝜙 and the
moduli field 𝜎 are given by

𝜙 =

8𝜙
2

√]2 + 12𝜉
1

ln tanh(
√3Λ

2

𝜏) ,

𝜎 =

8𝜎
2

√]2 + 12𝜉
1

ln tanh(
√3Λ

2

𝜏) .

(54)

So, the solutions to the Misner variables (Ω, 𝛽
±
) are

Ω =

1

3

ln(1
8

√

]2 + 12𝜉
1

3Λ

sinh (√3Λ𝜏)) ,

𝛽
+
=

2

3

𝛿
2
− 2𝛿

3

√]2 + 12𝜉
1

ln tanh(
√3Λ

2

𝜏) ,

𝛽
−
= −

2

√3

𝛿
2

√]2 + 12𝜉
1

ln tanh(
√3Λ

2

𝜏) .

(55)

For both solutions, 𝛾 = 0, ±1, we also observe that, for
positive (negative) 𝑞

0
, the Universe expands slower (faster)

than in the absence of extra dimensions while the internal
space shrinks faster (slower) for positive (negative) 𝑞

0
. In this

case, isotropization parameters are also accordingly affected
by 𝑞

0
, through relations (34).

So far, our analysis has been completely classic. Now, in
the next section we deal with the quantum scheme and we
are going to solve the WDW equation in standard quantum
cosmology.

5. Quantum Scheme

Solutions to the Wheeler-DeWitt (WDW) equation dealing
with different problems have been extensively used in the
literature. For example, the important quest of finding a
typical wave function for the Universe was nicely addressed
in [39], while in [40] there appears an excellent summary
concerning the problem of how a Universe emerged from
a big bang singularity, whihc cannot longer be neglected
in the GUT epoch. On the other hand, the best candidates
for quantum solutions become those that have a damping
behavior with respect to the scale factor, represented in our
model with the Ω parameter, in the sense that we obtain a
good classical solution using the WKB approximation in any
scenario in the evolution of our Universe [41]. The WDW
equation for thismodel is achieved by replacing themomenta
Π
𝑞
𝜇 = −𝑖𝜕

𝑞
𝜇 , associated with the Misner variables (Ω, 𝛽

+
, 𝛽

−
)

and the moduli fields (𝜙, 𝜎) in Hamiltonian (15). The factor
𝑒

−3Ω may be factor ordered with ̂Π
Ω
in many ways. Hartle

and Hawking [41] have suggested what might be called a
semigeneral factor ordering which in this case would order
𝑒

−3Ω
̂
Π

2

Ω
as

−𝑒

−(3−𝑄)Ω
𝜕
Ω
𝑒

−𝑄Ω
𝜕
Ω
= −𝑒

−3Ω
𝜕

2

Ω
+ 𝑄𝑒

−3Ω
𝜕
Ω
, (56)

where 𝑄 is any real constant that measure the ambiguity in
the factor ordering in the variable Ω and the corresponding
momenta. We will assume in the following this factor order-
ing for the Wheeler-DeWitt equation, which becomes

◻Ψ + 𝑄

𝜕Ψ

𝜕Ω

−

48

11

𝜕

2
Ψ

𝜕𝜙
2
−

1

11

𝜕

2
Ψ

𝜕𝜎
2
+

18

11

𝜕

2
Ψ

𝜕𝜙𝜕𝜎

− [𝑏
𝛾
𝑒

3(1−𝛾)Ω
+ 48Λ𝑒

6Ω
]Ψ = 0,

(57)
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where ◻ is the three-dimensional d’Lambertian in the ℓ𝜇 =
(Ω, 𝛽

+
, 𝛽

−
) coordinates, with signature (− + +). On the other

hand, we could interpret the WDW equation (57) as a time-
reparametrization invariance of the wave function Ψ. At a
glance, we can see that the WDW equation is static; this can
be understood as the problem of time in standard quantum
cosmology. We can avoid this problem by measuring the
physical time with respect a kind of time variable anchored
within the system, whichmeans that we could understand the
WDW equation as a correlation between the physical time
and a fictitious time [42, 43]. When we introduce the ansatz

Ψ = Φ (𝜙, 𝜎) 𝜓 (Ω, 𝛽
±
) , (58)

in (57), we obtain the general set of differential equations
(under the assumed factor ordering):

◻𝜓 + 𝑄

𝜕𝜓

𝜕Ω

− [𝑏
𝛾
𝑒

3(1−𝛾)Ω
+ 48Λ𝑒

6Ω
−

𝜇

2

5

]𝜓 = 0, (59)

48

11

𝜕

2
Φ

𝜕𝜙
2
+

1

11

𝜕

2
Φ

𝜕𝜎
2
−

18

11

𝜕

2
Φ

𝜕𝜙𝜕𝜎

+ 𝜇

2
Φ = 0, (60)

where we choose the separation constant 𝜇2/5 for conve-
nience to reduce the second equation. The solution to the
hyperbolic partial differential equation (60) is given by

Φ(𝜙, 𝜎) = 𝐶
1
sin (𝐶

3
𝜙 + 𝐶

4
𝜎 + 𝐶

5
)

+ 𝐶
2
cos (𝐶

3
𝜙 + 𝐶

4
𝜎 + 𝐶

5
) ,

(61)

where {𝐶
𝑖
}

5

𝑖=1
are integration constants and they are in

terms of 𝜇. We claim that this solution is the same for all
Bianchi Class A cosmological models, because the Hamil-
tonian operator in (57) can be written in separated way as
̂
𝐻(Ω, 𝛽

±
, 𝜙, 𝜎)Ψ =

̂
𝐻
𝑔
(Ω, 𝛽

±
)Ψ +

̂
𝐻
𝑚
(𝜙, 𝜎)Ψ = 0, where

̂
𝐻
𝑔
y ̂𝐻

𝑚
represents the Hamiltonian to gravitational sector

and the moduli fields, respectively. To solve (59), we now set
𝜓(Ω, 𝛽

±
) = A(Ω)B

1
(𝛽

+
)B

2
(𝛽

−
), obtaining the following set

of ordinary differential equations:

𝑑

2A

𝑑Ω
2
− 𝑄

𝑑A

𝑑Ω

+ [𝑏
𝛾
𝑒

−3(𝛾−1)Ω
+ 48Λ𝑒

6Ω
+ 𝜎

2
]A = 0,

𝑑

2B
1

𝑑𝛽
2

+

+ 𝑎

2

2
B

1
= 0 󳨐⇒

B
1
= 𝜂

1
𝑒

𝑖𝑎
2
𝛽
+
+ 𝜂

2
𝑒

−𝑖𝑎
2
𝛽
+
,

𝑑

2B
2

𝑑𝛽
2

−

+ 𝑎

2

3
B

2
= 0 󳨐⇒

B
2
= 𝑐

1
𝑒

𝑖𝑎
3
𝛽
−
+ 𝑐

2
𝑒

−𝑖𝑎
3
𝛽
−
,

(62)

where 𝜎2 = 𝑎2
1
+ 𝑎

2

2
+ 𝑎

2

3
and 𝑐

𝑖
and 𝜂

𝑖
are constants. We now

focus on the Ω dependent part of the WDW equation. We
solve this equation when Λ = 0 and Λ ̸= 0.

(1) For the casewith null cosmological constant and 𝛾 ̸= 1,

𝑑

2A

𝑑Ω
2
− 𝑄

𝑑A

𝑑Ω

+ [𝑏
𝛾
𝑒

−3(1−𝛾)Ω
+ 𝜎

2
]A = 0, (63)

and by using the change of variable,

𝑧 =

√𝑏𝛾

𝑝

𝑒

−(3/2)(𝛾−1)Ω
,

(64)

where 𝑝 is a parameter to be determined, we have

𝑑A

𝑑Ω

=

𝑑A

𝑑𝑧

𝑑𝑧

𝑑Ω

= −

3

2

(𝛾 − 1) 𝑧

𝑑A

𝑑𝑧

,

𝑑

2A

𝑑Ω
2
=

9

4

(𝛾 − 1)

2

𝑧

2 𝑑
2A

𝑑𝑧
2
+

9

4

(𝛾 − 1)

2

𝑧

𝑑A

𝑑𝑧

.

(65)

Hence, we arrive at the equation

9

4

(𝛾 − 1)

2

𝑧

2 𝑑
2A

𝑑𝑧
2
+

9

4

(𝛾 − 1)

2

𝑧

𝑑A

𝑑𝑧

−

3

2

𝑄 (𝛾 − 1) 𝑧

𝑑A

𝑑𝑧

+ [𝑝

2
𝑧

2
+ 𝜎

2
] = 0,

(66)

where we have assumed thatA is of the form [44]

A = 𝑧

𝑞𝑄
Φ (𝑧) , (67)

with 𝑞 being yet to be determined. We thus get, after
substituting in (66),

9

4

(𝛾 − 1)

2

𝑧

𝑞𝑄
[𝑧

2 𝑑
2
Φ

𝑑𝑧
2
+ 𝑧(1 + 2𝑞𝑄

+

2

3

𝑄

𝛾 − 1

)

𝑑Φ

𝑑𝑧

+ (

4𝑝

2

9 (𝛾 − 1)

2
𝑧

2

+ 𝑄

2
{𝑞

2
+

2

3

𝑞

𝛾 − 1

} +

4𝜎

2

9 (𝛾 − 1)

2
)Φ] = 0,

(68)

which can be written as

𝑧

2 𝑑
2
Φ

𝑑𝑧
2
+ 𝑧

𝑑Φ

𝑑𝑧

+ [𝑧

2
−

1

9 (𝛾 − 1)

2
(𝑄

2
− 4𝜎

2
)]Φ

= 0,

(69)

which is the Bessel differential equation for the function Φ
when 𝑝 and 𝑞 are fixed to

𝑞 = −

1

3 (𝛾 − 1)

,

𝑝 =

3

2

󵄨
󵄨
󵄨
󵄨
𝛾 − 1

󵄨
󵄨
󵄨
󵄨
,

(70)

which in turn means that transformations (64) and (67) are

𝑧 =

2√𝑏𝛾

3

󵄨
󵄨
󵄨
󵄨
𝛾 − 1

󵄨
󵄨
󵄨
󵄨

𝑒

−(3/2)(𝛾−1)Ω
,

A = 𝑧

−(𝑄/3(𝛾−1))Φ(𝑧)
.

(71)
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Hence, the solution for (63) is of the form

A
𝛾
= 𝑐

𝛾
(

2√𝑏𝛾

3

󵄨
󵄨
󵄨
󵄨
𝛾 − 1

󵄨
󵄨
󵄨
󵄨

𝑒

−(3/2)(𝛾−1)Ω
)

−𝑄/3(𝛾−1)

⋅ 𝑍
𝑖](

2√𝑏𝛾

3

󵄨
󵄨
󵄨
󵄨
𝛾 − 1

󵄨
󵄨
󵄨
󵄨

𝑒

−(3/2)(𝛾−1)Ω
),

(72)

with

] = ±√
1

9 (𝛾 − 1)

2
(4𝜎

2
− 𝑄

2
), (73)

where𝑍
𝑖] = 𝐽𝑖] is the ordinaryBessel functionwith imaginary

order. For the particular case when the factor ordering is zero,
we can easily construct a wave packet [41, 45, 46] using the
identity:

∫

∞

−∞

sech(
𝜋𝜂

2

) 𝐽
𝑖𝜂
(𝑧) 𝑑𝜂 = 2 sin (𝑧) , (74)

so, the total wave function becomes

Ψ (Ω, 𝛽
±
, 𝜙, 𝜎) = Φ (𝜙, 𝜎)

⋅ sin(
2√𝑏𝛾

3

󵄨
󵄨
󵄨
󵄨
𝛾 − 1

󵄨
󵄨
󵄨
󵄨

𝑒

−(3/2)(𝛾−1)Ω
)

⋅ [𝜂
1
𝑒

𝑖𝑎
2
𝛽
+
+ 𝜂

2
𝑒

−𝑖𝑎
2
𝛽
+
]

⋅ [𝑐
1
𝑒

𝑖𝑎
3
𝛽
−
+ 𝑐

2
𝑒

−𝑖𝑎
3
𝛽
−
] .

(75)

Notice that the influence of extra dimensions through the
presence of the moduli 𝜙 and 𝜎 appears in the solution in
the amplitude of the wave function.We will comment on this
later on.

(2) Case with null cosmological constant and 𝛾 = 1. For
this case we have

𝑑

2A
1

𝑑Ω
2
− 𝑄

𝑑A
1

𝑑Ω

+ 𝜎

2

1
A
1
= 0, 𝜎

2

1
= 𝑏

1
+ 𝜎

2
,

(76)

whose solution is

A
1
= 𝐴

1
𝑒

((𝑄+√𝑄
2
+4𝜎
2

1
)/2)Ω

+ 𝐴
2
𝑒

((𝑄−√𝑄
2
+4𝜎
2

1
)/2)Ω

.
(77)

So, the total wave function becomes

Ψ (Ω, 𝛽
±
, 𝜙, 𝜎) = Φ (𝜙, 𝜎)

⋅ [𝐴
1
𝑒

((𝑄+√𝑄
2
+4𝜎
2

1
)/2)Ω

+ 𝐴
2
𝑒

((𝑄−√𝑄
2
+4𝜎
2

1
)/2)Ω

]

⋅ [𝜂
1
𝑒

𝑖𝑎
2
𝛽
+
+ 𝜂

2
𝑒

−𝑖𝑎
2
𝛽
+
] [𝑐

1
𝑒

𝑖𝑎
3
𝛽
−
+ 𝑐

2
𝑒

−𝑖𝑎
3
𝛽
−
] .

(78)

(3) If we include the cosmological constant term for this
particular case, we have [44]

A = 𝑒

(𝑄/2)Ω
𝑍] (4√

Λ

3

𝑒

3Ω
) , ] = ±

1

6

√𝑄
2
+ 4𝜎

2

1
, (79)

where Λ > 0 in order to have ordinary Bessel functions
as solutions; in other case, we will have the modified Bessel
function. When the factor ordering parameter𝑄 equals zero,
we have the same generic Bessel functions as solutions,
having the imaginary order ] = ±𝑖√𝜎2

1
/3.

(4) 𝛾 = −1 and Λ ̸= 0 and any factor ordering 𝑄:

𝑑

2A
−1

𝑑Ω
2
− 𝑄

𝑑A
−1

𝑑Ω

+ [𝑑
−1
𝑒

6Ω
− 𝜎

2
]A

−1
= 0,

𝑑
−1
= 48𝜇

−1
+ 48Λ

(80)

with the solution

A
−1
= (

√𝑑
−1

3

𝑒

3Ω
)

𝑄/6

𝑍] (
√𝑑

−1

3

𝑒

3Ω
) ,

] = ±
1

6

√𝑄
2
+ 4𝜎

2
,

(81)

where𝑍] is a generic Bessel function. When 𝑏
−1
> 0, we have

ordinary Bessel functions; in other case, we have modified
Bessel functions.

(5) 𝛾 = 0, Λ ̸= 0, and factor ordering 𝑄 = 0

𝑑

2A
0

𝑑Ω
2
+ (48Λ𝑒

6Ω
+ 𝑏

0
𝑒

3Ω
+ 𝜎

2
)A

0
= 0, 𝑏

0
= 48𝜇

0
(82)

with the solution

A
0
= 𝑒

−3Ω/2
[𝐷

1
𝑀

−𝑖𝑏
0
/24√3Λ,−𝑖𝜎/3

(

8𝑖𝑒

3Ω
√Λ

√3

)

+ 𝐷
2
𝑊
−𝑖𝑏
0
/24√3Λ,−𝑖𝜎/3

(

8𝑖𝑒

3Ω
√Λ

√3

)] ,

(83)

where𝑀
𝑘,𝑝

And𝑊
𝑘,𝑝

are Whittaker functions and𝐷
𝑖
are in-

tegration constants.

6. Final Remarks

In this work we have explored a compactification of a ten-
dimensional gravity theory coupled with a time-dependent
dilaton into a time-dependent six-dimensional torus. The
effective theory which emerges through this process resem-
bles the Einstein frame to that described by the Bianchi
I model. By incorporating the barotropic matter and cos-
mological content and by using the analytical procedure
of Hamilton equation of classical mechanics, in appropri-
ate coordinates, we found the classical solution for the
anisotropic Bianchi type I cosmologicalmodels. In particular,
the Bianchi type I is completely solved without using a
particular gauge. With these solutions we can validate our
qualitative analysis on isotropization of the cosmological
model, implying that the volume becomes larger in the
corresponding time evolution.

We find that, for all cases, the Universe expansion is
gathered as time runs while the internal space shrinks.
Qualitatively this model shows us that extra dimensions are
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forced to decrease its volume for an expanding Universe.
Also we notice that the presence of extra dimensions affects
how fast the Universe (with matter) expands through the
presence of a constant related to the moduli momenta. This
is not unexpected since we are not considering a potential
for the moduli, which implies that they are not stabilized
and consequently an effective model should only take into
account their constant momenta.We observe that isotropiza-
tion is not affected in the cases without matter, but in the
matter presence, isotropization can be favored or retarded
according to how fast the moduli evolve with respect to each
other.

It could be interesting to study other types of matter
in this context, beyond the barotropic matter. For instance,
the Chaplygin gas, with a proper time, characteristic to this
matter, leads to the presence of singularities types I, II,
III, and IV (generalizations to these models are presented
in [47–49]) which also appear in the phantom scenario to
dark/energy matter. In our case, since the matter we are
considering is barotropic, initial singularities of these types
do not emerge from our analysis, implying also that phantom
fields are absent. It is important to remark that this model is
a very simplified one in the sense that we do not consider
the presence of moduli-dependent matter and we do not
analyze under which conditions inflation is present or how
it starts. We plan to study this important task in a different
work.

Concerning the quantum schemewe can observe that this
anisotropic model is completely integrable without employ-
ing numerical methods, similar solutions to partial differ-
ential equation into the gravitational variables have been
found in [50], and we obtain that the solutions in the moduli
fields are the same for all Bianchi Class A cosmological
models, because the Hamiltonian operator in (57) can be
written in separated way as ̂𝐻(Ω, 𝛽

±
, 𝜙, 𝜎)Ψ =

̂
𝐻
𝑔
(Ω, 𝛽

±
)Ψ +

̂
𝐻
𝑚
(𝜙, 𝜎)Ψ = 0, where ̂𝐻

𝑔
y ̂𝐻

𝑚
represents the Hamiltonian

to gravitational sector and themoduli fields, respectively, with
the full wave function given byΨ = Φ(𝜙, 𝜎)Θ(Ω, 𝛽

±
). In order

to have the best candidates for quantum solutions become
those that have a damping behavior with respect to the scale
factor, represented in ourmodelwithΩparameter, in thisway
we will drop in the full solution the modified Bessel function
𝐼](𝑧) or Bessel function 𝑌](𝑧), with ] being the order of these
functions.

We can observe that the quantum solution in the Ω
sector is similar to the corresponding FRW cosmological
model, found in different schemes [12, 22, 23, 32, 43]. Also,
similar analysis based on a Bianchi type II model can be
found in recent published paper by two authors of this work
[51].

The presence of extra dimensions could have a stronger
influence on the isotropization process by having a moduli-
dependent potential, which can be gathered by turning on
extra fields in the internal space, called fluxes. It will be
interesting to consider a more complete compactification
process inwhich allmoduli are considered as time-dependent
fields as well as time-dependent fluxes. We leave these
important analyses for future work.

Appendix

Dimensional Reduction

With the purpose to be consistent, here we present the main
ideas to dimensionally reduce action (1). By the use of the
conformal transformation

̂
𝐺
𝑀𝑁

= 𝑒

Φ/2
𝐺

𝐸

𝑀𝑁
, (A.1)

action (1) can be written as

𝑆 =

1

2𝜅
2

10

∫𝑑

10
𝑋
√
−
̂
𝐺(𝑒

Φ/2
̂R + 4𝐺

𝐸
𝑀𝑁
∇
𝑀
Φ∇

𝑁
Φ)

+ ∫𝑑

10
𝑋
√
−𝐺

𝐸
𝑒

5Φ/2
Lmatt,

(A.2)

where the ten-dimensional scalar curvature ̂R transforms
according to the conformal transformation as

̂R = 𝑒

−Φ/2
(R

𝐸
−

9

2

𝐺

𝐸
𝑀𝑁
∇
𝑀
∇
𝑁
Φ

−

9

2

𝐺

𝐸
𝑀𝑁
∇
𝑀
Φ∇

𝑁
Φ) .

(A.3)

By substituting expression (A.3) in (A.2) we obtain

𝑆 =

1

2𝜅
2

10

∫𝑑

10
𝑋
√
−𝐺

𝐸
(R

𝐸
−

9

2

𝐺

𝐸
𝑀𝑁
∇
𝑀
∇
𝑁
Φ

−

1

2

𝐺

𝐸
𝑀𝑁
∇
𝑀
Φ∇

𝑁
Φ) + ∫𝑑

10
𝑋
√
−𝐺

𝐸
𝑒

5Φ/2
Lmatt.

(A.4)

The last expression is the ten-dimensional action in the
Einstein frame. Expressing the metric determinant in four-
dimensions in terms of the moduli field 𝜎 we have

det̂𝐺
𝑀𝑁

=
̂
𝐺 = 𝑒

−12𝜎
𝑔̂. (A.5)

By substituting the last expression (A.5) in (1) and
considering that

̂R
(10)

=
̂R
(4)

− 42𝑔̂

𝜇]
∇
𝜇
𝜎∇]𝜎 + 12𝑔̂

𝜇]
∇
𝜇
∇]𝜎, (A.6)

we obtain that

𝑆 =

1

2𝜅
2

10

∫𝑑

4
𝑥𝑑

6
𝑦√−𝑔̂𝑒

−6𝜎
𝑒

−2Φ
[
̂R

(4)

− 42𝑔̂

𝜇]
∇
𝜇
𝜎∇]𝜎 + 12𝑔̂

𝜇]
∇
𝜇
∇]𝜎 + 4𝑔̂

𝜇]
∇
𝜇
Φ∇]Φ] .

(A.7)

Let us redefine in the last expression the dilaton field Φ as

Φ = 𝜙 −

1

2

ln (̂𝑉) , (A.8)

where ̂𝑉 = ∫𝑑6𝑦. So, expression (A.7) can be written as

𝑆 =

1

2𝜅
2

10

∫𝑑

4
𝑥√−𝑔̂𝑒

−2(𝜙+3𝜎)
[
̂R

(4)

− 42𝑔̂

𝜇]
∇
𝜇
𝜎∇]𝜎

+ 12𝑔̂

𝜇]
∇
𝜇
∇]𝜎 + 4𝑔̂

𝜇]
∇
𝜇
𝜙∇]𝜙] .

(A.9)
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The four-dimensional metric 𝑔̂
𝜇] means that the metric

is in the string frame, and we should take a conformal
transformation linking the String and Einstein frames. We
label by 𝑔

𝜇] the metric of the external space in the Einstein
frame; this conformal transformation is given by

𝑔̂
𝜇] = 𝑒

2Θ
𝑔
𝜇], (A.10)

which after some algebra gives the four-dimensional scalar
curvature:

̂R
(4)

= 𝑒

−2Θ
(R

(4)
− 6𝑔

𝜇]
∇
𝜇
∇]Θ − 6𝑔

𝜇]
∇
𝜇
Θ∇]Θ) , (A.11)

where the function Θ is given by the transformation:

Θ = 𝜙 + 3𝜎 + ln(
𝜅

2

10

𝜅
2

4

) . (A.12)

Now, wemust replace expressions (A.10), (A.11), and (A.12) in
expression (A.9) and we find

𝑆 =

1

2𝜅
2

4

∫𝑑

4
𝑥√−𝑔 (R − 6𝑔

𝜇]
∇
𝜇
∇]𝜙 − 6𝑔

𝜇]
∇
𝜇
∇]𝜎

− 2𝑔

𝜇]
∇
𝜇
𝜙∇]𝜙 − 96𝑔

𝜇]
∇
𝜇
𝜎∇]𝜎 − 36𝑔

𝜇]
∇
𝜇
𝜙∇]𝜎) .

(A.13)

At first glance, it is important to clarify one point related to
the stress-energy tensor which has the matrix form (6); this
tensor belongs to the String frame. In order towrite the stress-
energy tensor in the Einstein frame we need to work with the
last integrand of expression (1). So, after taking the variation
with respect to the ten-dimensional metric and opening the
expression we see that

∫𝑑

10
𝑋
√
−
̂
𝐺𝑒

−2Φ
𝜅

2

10
𝑒

2Φ
̂
𝑇
𝑀𝑁
̂
𝐺

𝑀𝑁

= ∫𝑑

4
𝑥√−𝑔𝑒

2(Θ+𝜙)
̂
𝑇
𝑀𝑁
̂
𝐺

𝑀𝑁

= ∫𝑑

4
𝑥√−𝑔 (𝑒

2𝜙
̂
𝑇
𝜇]𝑔

𝜇]
+ 𝑒

2(Θ+𝜙)
̂
𝑇
𝑚𝑛
𝑔̂

𝑚𝑛
) ,

(A.14)

where we can observe that the four-dimensional stress-
energy tensor in the Einstein frame is defined as we said in
expression (7).
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“Anisotropic cosmology in Sáez-Ballester theory: classical and
quantum solutions,” Revista Mexicana de Fı́sica, vol. 56, no. 2,
pp. 166–171, 2010.

[51] J. Socorro and L. Toledo Sesma, “Time-dependent toroidal
compactification proposals and the Bianchi type II model:
classical and quantum solutions,”TheEuropean Physical Journal
Plus, vol. 131, no. 3, article 71, 10 pages, 2016.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


