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We explore static spherically symmetric wormhole solutions in the framework of 𝑛-dimensional Einstein Gauss-Bonnet gravity.
Our objective is to find out wormhole solutions that satisfy energy conditions. For this purpose, we consider two frameworks such
as Gaussian distributed and Lorentzian distributed noncommutative geometry. Taking into account constant redshift function, we
obtain solutions in the form of shape function. The fifth and sixth dimensional solutions with positive as well as negative Gauss-
Bonnet coefficient are discussed. Also, we check the equilibrium condition for the wormhole solutions with the help of generalized
Tolman-Oppenheimer-Volkoff equation. It is interesting tomention here that we obtain fifth dimensional stablewormhole solutions
in both distributions that satisfy the energy conditions.

1. Introduction

The study of wormhole solution becomes a prime focus of
interest in the modern cosmology as it connects different
distant parts of the universe as a shortcut. The wormhole
is like a tunnel or bridge with two ends which are open
in distant parts of the universe to join. To develop the
mathematical structure of wormhole in general relativity [1],
the basic ingredient is an energy-momentum tensor which
constitutes exotic matter. This is hypothetical form of matter
results of the violation of energy conditions. For two-way
travel, the traversable condition must be fulfilled; that is, the
throat of wormhole must remains open due to violation of
the null energy condition. Since normal matter satisfies the
energy conditions, the matter violating the energy condition
is called exotic. The phantom dark energy violates the energy
conditions which may be a reasonable source of wormhole
construction [2, 3].The inclusion of some scalar fieldmodels,
electromagnetic field, Gaussian and Lorentzian distributions
of noncommutative geometry, thin-shell formalism, and so
forth demonstratesmore interesting and useful results [4–11].

In order to minimize the usage of exotic matter or
to find another source of violation while normal matter

satisfies the energy conditions, many directions are adopted
so far. Modified theories of gravity are the most appeal-
ing direction which contribute to using effective energy-
momentum tensor. For instance, in 𝑓(𝑅) [12] as well as
𝑓(𝑇) [13] theories, it has been proved that the effective
energy-momentum tensor which consists of higher order
curvature terms or some torsion terms is responsible for
the necessary violation to traverse through the wormhole.
Nowadays, higher dimensional wormhole solutions are also
under discussion. Many theories point out the existence of
extra dimensions in the universe which leads to explore
wormhole solutions for higher dimensions.

Rahaman with his collaborators have done a lot of
work taking noncommutative geometry in four-dimensional
spacetime as well as higher dimensional cases. Rahaman et
al. [14] studied the higher dimensional static spherically sym-
metricwormhole solutions in general relativitywithGaussian
distribution. They found these solutions up to four dimen-
sionswhile they found these solutions in a very restrictiveway
for fifth dimensional case. Bhar and Rahaman [15] obtained
the same result by taking Lorentzian distribution. Rahaman
et al. [16] worked for viable physical properties of new
wormhole solutions inspired by noncommutative geometry
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with conformal killing vectors. In𝑓(𝑅) gravity with Gaussian
[17] and Lorentzian distributions [8], wormhole solutions are
constructed but with violation of energy conditions. Sharif
and Rani [13] explored the noncommutative wormhole solu-
tions in 𝑓(𝑇) gravity and found some physically acceptable
solutions.

In a recent paper, Jawad and Rani [18] studied Lorentz
distributed wormhole solutions in 𝑓(𝑇) gravity and found
some stable wormhole solutions satisfying energy conditions.
In the higher dimensional gravity theories, 𝑛-dimensional
Einstein Gauss-Bonnet gravity is widely used. The mod-
ern string theory established its natural appearance in the
low energy effective action. Bhawal and Kar [19] studied
Lorentzian wormhole solutions in 𝐷-dimensional Einstein
Gauss-Bonnet gravity which depend on the dimensionality
of the spacetime and coupling coefficient of Gauss-Bonnet
combination. Taking traceless fluid, Mehdizadeh et al. [20]
extended this work and found wormhole solutions which
satisfy energy conditions.

We explore wormhole solutions taking spacetime of
(𝑛 − 2) sphere in the framework of 𝑛-dimensional Einstein
Gauss-Bonnet gravity. We consider two frameworks: non-
commutative geometry having Gaussian distributed energy
density and Lorentzian distributed energy density. For 𝑛 =

5 and 6-dimensions, we take positive as well as negative
Gauss-Bonnet coefficient. Also, we check the stability of
wormhole solutions with the help of generalized Tolman-
Oppenheimer-Volkoff equation. The paper is organized as
follows: in Section 2, we construct the field equation for
higher dimensional wormhole solutions in 𝑛-dimensional
Gauss-Bonnet gravity. Section 3 is devoted to the construc-
tion of wormhole solutions in Gaussian and Lorentzian
noncommutative frameworks. In Section 4, we check the
equilibrium condition of the wormhole solutions. Section 5
summarizes the discussions and results.

2. Field Equations

In this section, we provide some basic and brief reviews
about 𝑛-dimensional Einstein Gauss-Bonnet gravity as well
as wormhole geometry and construct field equations in the
underlying scenario.

2.1. 𝑛-Dimensional EinsteinGauss-BonnetGravity. Theaction
for 𝑛-dimensional Einstein-Gauss-Bonnet gravity is an out-
come of string theory in low energy limit. It is given by

𝑆
𝑛GB = ∫√−𝑔 [𝑅 − 𝜖1LGB] 𝑑

𝑛

𝑥, (1)

where 𝑅 is the 𝑛-dimensional Ricci scalar, 𝜖
1
is the Gauss-

Bonnet coefficient, and LGB is the Gauss-Bonnet term
defined as

LGB = 𝑅
2

− 4𝑅
𝛼𝛽
𝑅
𝛼𝛽

+ 𝑅
𝛼𝛽𝛾𝛿

𝑅
𝛼𝛽𝛾𝛿

. (2)

Varying the action with respect to metric tensor, the field
equations becomes
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are the Einstein and energy-momentum
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It is noted that we assume 8𝜋𝐺
𝑛
= 1 where 𝐺

𝑛
is the 𝑛-

dimensional gravitational constant.

2.2.Wormhole Geometry. Thewormhole spacetime for (𝑛−2)
sphere is given by [14, 15]

𝑑𝑠
2

= −𝑒
2𝜆(𝑟)

𝑑𝑡
2

+

𝑑𝑟
2

1 − 𝑠 (𝑟) /𝑟

+ 𝑟
2

𝑑Ω
2

𝑛−2
, (5)

where 𝜆(𝑟) is the redshift function and 𝑠(𝑟) is the shape
function. For traversable wormhole scenario, we have to
choose 𝜆 to be finite to satisfy the no-horizon condition.
Usually, it is taken as zero for the sake of simplicity, which
gives 𝑒2𝜆(𝑟) → 1. The reason behind finite redshift function is
as follows.The redshift function defines that part of themetric
responsible for finding the magnitude of the gravitational
redshift. The gravitational redshift is the reduction in the
frequency that a photon will experience when it climbs out
from gravitational potential well in order to escape to infinity.
In doing so, the photon uses energy. Its energy is proportional
to its frequency. A reduction in energy then is equivalent to
a reduction in frequency, which is also known as redshift
function. If the wormhole has an event horizon, it means that
a photon emitted outwardly from the horizon cannot escape
to infinity. In other words, it would take an infinite amount
of energy for the photon to escape. Its frequency would
be infinity reduced; that is, its redshift would be negatively
infinite. A negatively infinite value of the redshift function
at a particular value of the radial coordinate indicates the
presence of an event horizon there. Thus to be traversable
wormhole solution, the magnitude of its redshift function
must be finite.

The shape of the wormhole is such that a spherical hole
in space with increasing length of diameter as moving far
from throat (theminimumnonzero value of radial coordinate
denoted as 𝑟

0
) and combines two asymptomatically flat

regions. In order to have a proper shape of the wormhole, the
shape function must attain the ratio to radial coordinate as
1 and represents increasing behavior with respect to radial
coordinate which is 1 − 𝑠(𝑟)/𝑟 ≥ 0. This condition of ratio is
known as flare-out condition. In addition, the value of shape
function and radial coordinate must be same at throat; that
is, 𝑠(𝑟

0
) = 𝑟
0
. There are also some other constraints applied

on the derivative of shape functions which must be satisfied.
These are 𝑟𝑠 − 𝑠 < 0 and 𝑠



(𝑟
0
) < 1. Also, the proper

distance𝐷(𝑟) = ± ∫𝑟
𝑟0

(1 − 𝑠(𝑟)/𝑟)
−1/2

𝑑𝑟must meet the criteria
as decreasing behavior from upper region 𝐷 = +∞ towards
throat where 𝑑 = 0 and then towards lower region where
𝐷 = −∞.

In order to make the wormhole traversable, the throat
must remain open. To prevent shrinking of wormhole



Advances in High Energy Physics 3

throat, there must exist such form of energy-momentum
tensor which provides the corresponding matter content.
This matter content violates the energy conditions in order
to keep throat open and thus is named as exotic matter.
This implies that violation of these conditions is the basic
key ingredient to construct traversable wormhole solutions.
Since the usual energy-momentum tensor satisfies the energy
conditions, therefore the search for wormhole solutions for
which violation may come from other sources while matter
content satisfying energy conditions becomes one of themost
challenging problems in astrophysics.

The higher dimensional gravity theories and modified
theories may play positive role by providing violation from
higher order Lagrangian terms and effective form of energy-
momentum tensor. The relationship between Raychaudhuri
equation and attractiveness of gravity yields the weak energy
condition (WEC) asT

𝛼𝛽
𝜇
𝛼

𝜇
𝛽

≥ 0, for any time-like vector𝜇𝛼.
In terms of components of the energy-momentum tensor, this
inequality yields𝜌 ≥ 0 and𝜌+𝑝 ≥ 0.Thenull energy condition
(NEC) is developed by continuity through WEC; that is, the
NEC isT

𝛼𝛽
𝜒
𝛼

𝜒
𝛽

≥ 0, for any null vector 𝜒𝛼. This inequality
gives 𝜌 + 𝑝 ≥ 0. Also, it is noted that WEC keeps NEC.

The anisotropic energy-momentum is given by

T
𝛼
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where 𝑝
𝑟
and 𝑝

𝑡
are the radial and tangential pressure

components with 𝜌 = 𝜌(𝑟), 𝑝 = 𝑝(𝑟), and satisfy 𝑢𝛼𝑢
𝛽
=

−𝜂
𝛼
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(9)

where prime refers derivative with respect to 𝑟 and 𝜖 = (𝑛 −

3)(𝑛 − 4)𝜖
1
for the sake of notational simplicity.

3. Wormhole Solutions

In order to discuss the wormhole geometry and solutions,
there are several frameworks and strategies used to find
unknown functions. For instance, we have five unknown
functions 𝜌(𝑟), 𝑝

𝑟
(𝑟), 𝑝

𝑡
(𝑟), 𝜆(𝑟), and 𝑠(𝑟) in the under-

lying case. One may choose some kind of equation of
state representing accelerated expansion of the universe, or
different forms of energy density such as energy density
of static spherically symmetric object with noncommutative
geometry having Gaussian or Lorentzian distributions and
galactic halo region and so forth. The traceless energy-
momentum tensor is also usedwhich is related to the Casimir
effect. In order to construct viable wormhole solutions in 𝑛-
dimensional Einstein-Gauss-Bonnet gravity, we assume dif-
ferent forms of energy density of noncommutative geometry
in the following.

Nicolini et al. [21] have improved the short distance
behavior of point-like structures in a new conceptual
approach based on coordinate coherent state formalism to
noncommutative gravity. In their method, curvature singu-
larities which appear in general relativity can be eliminated.
They have demonstrated that black hole evaporation process
should be stopped when a black hole reaches a minimal
mass. This minimal mass, named black hole remnant, is a
result of the existence of a minimal observable length. This
approach, which is the so-called noncommutative geometry
inspired model, via a minimal length caused by averaging
noncommutative coordinate fluctuations cures the curvature
singularity in black holes. In fact, the curvature singularity at
the origin of black holes is substituted for a regular de Sitter
core. Accordingly, the ultimate phase of the Hawking evapo-
ration as a novel thermodynamically steady state comprising
a nonsingular behavior is concluded.

It must be noted that, generally, it is not required to
consider the length scale of the coordinate noncommutativity
to be the same as the Planck length. Since, the noncom-
mutativity influences appear on a length scale connected
to that region, they can behave as an adjustable parameter
corresponding to that pertinent scale. The presence of a
universal short distance cut-off leads to the effects such as in
quantum field theory; it curves UV divergences while it cures
curvature singularities in general relativity. In the specific
case of the gravity field equations, the only modification
occurs at the level of the energy-momentum tensor, while
𝐺
𝜇] is formally left unchanged. In nonommutative space, the

usual definition of mass density in the form of Dirac delta
function does not hold. So in this space the usual form of
the energy density of the static spherically symmetry smeared
and particle-like gravitational source requires some other
forms of distribution.

In view of the above explanations, we are going to discuss
wormhole solutions with the help of two well-known energy
distributions such as Gaussian and Lorentzian in noncom-
mutative scenario. As an important remark, the essential
aspects of the noncommutativity approach are not specifically
sensitive to any of these distributions of the smearing effects
[22] rather only distribution parameter is different. The
Gaussian source has also been used by Sushkov [23] to model
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Figure 1: Plots of (a) 1 − 𝑠
+
/𝑟 and (b) 1 − 𝑠

−
/𝑟 versus 𝑟 in Gaussian distribution for 𝑛 = 5, 𝜖 = 1 (red), 𝑛 = 5, 𝜖 = −1 (red dashed), 𝑛 = 6, 𝜖 = 3

(purple), and 𝑛 = 6, 𝜖 = −3 (purple dashed).

phantom-energy supported wormholes, as well as by Nicolini
and Spallucci [24] for the purpose of modeling the physical
effects of short distance fluctuations of noncommutative
coordinates in the study of black holes. Galactic rotation
curves inspired by a noncommutative geometry background
are discussed [25]. The stability of a particular class of thin-
shell wormholes in noncommutative geometry is analyzed
elsewhere [26].

3.1. Gaussian Distributed Noncommutative Framework. An
intrinsic characteristic of spacetime is the noncommuta-
tivity which plays an effective role in several areas. It
is an interesting consequence of string theory where the
coordinates of spacetime become noncommutative operators
on 𝐷-brane [27]. The noncommutativity of spacetime can
be converted in the commutator, [𝑥𝛼, 𝑥𝛽] = 𝑖𝜃

𝛼𝛽, where
𝜃
𝛼𝛽 is an antisymmetric matrix describing discretization of
spacetime and has dimension (length)2. This discretization
process is similar to the discretization of phase space by
Planck constant. Replacing the point-like structures with
smeared objects, the energy density of the particle-like static
spherically symmetric gravitational source having mass 𝑀
takes the following form [21]:

𝜌nc =
𝑀

(4𝜋𝜃)
(𝑛−1)/2

𝑒
−𝑟
2
/4𝜃

, (10)

where 𝜃 is the noncommutative parameter in Gaussian
distribution. The mass 𝑀 could be a diffused centralized
object such as a wormhole [28]. It is mentioned here that the
smearing effect is achieved by replacing the Gaussian distri-
bution of minimal length √𝜃 with the Dirac delta function.
In order to construct 𝑛-dimensional Einstein Gauss-Bonnet
wormhole geometry, we equate the energy density given in
(7) and 𝜌nc in (10) yields the following differential equation:

𝑠


=

1

1 + 2𝑠𝜖/𝑟
3
[(4 − 𝑛 + (7 − 𝑛)

𝑠𝜖

𝑟
3
)

+

2𝑟
2

𝑀

(𝑛 − 2)

(4𝜋𝜃)
(1−𝑛)/2

𝑒
−𝑟
2
/4𝜃

] .

(11)

The solution of this equation is

𝑠 (𝑟) = −

1

2

[

𝑟
3

𝜖

±

𝑟
(7−𝑛)/2

𝜋
−𝑛/4

√𝜖 (𝑛 − 1)
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𝑛/2

(𝑟
𝑛−1

+ 4𝜖
2

𝑐
1
)

− 4𝑀√𝜋𝜖Gamma[𝑛 − 1
2

,

𝑟
2

4𝜃

]}

1/2

] ,

(12)

where 𝑐
1
is an integration constant. This solution has two

roots with plus and minus signs and we assign these roots
as 𝑠
+
(𝑟) and 𝑠

−
(𝑟) solutions. In order to plot the quantities

1 − 𝑠/𝑟, 𝜌, 𝜌 + 𝑝
𝑟
, and 𝜌 + 𝑝

𝑡
to obtain wormhole solutions

for both of these solutions, we restrict ourselves to five- and
six-dimensional cases with constant redshift function 𝜆 = 0.
The expressions of NEC takes the form

𝜌 + 𝑝
𝑟
=

(𝑛 − 2)

2𝑟
2

(𝑠


−

𝑠

𝑟

) (1 +

2𝜖𝑠

𝑟
3
) ,

𝜌 + 𝑝
𝑡
=

𝑟𝑠


− 𝑠

2𝑟
3

(1 +

6𝜖𝑠

𝑟
3
)

+

𝑠

𝑟
3
[(𝑛 − 3) + (𝑛 − 5)

2𝑠𝜖

𝑟
3
] .

(13)

In this regard, we assume values of some constants as
𝑀 = 0.008, 𝜃 = 0.002 while 𝜖

1
= 0.5, −0.5 result in 𝜖 =

1, −1 for five-dimensional and 𝜖 = 3, −3 for six-dimensional
case. Figure 1(a) represents the plot of 1 − 𝑠

+
/𝑟 versus 𝑟

for five and six-dimensional wormhole solutions. The graph
represents positively increasing behavior for positive 𝜖 for
both curves. For negative 𝜖, we examine that graph initially
represents positive behavior for both dimensions in the range
𝑟 < 1 and 𝑟 < 1.8 for 𝑛 = 5 and 6, respectively, and then
decreases towards negative values. In Figure 1(b), the graph
of 1 − 𝑠

−
/𝑟 versus 𝑟 shows the same behavior for all curves as

in Figure 1(a), with positive behavior of dashed curves in the
range 𝑟 < 4 and 𝑟 < 8 for 𝑛 = 5 ad 6. However, we have less
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Figure 2: Plots of (a) 𝜌
+
and (b) 𝜌

−
versus 𝑟 in Gaussian distribution for 𝑛 = 5, 𝜖 = 1 (red), 𝑛 = 5, 𝜖 = −1 (red dashed), 𝑛 = 6, 𝜖 = 3 (purple),

and 𝑛 = 6, 𝜖 = −3 (purple dashed).

possibility of wormhole scenario with respect to 𝑟 for positive
root solution as compared to negative root solution of shape
function.

Figure 2 shows the behavior of energy density versus
𝑟 as positively decreasing behavior for both dimensions
corresponding to 𝑛 = 5 and 6 dimensions. For 𝑠

+
and positive

𝜖, the plot of 𝜌+𝑝
𝑟
represents positive behavior in decreasing

manner for 𝑛 = 5 and 6 while representing negative behavior
for negative 𝜖 as shown in Figure 3(a). In Figure 3(b), we
examine same behavior for negative root solution. Figure 4(a)
depicts the opposite behavior to Figure 3(a), that is, for 𝑛 =

5, 6 dimensions and positive 𝜖, 𝜌 + 𝑝
𝑡
demonstrates negative

behavior. Thus, these plots express the violation of WEC
incorporating the case of 𝑠

+
. For 𝑠

−
, we obtain the same

behavior as in Figure 3(b) which indicates positive behavior
for positive 𝜖 and 𝑛 = 5, 6 and negative behavior for negative
𝜖 and 𝑛 = 5, 6. This implies that WEC is satisfied for
negative root solutionwith positiveGauss-Bonnet coefficient.
Thus, we obtain physically acceptable wormhole solutions
satisfying WEC for both dimensions.

3.2. Lorentzian Distributed Non-Commutative Framework.
Now we consider the case of noncommutative geometry
with Lorentzian distribution.The energy density of point-like
source under this distribution becomes [8, 15]

𝜌Lnc =
𝑀√𝜙

𝜋
2
(𝑟
2
+ 𝜙)
𝑛/2

, (14)

where 𝜙 is the noncommutative parameter in Lorentzian
distribution. Inserting 𝜌Lnc in (7), the differential equation
takes the following form:

𝑠
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1

1 + 2𝑠𝜖/𝑟
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2
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𝑏

𝑟
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3
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(15)

The solution of this equation is given by

𝑠 (𝑟) =
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2
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𝑛

2

,

𝑛 + 1

2

, −

𝑟
2

𝜙

]}

1/2

] ,

(16)

where 𝑐
2
is an integration constant. We again assign both

solutions as 𝑠
+
and 𝑠
−
and explore the wormhole solutions.

In this case, we choose constants as 𝜙 = 2, 𝑀 = 2, and
𝑐
2
= 0.5 for same dimensions and Gauss-Bonnet coefficient

as for noncommutative background.
In Figure 5(a), we plot 1 − 𝑠

+
/𝑟 versus 𝑟 which represents

that the condition for wormhole geometry, that is, 1−𝑠/𝑟 > 0,
holds for 5 and 6 dimensions with negative 𝜖. For positive 𝜖,
the positivity of this expression depends on some ranges so
that it remains positive for 𝑟 < 1.9 for 𝑛 = 5 while 𝑛 = 6

observes the range 𝑟 < 2.1. Figure 5(b) corresponds to the
plot of 1 − 𝑠

−
/𝑟 with respect to 𝑟 showing positive behavior

for positive 𝜖. For 𝑛 = 5, it expresses a very short range,
𝑟 < 0.5, for positivity whereas it remains negative for 6-
dimensional solution.That is, we have no wormhole solution
for 𝑛 = 6, 𝜖 = −3 taking negative root solution. So, we skip
this case in further discussion. The behavior of 𝜌

+
and 𝜌

−

remains positive for all cases except 𝑛 = 6, 𝜖 = −3 for which
it describes negative behavior, as shown in Figures 6(a) and
6(b). This implies that we have no wormhole solutions for 6-
dimensional case with negative Gauss-Bonnet coefficient for
both solutions.

Figure 7(a) expresses the behavior of 𝜌 + 𝑝
𝑟
for positive

root solution versus 𝑟 which remains positive for the range
𝑟 < 1 for 𝑛 = 5 and 6 with positive 𝜖 and then turns towards
negative behavior. It demonstrates negative behavior for 𝑟 < 1
and then moves to positive region. Incorporating 𝑠

−
solution,

𝜌 + 𝑝
𝑟
shows positive behavior only for the case 𝑛 = 5,
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𝜖 > 0 and negative behavior for the remaining two cases
as shown in Figure 7(b). In Figures 8(a) and 8(b), we draw
𝜌 + 𝑝
𝑡
for both solutions versus 𝑟. This expression represents

the negative behavior for (𝑛 = 5, 𝜖 = 1), (𝑛 = 5, 𝜖 = −1) with
𝑠
+
and (𝑛 = 5, 𝜖 = −1) with 𝑠

−
and preserves positivity for

(𝑛 = 6, 𝜖 = 3) with 𝑠
+
, (𝑛 = 5, 𝜖 = 1), (𝑛 = 6, 𝜖 = 3) with 𝑠

−

solution.

4. Equilibrium Condition

In order to find the equilibrium configuration of the
wormhole solutions in Gaussian as well as Lorentzian dis-
tributed noncommutative backgrounds, we use the general-
ized Tolman-Oppenheimer-Volkoff equation. This equation
is derived by solving the Einstein equations for a general time-
invariant, spherically symmetric metric having metric tensor
𝑔
𝛼𝛽

= (𝑒
𝜏(𝑟)

, −𝑒
𝜔(𝑟)

, −𝑟
2

, −𝑟
2sin2𝜃), where 𝛼𝛽 represents

only diagonal entries and 𝜏, 𝜔 are general metric functions
dependent on 𝑟. The generalized Tolman-Oppenheimer-
Volkoff equation is

𝑑𝑝
𝑟

𝑑𝑟

+

𝜏


2

(𝜌 + 𝑝
𝑟
) +

2

𝑟

(𝑝
𝑟
− 𝑝
𝑡
) = 0. (17)

Keeping in mind the above equation, de Leon [28] proposed
an equation for anisotropicmass distributionwhich naturally
gives the equilibrium for the wormhole subject. It is given by

2

𝑟

(𝑝
𝑡
− 𝑝
𝑟
) −

𝑒
(𝜔−𝜏)/2

𝑚eff
𝑟
2

(𝜌 + 𝑝
𝑟
) −

𝑑𝑝
𝑟

𝑑𝑟

= 0, (18)

where effective gravitational mass 𝑚eff = (1/2)𝑟
2

𝑒
(𝜏−𝜔)/2

𝜏
 is

measured from throat to some arbitrary radius 𝑟. Accord-
ingly, the gravitational, hydrostatic, and anisotropic force due
to anisotropic matter distribution are defied as follows:

𝑓
𝑔
= −

𝜏


(𝜌 + 𝑝
𝑟
)

2

,

𝑓
ℎ
= −

𝑑𝑝
𝑟

𝑑𝑟

,

𝑓
𝑎
=

2 (𝑝
𝑡
− 𝑝
𝑟
)

𝑟

.

(19)

It is required that𝑓
𝑔
+𝑓
ℎ
+𝑓
𝑎
= 0must hold for the wormhole

solutions to be in equilibrium. In the underlying cases, we
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proceedwith constant redshift function 𝜆 = 0which vanishes
the gravitational contribution𝑓

𝑔
in the equilibrium equation;

that is, 𝜏 = 2𝜆 leads to 𝜏 = 0 for constant 𝜆. Thus, we are left
with hydrostatic and anisotropic forces with corresponding
equilibrium condition as

𝑓
𝑎
+ 𝑓
ℎ
= 0. (20)

Using (8) and (9), we obtain the following expressions for the
hydrostatic and anisotropic forces:

𝑓
𝑎
=

1

𝑟
3
{(𝑛 − 1)

𝑠

𝑟

− 𝑠


} (𝑛 − 3 + (𝑛 − 5)

𝑠𝜖

𝑟
3
)

−

𝑠

𝑟
4
[(𝑛 − 3) (𝑛 − 4) + (𝑛 − 5) (𝑛 − 6)

𝑠𝜖

𝑟
3
] ,

𝑓
ℎ
=

(𝑛 − 2)

2𝑟
3

[𝑛 − 3 + (𝑛 − 5)

𝑠𝜖

𝑟
3
+

𝑠𝜖 (𝑛 − 5)

𝑟
3

]

⋅ (𝑠


−

3𝑠

𝑟

) .

(21)

Figure 9 represents the plots of anisotropic as well as
hydrostatic forces for the wormhole solutions in Gaussian
distributed framework. Figures 9(a) and 9(c) describe the
equilibrium for positive root solution for 𝑛 = 5, 𝜖 =

1, −1 and 𝑛 = 6, 𝜖 = 3, −3 through opposite behavior
and hence they cancel each other in order to satisfy (20).
For negative root solution, 𝑠

−
, Figures 9(b) and 9(d) show

the stable configuration of wormhole solutions for fifth
dimensional case only. The behaviors of both forces (which
are not in opposite manner) do not cancel each other so
there is no equilibrium configuration examined for sixth
dimensional wormhole solutions. In the case of Lorentzian
noncommutative background, Figure 10 expresses that all
wormhole solutions are in equilibrium by satisfying the
equilibrium condition for both dimensions.

Table 1: Wormhole solutions with Gaussian distributed noncom-
mutative framework for 𝑠

+
.

Expressions 𝑛 = 5, 𝜖 =

1

𝑛 = 5, 𝜖 =

−1

𝑛 = 6, 𝜖 =

3

𝑛 = 6, 𝜖 =

−3

1 − 𝑠
+
/𝑟 Positive Positive

for 𝑟 < 1 Positive Positive
for 𝑟 < 1.8

𝜌 Positive Positive Positive Positive
𝜌 + 𝑝

𝑟 Positive Negative Positive Negative
𝜌 + 𝑝

𝑡 Negative Positive Negative Positive
WEC Violates Violates Violates Violates
E.C Holds Holds Holds Holds

5. Conclusion

It is a well-known fact that the existence of wormhole solu-
tions is based on violation of NEC. Since the normal matter
satisfies the energy conditions this violation is associated
with an energy-momentum tensor which provides exotic
matter, a hypothetical form of matter. To explore realistic
model or physically acceptable wormhole solutions, it is
necessary to find such a source which gives the violation
of NEC while normal matter meets the energy conditions.
Here in this paper, we have explored wormhole solutions
in 𝑛-dimensional Einstein Gauss-Bonnet gravity with Gaus-
sian and Lorentzian noncommutative backgrounds. We have
restricted ourselves to fifth and sixth dimensional cases with
positive as well as negativeGauss-Bonnet coefficient. Also, we
have checked the condition of equilibrium for the wormhole
solutions.

The results are summarized in Tables 1 and 2. It is noted
that the 𝑠

+
(Tables 1 and 3) and 𝑠

−
(Tables 2 and 4) represent

the two roots of the solutions in both backgrounds and EC
denotes the equilibrium condition.

In the Lorentzan distributed noncommutative frame-
work, we have found negative energy density for 𝑠

+
while
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Figure 9: Plots of (a) 𝑓
𝑎
for 𝑠
+
, (b) 𝑓

𝑎
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ℎ
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+
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Table 2: Wormhole solutions with Gaussian distributed noncom-
mutative framework for 𝑠

−
.

Expressions 𝑛 = 5, 𝜖 =

1

𝑛 = 5, 𝜖 =

−1

𝑛 = 6, 𝜖 =

3

𝑛 = 6, 𝜖 =

−3

1 − 𝑠
−
/𝑟 Positive Positive

for 𝑟 < 4 Positive Positive
for 𝑟 < 8

𝜌 Positive Positive Positive Positive
𝜌 + 𝑝

𝑟 Positive Negative Positive Negative
𝜌 + 𝑝

𝑡 Positive Negative Positive Negative
WEC Holds Violates Holds Violates

E.C Holds Holds Does not
hold

Does not
hold

violation of 1 − 𝑠/𝑟 > 0 incorporating 𝑠
−
for the case 𝑛 = 6,

𝜖 = −3 so we skipped this case. The remaining results are
summarized in Tables 3 and 4.

In the paper [20], higher dimensional asymptotically flat
wormhole solutions have been explored in the framework
of Gauss-Bonnet gravity by considering a specific choice
for a radial dependent redshift function and by imposing
a particular equation of state. The WEC is satisfied at the
throat by considering a negative Gauss-Bonnet coupling

Table 3: Wormhole solutions with Lorentzian noncommutative
background for 𝑠

+
.

Expressions 𝑛 = 5, 𝜖 = 1 𝑛 = 5, 𝜖 = −1 𝑛 = 6, 𝜖 = 3

1 − 𝑠
+
/𝑟

Positive for
𝑟 < 1.9

Positive Positive for
𝑟 < 2.1

𝜌 Positive Positive Positive

𝜌 + 𝑝
𝑟

Positive for
𝑟 < 1

Positive for
𝑟 > 1

Positive for
𝑟 < 1

𝜌 + 𝑝
𝑡 Negative Negative Positive

WEC Does not
hold

Does not
hold

Holds for
𝑟 < 1

EC Holds Holds Holds

constant. Furthermore, they have considered a constant
redshift function and shown specifically that, for negative
Gauss-Bonnet coupling constant, one may have normal
matter in a determined radial region and that the increase
of coupling constant enlarges the normal matter region.
In the present paper, we have taken energy density under
noncommutative geometry distributions instead of particular
equation of state.We have obtained results for positiveGauss-
Bonnet coefficient satisfying energy conditions. It contains
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Table 4: Wormhole solutions with Lorentzian noncommutative
background for 𝑠

−
.

Expressions 𝑛 = 5, 𝜖 = 1 𝑛 = 5, 𝜖 = −1 𝑛 = 6, 𝜖 = 3

1 − 𝑠
−
/𝑟 Positive Positive for

𝑟 < 0.5

Positive

𝜌 Positive Positive Positive
𝜌 + 𝑝

𝑟 Positive Negative Negative
𝜌 + 𝑝

𝑡 Positive Negative Positive

WEC Holds Does not
hold

Does not
hold

E.C Holds Holds Holds

fifth dimensional wormhole solutions in both backgrounds
satisfying equilibrium condition and sixth dimensional with
disequilibrium in noncommutative background with 𝑠

−
solu-

tion. Also, there is possibility for the existence of wormhole
in equilibrium satisfying WEC for 𝑛 = 6, 𝜖 = 3 taking into
account 𝑠

+
solution for the range 𝑟 < 1.
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