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Accurate calculations of the electron phase space factors are necessary for reliable predictions of double-beta decay rates and for
the analysis of the associated electron angular and energy distributions. We present an effective method to calculate these phase
space factors that takes into account the distorted Coulomb field of the daughter nucleus, yet it allows one to easily calculate the
phase space factors with good accuracy relative to the most exact methods available in the recent literature.

1. Introduction

Double-beta decay (𝛽𝛽) processes are of considerable impor-
tance for the study of neutrinos. They change the charge
𝑍 of a nucleus by two units, releasing two electrons, while
the mass 𝐴 remains unchanged. The 𝛽𝛽 decay with two
associated electron antineutrinos in the final state conserves
the lepton number and is permitted within the standard
model (SM). This process, called two-neutrino double-beta
decay (2]𝛽𝛽), has been experimentally observed for several
isotopes with transitions to both ground states and excited
states of the daughter nuclei [1]. Should the lepton number
conservation be violated, then theories beyond the standard
model (BSM) predict that the𝛽𝛽decay transition could occur
without antineutrinos in the final state, called neutrinoless
double-beta (0]𝛽𝛽), and this implies that the neutrino is a
Majorana fermion [2]. The 0]𝛽𝛽 transitions have not yet
been confirmed experimentally, but there are many recent
experimental and theoretical efforts dedicated to their dis-
covery. Recent reviews on this matter are in [3–5]. There are
several mechanisms that could contribute to the 0]𝛽𝛽 decay
rate, of which the simplest and most studied one involves the
exchange of light Majorana neutrinos in the presence of left-
handed weak interaction. Other, more complex, mechanisms
include contributions from right-handed currents [6, 7] and
mechanisms involving supersymmetry [5, 8].

The phase space factors (PSF) that enter the 𝛽𝛽 lifetimes
expressions were considered for a long time as being accu-
rately calculated (see, e.g., [9, 10]). Recent reevaluations of
the PSF, using methods that take into account the proton
distributions distorting the Coulomb field of the daughter
nucleus [11–14], have shown considerable differences in some
cases when compared to the previous results [9, 10]. A very
recent paper [14] presents four of the different methods
commonly used to calculate the PSF and compares their
results for the case of 0]𝛽𝛽 ground state (g.s.) transitions.
Table 1 and Figure 2 of [14] show that the Coulomb distortion
of the electron wavefunction by inclusion of the finite nuclear
size and electron screening effects can produce differences
of up to 100%, compared to the point-charge formalism of
[9] (see, e.g., the 0]𝛽𝛽 PSF 𝐺

08
of 150Nd in [14]). However,

taking into account the charge distributions in the daughter
nuclei and solving numerically the Dirac equation with
finite nuclear size are very slow and plagued by convergence
issues. This makes these complex methods unattractive for
the calculations of electron angular and energy distributions,
such as those presented in [15, 16].

In this paper, we propose an effective method for treating
the distortion of the Coulomb field in the daughter nucleus.
This method uses the well known formalism of [9] but pro-
vides accurate results that are in good agreement with those
of [11–14]. This method could be particularly useful when
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performing complex investigations involving PSF to test BSM
physics due to different possible underlying mechanisms
contributing to the 0]𝛽𝛽 process. These investigations often
involve calculations of electron distributions [15, 16], where
components of the PSF enter the equations, and it is not
possible to only use the tabulated values of [11–14].

The paper is organized as follows. Section 2 shows the
formalism for 0]𝛽𝛽 transitions to ground states and for
2]𝛽𝛽 transitions to ground and excited states. In Section 3,
we present our effective method for the treatment of the
distorted Coulomb field in the daughter nucleus. Section 4 is
dedicated to the results, and Section 5 shows our conclusions.
Appendices A and B summarize the point-charge formalism
from [9, 10] that we adjusted to calculate the 0]𝛽𝛽 and 2]𝛽𝛽
PSF.

2. Brief Formalism of the 𝛽𝛽 Decay

For the 0]𝛽𝛽 decay, one usually writes the inverse half-life as
products of electron PSF, nuclear matrix element (NME) that
depends on the nuclear structure of the parent and that of the
daughter nuclei, and lepton number violation (LNV) parame-
ters of the BSMmechanisms taken into account. Considering
the existence of right-handed currents, onewould find several
additional contributions to the decay rate [7, 9]. The most
studied mechanism is that of the light left-handed neutrino
exchange, but other mechanisms could be of importance
[5]. One popular model that includes contributions of right-
handed currents is the left-right symmetric model [17, 18].
This model assumes the existence of heavy particles that
are not included in the standard model (SM). Within this
framework, the 0]𝛽𝛽 half-life expression is given by
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where 𝑔

𝐴
is the axial-vector coupling strength, 𝜂], 𝜂

𝐿

𝑁𝑅
,

𝜂

𝑅

𝑁𝑅
, 𝜂
𝜆
, and 𝜂

𝜂
are neutrino physics parameters defined

in [19], 𝑀0] and 𝑀

0𝑁 are the light and heavy neutrino-
exchange nuclear matrix elements [5, 20], and 𝑋

𝜆
and 𝑋

𝜂

represent combinations of NME and phase space factors.
𝐺

0]
01

is a phase space factor [10] that can be calculated with
relatively good precision in most cases [11, 12, 14]. Other
possible contributions, such as those of 𝑅-parity violating
SUSYparticle exchange [5, 20], are neglected here.With some
simplifying notations, the half-life expression [9] (here, we
omit the contribution from the 𝜂𝐿

𝑁𝑅
and 𝜂

𝑅

𝑁𝑅
terms, which

share the same PSF as 𝜂2] term,𝐺2]
01
, and have the same energy

and angular distribution as the 𝜂] term) is written as

[𝑇

0]
1/2
]

−1

= 𝑔

4

𝐴
[𝐶

1
𝜂

2

] + cos𝜙
1
𝐶

2
𝜂]𝜂𝜆 + cos𝜙

2
𝐶

3
𝜂]𝜂𝜂

+ 𝐶

4
𝜂

2

𝜆
+ 𝐶

5
𝜂

2

𝜂
+ cos (𝜙

1
− 𝜙

2
) 𝐶

6
𝜂

𝜆
𝜂

𝜂
]











𝑀

0]
GT










2

,

(2)

where 𝜙

1
and 𝜙

2
are the relative CP-violating phases [19]

and 𝑀

0]
GT is the Gamow-Teller part of the light left-handed

neutrino-exchange NME. Different processes give rise to
several contributions: 𝐶

1
comes from the left-handed lep-

tonic currents, 𝐶
4
from the right-handed leptonic and right-

handed hadronic currents, and 𝐶

5
from the right-handed

leptonic and left-handed hadronic currents. The interference
between these terms is represented by the 𝐶

2
, 𝐶
3
, and 𝐶

6

contributions. Neglecting the very small tensor contributions
in the mass mechanism, the 𝐶

1–6 components are defined as
products of PSF and NME [9]:
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The fractions of NME are defined [9] as 𝜒
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, 𝑅, and 𝑃 indicating other

NME. All these nine NME were calculated by several meth-
ods, including the interacting shell model (ISM) [16, 21,
22] and quasiparticle random phase approximation (QRPA)
[23]. The light-neutrino mass mechanism 𝑀

0]
GT and 𝑀

0]
𝐹

NME have been extensively studied with many nuclear
structure methods, such as interacting boson model (IBM-
2) [24–27], interacting shell model (ISM) [20, 21, 28–37],
quasiparticle random phase approximation (QRPA) [38–
42], projectedHartree-Fock-Bogoliubov (PHFB) [43], energy
density functional (EDF) [44], and the relativistic energy
density functional (REDF) [45]method.TheNME calculated
with different methods and by different groups still present
large differences, and that has been a topic of many debates in
the literature (see, e.g., [46, 47]). Expressions for the 𝐺0]

01
–𝐺0]
09

PSF are given in Appendix A.
For the 2]𝛽𝛽 process, the half-life for the transition to a

state of angular momentum 𝐽 (𝐽 = 0 or 2) of the daughter
nucleus is given to a good approximation by [48]
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where 𝐺

2]
(𝐽)

is a phase space factor [9, 10, 13] described in
Appendix B, 𝑚

𝑒
is the electron mass, and 𝑀

2]
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is the 2]𝛽𝛽
NME, which can be calculated as [10, 48]
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Here, the 𝑘-sum is taken over the 1+
𝑘
states with excitation

energies 𝐸
𝑘
in the intermediate odd-odd nucleus. Hence,

𝐸

𝐽
= (1/2)𝑄

𝛽𝛽
(𝐽) + Δ𝑀, where 𝑄

𝛽𝛽
(𝐽) is the 𝑄-value for

the transition to the state of angular momentum 𝐽 in the
daughter nucleus, and Δ𝑀 is the difference in mass between
the intermediate nucleus and the decaying nucleus.

3. Description of the Effective
(Screening) Method

Our approach is based on the formalism from [9, 10] where
the nuclear charge is considered point-like, but we replicate
the effects of a finite size proton distribution distorting
Coulomb field in the daughter nucleus by modifying the
charge of the final nucleus (𝑍

𝑓
). We multiply 𝑍

𝑓
with a

parameter, called “screening factor” (𝑆
𝑓
) in what follows, to

obtain an effective “screened charge” (𝑍
𝑠
= (𝑆

𝑓
/100)𝑍

𝑓
). For

large enough energies, the tail of the Coulomb field plays a
less significant role when compared to its part close to the
nucleus, and the effect resembles charge screening. The PSF
calculated with 𝑍

𝑠
for each nucleus are compared to those

of [11–14] (called “data” below), which were obtained with
methods that consider Dirac electron wave functions calcu-
lated with finite nuclear size and atomic electron screening.
References [11, 14] take into account the finite nuclear size
by a uniform charge distribution of radius 𝑅, while [12, 13]
consider a more realistic Woods-Saxon proton distribution
inside the nucleus. It was shown [11] that the atomic electron
screening effect is small, of the order of 0.1%. The relative
deviations between our results and the data, expressed in
percentages (Δ = 100|(PSF − data)/data|), are denoted by
Δ𝐺

0]
01–09 for the 9 PSF of 0]𝛽𝛽 transitions to ground states,
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and those to which 𝑝-wave electrons contribute (𝐺0]
02
–𝐺0]
09
).

Here, we treat them separately naming them 𝑠-PSF and 𝑝-
PSF, respectively. We consider the largest deviation (Δmax)
between the PSF of a certain class and the corresponding
data, and we search for the value of 𝑆

𝑓
that minimizes it. Our

goal is to maintain Δmax ≤ 10%. This value of the maximum
deviation is considerably lower than the uncertainties of
the NME contributing to the decay rate, (2). We find that
controlling themaximumdeviation providesmore stable and
predictable results than minimizing a 𝜒2 distribution.

In our analysis, data is selected as follows: 𝐺0]
01–09 PSF are

chosen from Table III of [14]. Other recent results for 𝐺0]
01

[11–13] are within a few percent of these values. For 𝐺0]
02
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,
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Figure 1: Fine-tuning the “screening factor” to minimize the
maximum 𝑠-PSF deviations.

there are no other results that take into account the finite size
effects of the charge distribution. The 𝐺2]g.s. data is taken from
Table 1 of the very recent research [13], and it is in very good
agreement with the results of [11]. For the 2]𝛽𝛽 transitions
to the first excited 0

+ states, we take the data from Table 2
of [13]. There are four cases (110Pd, 124Sn, 130Te, and 136Xe)
of PSF in [13] that are in significant disagreement with those
of [11]. We do not take them into account in our analysis.
The data for 2]𝛽𝛽 transitions to the first excited 2

+ states
is taken from Table 3 of [13]. In this case, there are three
PSF values (116Cd, 124Sn, and 136Xe) that seem to deviate
significantly from themodel results.These 2]𝛽𝛽PSFwere not
confirmed by other groups, and they were often readjusted
[49]. We do not include them in the analysis, but we compare
them with our prediction in Table 3. The 2]𝛽𝛽 data of 124Sn
attributed to [13] in Tables 1–3 was provided to us as private
communications by the authors of [13].

4. Results and Discussions

For the analysis of the 𝑠-PSF, we consider 𝐺0]
01

of [14] and
𝐺

2]
g.s.,𝐺
2]
0
+

1

, and𝐺2]
2
+

1

of [13].We find that the smallest maximum
deviations from the data can be obtained using an optimal
“screening factor” 𝑆

𝑓
= 94.5. Figure 1 shows how the

maximum deviation reaches a minimum when one gets
close to the optimal “screening factor.” Table 1 presents 𝑠-
PSF and their deviations Δ𝐺0]

01
and Δ𝐺

2]
g.s. for transitions to

ground states. The adjusted charge of the daughter nucleus
is also presented, together with the 𝑄

𝛽𝛽
values. We find

very good agreement for these 𝑠-PSF and the data, with
deviations smaller than 5%. Should one consider the point-
charge formalism [9], the largest deviation goes up to 40%
for the case of 𝐺0]

01
of 150Nd (see, e.g., Table 1, columns

A and D, of [14]). Table 2 shows PSF and deviations from
the data for 2]𝛽𝛽 transitions to the first excited 0

+ states.
The largest Δ𝐺2]

0
+

1

= 5.4% was for 116Cd. The point-charge
formalism deviations exceed 38%. The PSF marked with the
“∗” symbol correspond to the four nuclei not included in
our analysis. Our results for these cases can be considered
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Table 1: 0]𝛽𝛽 to ground states PSF𝐺0]
01
expressed in yr−1 × 1015 and 2]𝛽𝛽 to ground states𝐺2]g.s. expressed in yr

−1
× 1020. Results are calculated

with the optimal “screening factor” for 𝑠-PSF, 𝑆
𝑓
= 94.5, and compared to those of [14] for 0]𝛽𝛽 and [13] for 2]𝛽𝛽. Second and third columns

display the effective screened charge, 𝑍
𝑠
, of the daughter nucleus and the energy of the decay, 𝑄

𝛽𝛽
.

𝑍

𝑠
𝑄

𝛽𝛽
[MeV] 𝐺

0]
01

𝐺

0]
01
[14] Δ𝐺

0]
01

𝐺

2]
g.s. 𝐺

2]
g.s. [13] Δ𝐺

2]
g.s.

48Ca 20.79 4.272 24.55 24.83 1.1 1480.46 1553.6 4.7
76Ge 32.13 2.039 2.28 2.37 3.8 4.51 4.65 2.9
82Se 34.02 2.995 9.96 10.18 2.1 150.31 157.3 4.4
96Zr 39.69 3.35 20.45 20.62 0.8 642.0 674.4 4.8
100Mo 41.58 3.034 15.74 15.95 1.3 310.6 323.1 3.9
110Pd 45.36 2.018 4.66 4.83 3.5 12.78 13.25 3.6
116Cd 47.25 2.814 16.57 16.73 1.0 258.78 268.8 3.7
124Sn 49.14 2.289 8.87 9.06 2.1 51.45 50.4 2.1
130Te 51.03 2.527 14.10 14.25 1.0 142.73 144.2 1.0
136Xe 52.92 2.458 14.49 14.62 0.9 133.73 133.2 0.4
150Nd 58.59 3.371 66.00 63.16 4.5 3467.53 3539.7 2.0

Table 2: PSF and their deviations for 2]𝛽𝛽 to the first excited 0+ states and 𝐺2]
0
+

1

expressed in yr−1 × 1022. The last two columns present PSF
of [11] and their deviations. The results marked with “∗” and (∗) symbols (see text for details) correspond to the nuclei not included in the
analysis.

𝑍

𝑠
𝑄

𝛽𝛽
[MeV] 𝐺

2]
0
+

1

𝐺

2]
0
+

1

[13] Δ𝐺

2]
0
+

1

[13] 𝐺

2]
0
+

1

[11] Δ𝐺

2]
0
+

1

[11]
48Ca 20.79 1.275 3.43 3.52 2.6 3.63 5.5
76Ge 32.13 0.917 0.64 0.61 5.1 0.70 7.7
82Se 34.02 1.508 41.94 41.7 0.6 — —
96Zr 39.69 2.202 1633.8 1694 3.6 1754 6.9
100Mo 41.58 1.904 562.08 570.8 1.5 605.5 7.2
110Pd∗ 45.36 0.547 0.043 0.033 30.9 0.048 10.8
116Cd 47.25 1.057 8.00 7.59 5.4 8.73 8.3
124Sn(∗) 49.14 1.120 15.09 14.1 7.0 — —
124Sn∗ 49.14 0.630 0.180 — — 0.199 9.7
130Te∗ 51.03 0.734 0.69 0.55 25.9 0.76 9.2
136Xe∗ 52.92 0.979 3.31 2.82 17.2 3.62 8.7
150Nd 58.59 2.631 40637.5 41160 1.3 43290 6.1

Table 3: PSF and their deviations for 2]𝛽𝛽 to the first excited 2

+

states and 𝐺

2]
2
+

1

expressed in yr−1 × 1021. Denoted with “∗” symbol
are PSF and deviations corresponding to the nuclei not included in
the analysis.

𝑍

𝑠
𝑄

𝛽𝛽
[MeV] 𝐺

2]
2
+

1

𝐺

2]
2
+

1

[13] Δ𝐺

2]
2
+

1

48Ca 20.79 4.272 3816 4074 6.3
76Ge 32.13 2.039 0.40 0.38 3.5
82Se 34.02 2.995 71.16 69.6 2.2
96Zr 39.69 3.35 730.8 742.5 2.0
100Mo 41.58 3.034 585 569 2.8
110Pd 45.36 2.018 0.46 0.46 0.8
116Cd∗ 47.25 1.520 2.11 1.88 12.4
124Sn∗ 49.14 1.686 8.89 7.63 16.5
130Te 51.03 2.527 81.09 79.6 1.9
136Xe∗ 52.92 1.640 9.03 7.68 17.6
150Nd 58.59 3.371 31964 30308 5.5

as predictions for these cases that are not yet validated
by other methods. The last two columns show the results
of [11] and the corresponding deviations, for comparison.
Reference [11] provides no value for 82Se. The case of 124Sn
is more complicated because of the different values used in
the literature for the energy of the first excited 0

+ state (see
[50] for details). We include here with ∗ the phase space
factor corresponding to 𝑄

𝛽𝛽
used in [11] and with (∗) the

phase space factor corresponding to 𝑄
𝛽𝛽

considered in [51]
(see discussion in [50]). The 𝐺2]

2
+

1

PSF and their deviations are
displayed in Table 3. We find the largest deviation Δ𝐺

2]
2
+

1

=

6.3%for 48Ca.Neglecting finite nuclear size effects, onewould
get a deviation of 47% for 150Nd. Similar to the previous table,
the three results excluded from the analysis are presented for
comparison and marked with the “∗” symbol.

When calculating the 𝑝-PSF, 𝐺0]
02
–𝐺0]
09
, we find a different

optimal “screening factor”, 𝑆
𝑓
= 92, corresponding to a larger
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Table 4: The calculated 0]𝛽𝛽 PSF (𝐺0]
01
–𝐺0]
09
) expressed in yr−1 for the decay to ground state of the 11 nuclei listed in Table 1. The last line

shows the optimal “screening factor” 𝑆
𝑓
for all 8 𝑝-PSF (𝐺0]

02
–𝐺0]
09
). For 𝐺

01
, the 𝑠-PSF optimal “screening factor”, 𝑆

𝑓
= 94.5 of Table 1, was

used. Shown in the last column are the maximum deviations between our calculations with the indicated parameters and the results from
[14].

48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd 𝑆

𝑓
[%] Δmax [%]

𝑄

𝛽𝛽
[MeV] 4.272 2.039 2.995 3.350 3.034 2.018 2.814 2.289 2.527 2.458 3.371

𝐺

0]
01
⋅ 10

14 2.454 0.228 0.997 2.045 1.574 0.466 1.657 0.887 1.410 1.449 6.600 94.5 4.5
𝐺

0]
02
⋅ 10

14 16.11 0.376 3.468 8.928 5.733 0.782 5.309 1.919 3.719 3.639 30.65 95.0 5.0
𝐺

0]
03
⋅ 10

15 18.45 1.233 6.671 14.50 10.72 2.548 10.96 5.254 8.853 8.967 47.87 93.0 6.1
𝐺

0]
04
⋅ 10

15 5.283 0.453 2.099 4.382 3.345 0.937 3.511 1.829 2.960 3.035 14.45 95.5 4.2
𝐺

0]
05
⋅ 10

13 3.134 0.559 2.011 4.139 3.464 1.337 4.003 2.427 3.694 3.895 15.27 90.0 4.5
𝐺

0]
06
⋅ 10

14 3.869 0.496 1.655 2.951 2.388 87.46 2.482 1.472 2.157 2.209 7.813 92.0 6.6
𝐺

0]
07
⋅ 10

14 2.790 0.268 1.161 2.432 1.885 0.566 1.984 1.052 1.663 1.703 7.799 91.0 6.0
𝐺

0]
08
⋅ 10

14 1.212 0.154 0.732 1.776 1.417 0.443 1.654 0.891 1.468 1.548 7.946 89.5 9.3
𝐺

0]
09
⋅ 10

14 15.97 1.172 4.647 8.471 6.399 1.863 6.131 3.211 4.884 4.878 20.09 94.0 4.2
𝑝-PSF Common 𝑆

𝑓
parameter for 𝐺0]

02
–𝐺0]
09

92.0 18.1

20.0

19.5

19.0

18.5

18.0

17.5

17.0
91.4 91.6 91.8 92.0 92.2 92.4

Δ
m
ax
(%

)

Sf

Figure 2: Same as Figure 1 for 𝑝-PSF.

maximum deviation, Δmax = 18.1%. Figure 2 presents the
evolution of Δmax close to the “optimum screening factor”
for 𝑝-PSF. We attribute this larger deviation to the different
kinematic factors of the nine 0]𝛽𝛽 PSF (see (A.5a)–(A.5i)).

To further minimize the deviations, we obtain eight
optimal “screening factors” corresponding to 𝐺

0]
02
–𝐺0]
09
, as

seen in Figure 3. The best results are presented in Table 4,
where we show the optimal “screening factor,” the maximum
deviations, and the PSF values. The last line presents the
optimal “screening factor” thatminimizes the deviations of all
the 𝑝-PSF. Alongside 𝐺0]

02
–𝐺0]
09
, we display 𝐺0]

01
obtained with

the optimal “screening factor” common for all 𝑠-PSF.

5. Conclusions

In this paper, we present an effective method to calculate the
phase space factors of the𝛽−𝛽− transitions, which can provide
results close to those of methods that consider the finite size
of the proton charge and the atomic electron screening. It

modifies the point-charge formalismof [9, 10], by considering
a constant multiplicative screening factor for the charge of
the daughter nucleus. The main advantage of our method
consists in its simplicity given its accuracy and its potential to
be extended to calculations of the energy and angular electron
distributions needed for the analysis of the contributions of
the right-handed currents to the 0]𝛽𝛽 decay.

Our method works well for PSF of 0]𝛽𝛽 and 2]𝛽𝛽
transitions to ground states and also for 2]𝛽𝛽 transitions to
the first excited 0+ and 2+ states. For PSF where only 𝑠-wave
electrons contribute, an effective “screening factor”, 𝑆

𝑓
=

94.5, was obtained. Using this 𝑆
𝑓
value, one finds amaximum

deviation of 6.3% between our results and other results in the
recent literature [11–14]. In the case of the PSF where 𝑝-wave
electrons contribute, we obtained another optimal “screening
factor”, 𝑆

𝑓
= 92. This corresponds to a maximum deviation

of 18.1% between our results and those of [14]. We attribute
this large deviation to the kinematic factors of (A.5a)–(A.5i).
The deviations are greatly reduced, to less than 10%, when
considering individual “screening factors” for each specific
PSF (𝐺0]

02
–𝐺0]
09
). It is remarkable that, in the case of 𝐺

08
, the

original point-charge formalism [9] PSF deviates by over
100% for 150Nd, while it is significantly reduced in our model.
Similar spectacular reductions are found for other 𝑝-PSF. We
also provide predictions for the PSF of some isotopes, which
can be also used as guidance in cases of disagreement between
the more precise methods.

In addition, using 𝑆
𝑓
= 92, one gets the largest maximum

deviation of 18.1 for all neutrinoless double-beta decay PSF,
𝐺

0]
01
–𝐺0]
09
. This information is relevant for the calculation of

the two-electron energy and angular distributions [16].
We conclude that this method is well suited for fast and

accurate calculations of the 𝛽𝛽 decay PSF, with uncertainties
much lower than those of the associated NME. One could
envision further reducing these PSF uncertainties by con-
sidering a mass-dependent screening factor. A Mathematica
notebook that can be used to obtain all these phase space
factors can be downloaded from [52].
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Figure 3: The behaviour of maximum deviations from the reference values of the 9 PSF involved in the 0]𝛽𝛽 transitions to ground states.
Subfigures (a) to (i) correspond to 𝐺0]

01
to 𝐺0]
09
. The horizontal axis represents the “screening factor” values, and the vertical axis represents the

maximum deviations expressed in percentages.

Appendix

A. 0]𝛽𝛽 PSF Expressions

The 0]𝛽𝛽 PSF are calculated by integrating over the energy
of one electron (𝜖

1
) using the following expression adopted

from equation (A.27) of [10]:

𝐺

0𝑘
=

𝑎

0]

ln 2 (𝑚
𝑒
𝑅)

2

⋅ ∫

𝑇+1

1

𝑏

𝑘
𝐹

0
(𝑍, 𝜖

1
) 𝐹

0
(𝑍, 𝜖

2
) 𝜔

0] (𝜖1) 𝑑𝜖1,

(A.1)

where 𝑅 is the nuclear radius (𝑅 = 𝑟

0
𝐴

1/3, with 𝑟
0
= 1.2 fm),

𝜖

2
= 𝑇 + 2 − 𝜖

1
, 𝑝
1,2

= √𝜖

2

1,2
− 1, 𝑇 = 𝑄

𝛽𝛽
/𝑚

𝑒
, and 𝜔

0](𝜖1) =

𝑝

1
𝑝

2
𝜖

1
𝜖

2
. The constant 𝑎

0] is

𝑎

0] =
(𝐺

𝐹
cos 𝜃
𝑐
)

4
𝑚

9

𝑒

32𝜋

5
= 1.94 × 10

−22 yr−1. (A.2)

We use 𝐺
𝐹
= 1.1663787 × 10

−5 GeV−2 for the Fermi constant
and cos 𝜃

𝑐
= 0.9749 for the Cabibbo angle. The Fermi

function used in (A.1) is given by

𝐹

0
(𝑍

𝑠
, 𝜖)

= [

2

Γ (2𝛾

1
+ 1)

]

2

(2𝑝𝑅)

2(𝛾1−1) 






Γ (𝛾

1
+ 𝑖𝑦)









2
𝑒

𝜋𝑦
,

(A.3)

where

𝛾

1
=

√

1 − (𝛼𝑍

𝑠
)

2
,

𝑦 =

𝛼𝑍

𝑠
𝜖

𝑝

.

(A.4)
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Here, 𝛼 is fine structure constant, and 𝑍

𝑠
represents the

“screened” charge of the final nucleus. The kinematic factors
𝑏

𝑘
are defined as

𝑏

1
= 1, (A.5a)

𝑏

2
=

1

2

(

𝜖

1
𝜖

2
− 1

𝜖

1
𝜖

2

) (𝜖

1
− 𝜖

2
)

2
, (A.5b)

𝑏

3
=

(𝜖

1
− 𝜖

2
)

2

𝜖

1
𝜖

2

,

(A.5c)

𝑏

4
=

2

9

(

𝜖

1
𝜖

2
− 1

𝜖

1
𝜖

2

) , (A.5d)

𝑏

5
=

4

3

(

(𝑇 + 2) 𝜉

2𝑟

𝐴
𝜖

1
𝜖

2

−

𝜖

1
𝜖

2
+ 1

𝜖

1
𝜖

2

) , (A.5e)

𝑏

6
=

4 (𝑇 + 2)

𝑟

𝐴
𝜖

1
𝜖

2

, (A.5f)

𝑏

7
=

16

3

1

𝑟

𝐴
𝜖

1
𝜖

2

(

𝜖

1
𝜖

2
+ 1

2𝑟

𝐴

𝜉 − 𝑇 − 2) , (A.5g)

𝑏

8
=

2

9

⋅

1

𝑟

2

𝐴
𝜖

1
𝜖

2

[(𝜖

1
𝜖

2
+ 1) (𝜉

2
+ 4𝑟

2

𝐴
) − 4𝑟

𝐴
𝜉 (𝑇 + 2)] ,

(A.5h)

𝑏

9
=

8

𝑟

2

𝐴

(

𝜖

1
𝜖

2
+ 1

𝜖

1
𝜖

2

) , (A.5i)

with 𝜉 = 3𝛼𝑍

𝑠
+ 𝑟

𝐴
(𝑇 + 2) and 𝑟

𝐴
= 𝑚

𝑒
𝑅.

B. 2]𝛽𝛽 PSF Expressions

Using the formalism from [10], we write the 2]𝛽𝛽 PSF for a
final state of angular momentum 𝐽 (𝐽 = 0, 2) as integrals over
the energies of the two emitted electrons

𝐺

2]
(𝐽)

= 𝑔

𝐽
∫

𝑇+1

1

𝐹

0
(𝑍

𝑠
, 𝜖

1
) 𝑝

1
𝜖

1
𝐼

𝐽
(𝑇, 𝜖

1
) 𝑑𝜖

1
,

(B.1)

with 𝐼
𝐽
,

𝐼

𝐽
(𝑇, 𝜖

1
) = ∫

𝑇+2−𝜖1

1

𝐹

0
(𝑍

𝑠
, 𝜖

2
) 𝑝

2
𝜖

2

⋅ 𝑓

𝐽
(𝑇 + 2 − 𝜖

1
− 𝜖

2
)

2+𝐽
𝑑𝜖

2
.

(B.2)

Here, 𝜖
2
= 𝑇 + 2 − 𝜖

1
, 𝑝
1,2

= √𝜖

2

1,2
− 1, 𝑇 = 𝑄

𝛽𝛽
/𝑚

𝑒
, and 𝐹

0

is defined in (A.3). In the case of 𝐽 = 0, we have 𝑓
0
= 1 and

𝑔

0
= 3.78 × 10

−25 yr−1. For 𝐽 = 2, then 𝑓

2
= (𝜖

1
− 𝜖

2
)

2 and
𝑔

2
= 𝑔

0
/7.
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