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We focus on theHamilton-Jacobimethod to determine several thermodynamic quantities such as temperature, entropy, and specific
heat of two-dimensional Horava-Lifshitz black holes by using the generalized uncertainty principles (GUP). We also address the
product of horizons, mainly concerning the event, Cauchy, and cosmological and virtual horizons.

1. Introduction

Theories of gravity in two space-time dimensions have
receivedmuch attention in the literature [1–7] and provide an
excellent theoretical basis for understanding issues relevant
to quantum gravity. Such theories in recent years have
presented a very rich structure and an interesting relationship
with conformal field theory [8], the Liouville model [9–
11], random lattice models [12], and sigma models [13–16].
Formally, gravity has similarity to four-dimensional general
relativity. In fact, the solution of this theory has a nontrivial
event horizon structure that enables the existence of black
holes in two space-time dimensions. Recently, a new theory of
gravity has been presented by Horava in [17], and this is now
the well-known Horava-Lifshitz (HL) gravity. Many aspects
of the theory have been considered in the literature [18–28]. In
[29], a newHorava-Lifshitz black hole solution was proposed
in two dimensions in the slow varying dilatonic field regime.

The main objective of the present study is to address the
issues of quantum-corrected entropy in the two-dimensional
HL black hole. A semiclassical approach considering the
Hawking radiation as a tunneling phenomenon across the
horizon has been proposed in [30, 31], in addition to the
Hamilton-Jacobi method [32–39] to determine the Hawking
radiation and the entropy of black holes. The tunneling
formalism has also been applied to HL gravity, for instance,

in [40–44]. In [30, 45, 46], the method of radial null geodesic
was used by the authors for calculating the Hawking temper-
ature. In [47], applying the tunneling formalism, Hawking
radiation has been investigated considering self-gravitation
and back reaction effects. In [48, 49], the information loss
paradox in theWKB/tunneling picture of Hawking radiation
considering the back reaction effects was presented. More
recently, using this formalism, the back reaction effects for
self-dual black hole have also been investigated [50]. In [51],
the quantum-corrected Hawking temperature and entropy
of a Schwarzschild black hole considering the effects of the
generalized uncertainty principle (GUP) in the tunneling
formalism were calculated. Moreover, using the Hamilton-
Jacobi version of the tunneling formalism, the Hawking
radiation for acoustic black hole was investigated [52–58] and
in [59] the thermodynamic properties of self-dual black holes
and noncommutative BTZ black hole have been discussed
[60, 61]. In [62], the corrections for the thermodynamics of
black holes were analyzed assuming that the GUP corrected
entropy-area relation is universal for all black objects.

A lot of work has been proposed in the literature in
order to understand the quantum aspects of the black hole
entropy—see, for instance, [63–72]. In [73, 74], the authors
have shown that the quantum corrections to the Bekenstein-
Hawking entropy are logarithmic and dependent on the
area. Furthermore, in [75], an additional correction term was
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obtained to the entropy that depends on conserved charges.
In addition, in [76–78], using the brick-wall method, entropy
of acoustic black hole in two dimensions was investigated.
However, when determining the entropy by this method,
an ultraviolet cut-off must be inserted in the calculations
to eliminate the divergence of states density near black hole
horizon. On the other hand, consideringmodels in which the
Heisenberg uncertainty relation is modified, the divergence
that arises in the brick-wall model is eliminated [79–95]. For
example, in one-dimensional space, we have the following
modified Heisenberg uncertainty relation:

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 + 𝛼

2
(Δ𝑝)
2

] , (1)

where Δ𝑥 and Δ𝑝 are uncertainties for position and momen-
tum, respectively, and 𝛼 is a positive constant which is
independent of Δ𝑥 and Δ𝑝. The thermodynamic properties
of black holes are modified due to the GUP [96, 97]. See, for
instance, [98, 99], which review how to approach space-time
noncommutativity that leads to an effective GUP to quantum
gravity.

In order to obtain a change in the temperature of the
black hole, first the bound on the maximum momentum in
GUP is identified with a bound on maximum energy of the
system and the uncertainty in the position can be taken to be
proportional to the radius of the event horizon of the black
hole [100].

In this paper, inspired by all of these previous works, we
willmainly focus on newHorava-Lifshitz black hole solutions
in two dimensions and the Hamilton-Jacobi method in order
to determine the temperature and the entropy of a black hole
using the GUP.

2. Tunneling Formalism for 2D HL Black Hole

In this section, we will use the tunneling formalism to derive
the Hawking temperature for a two-dimensional HL black
hole. In our calculations, we assume that the classical action
satisfies the relativistic Hamilton-Jacobi equation to leading
order in the energy. The metric in (Arnowitt-Deser-Misner)
ADM decomposition is

𝑑𝑠
2
= −𝑁

2
𝑑𝑡
2
+ 𝑔
𝑖𝑗
(𝑑𝑥
𝑖
+ 𝑁
𝑖
𝑑𝑡) (𝑑𝑥

𝑗
+ 𝑁
𝑗
𝑑𝑡) (2)

with anisotropic scaling between space and time, 𝑡 → 𝑏
−𝑧
𝑡,

𝑥
𝑖
→ 𝑏
−1
𝑥
𝑖, 𝑖 = 1, 2, . . . , 𝐷. The power-counting renormal-

izability requires 𝑧 ≥ 𝐷. In 1 + 1 dimensions, this means
𝑧 ≥ 1 such that we will assume 𝑧 = 1, that is, infrared
regime. Despite this choice, the HL gravity does not coincide
with Einstein gravity in general—see [17, 43, 44] for further
discussions on IR issues in HL gravity. Now, by using the
gauge𝑁

1
= 0 and considering 𝑔

𝑖𝑗
≡ 𝑔
11
= 𝑁
−2, we have

𝑑𝑠
2
= −𝑓 (𝑥) 𝑑𝑡

2
+ 𝑓 (𝑥)

−1
𝑑𝑥
2
, (3)

where we have redefined 𝑁2 ≡ 𝑓(𝑥). The two-dimensional
HL black hole solutions are explicitly given by [29]

𝑓 (𝑥) = 2𝐶
2
+
𝐴

𝜂
𝑥
2
− 2𝐶
1
𝑥 +

𝐵

𝜂𝑥
+
𝐶

3𝜂𝑥2
, (4)

where 𝜂 is related to the nonprojectable version of HL gravity.
In the sequel, we consider the Klein-Gordon (KG) equation

ℏ
2
𝑔
𝜇]
∇
𝜇
∇]𝜙 − 𝑚

2
𝜙 = 0. (5)

Notice that the KG equation preserves its usual form because
we have fixed 𝑧 = 1 and the gauge 𝑁

1
= 0 as discussed

above. Similar considerations in higher dimensions have been
considered both in arbitrary [40–42] and in fixed 𝑧 = 1 (IR
regime) [43, 44]. Now, considering metric (3), we have

−𝜕
2

𝑡
𝜙 + 𝑓 (𝑥)

2
𝜕
2

𝑥
𝜙 +

1

2
𝑓 (𝑥)
2󸀠
𝜕
𝑥
𝜙 −

𝑚
2

ℏ
𝑓 (𝑥) 𝜙 = 0. (6)

Next, we apply the WKB approximation to 𝜙 given by

𝜙 (𝑥, 𝑡) = exp [− 𝑖
ℏ
I (𝑥, 𝑡)] , (7)

and, for the lowest order in ℏ, we have

(𝜕
𝑡
I)
2

− 𝑓 (𝑥)
2
(𝜕
𝑥
I)
2

− 𝑚
2
𝑓 (𝑥) = 0. (8)

Because of the symmetries of the metric, we can write a
solution toI(𝑥, 𝑡) in the form

I (𝑥, 𝑡) = −𝜔𝑡 +𝑊 (𝑟) , (9)

where for𝑊(𝑟) we have

𝑊 = ∫
𝑑𝑥

𝑓 (𝑥)
√𝜔2 − 𝑚2𝑓 (𝑥). (10)

At this point, we can apply near the horizon the following
approximation:

𝑓 (𝑥) = 𝑓 (𝑥
+

h) + 𝑓
󸀠
(𝑥
+

h) (𝑥 − 𝑥
+

h) + ⋅ ⋅ ⋅ . (11)

In this way, for the spatial part of the action function, we find

𝑊 = ∫
𝑑𝑥

𝑓󸀠 (𝑥
+

h)

√𝜔2 − 𝑚2𝑓󸀠 (𝑥
+

h) (𝑥 − 𝑥
+

h)

(𝑥 − 𝑥
+

h)

=
2𝜋𝑖𝜔

𝑓󸀠 (𝑥
+

h)
.

(12)

Therefore, the tunneling probability for a particle with energy
𝜔 is given by

Γ ≅ exp [−2 ImI] = exp[− 4𝜋𝜔

𝑓󸀠 (𝑥
+

h)
] . (13)

Thus, comparing (13) with the Boltzmann factor (𝑒−𝜔/𝑇), we
obtain the general Hawking temperature formula for the
black hole solution (4) as

𝑇HL =
𝜔

2 ImI
=
𝑓
󸀠
(𝑥
+

h)

4𝜋
. (14)

Below we will mainly consider three cases.
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2.1. First Case: Schwarzschild-Like Black Hole. In this case, we
consider 𝐶

1
̸= 0, 𝐶
2
̸= 0, 𝐵 ̸= 0, and 𝐴 = 𝐶 = 0 into (4) and

the metric becomes

𝑓 (𝑥) = 2𝐶
2
− 2𝐶
1
𝑥 +

𝐵

𝜂𝑥
. (15)

The event horizons can be obtained at 𝑓(𝑥) = 0, such that we
have

𝑥
±

h =
𝐶
2

2𝐶
1

± √
𝐶
2

2

4𝐶
2

1

+
𝐵

2𝐶
1
𝜂
. (16)

For special case where 𝐶
2
= 0, 𝐶

1
= −𝑀, and 𝐵 = −4𝑀Λ2

(where Λ is a parameter with dimension of length), the
horizons are

𝑥
±

h = ±Λ√
2

𝜂
. (17)

Thus, considering (15) and substituting (17) into (14), we
obtain the temperature given by

𝑇HL1 =
𝑀

𝜋
. (18)

Since the radius of the horizon in (17) is independent of the
mass𝑀, the Hawking temperature is directly proportional to
the mass parameter𝑀, contrary to the case in four dimen-
sions where Hawking temperature is inversely proportional
to the mass parameter𝑀. To compute the entropy, we use

𝑆HL1 = ∫
𝑑𝑀

𝑇HL1
, (19)

where, substituting (18) into (19), we find

𝑆HL1 = 𝜋 ln(
𝑀

𝑀
0

) = 𝜋 ln (𝜋𝑀2) − 𝜋 ln (𝜋𝑀𝑀
0
) . (20)

This is the expected entropy in (1+1)-dimensional black holes
[1]. Furthermore, the first term in (20) resembles a correction
term which is of type ln(𝐴/4) = ln(4𝜋𝑀2) for the entropy
of black holes in four dimensions. Notice that the meaning
of entropy for two-dimensional black holes is different from
higher dimensional cases. This is because the event horizon
is a point, that is, has no area. However, it still enjoys the
thermodynamic relationship [101–103]

𝑑𝑀 = 𝑇𝑑𝑆 − Φ𝑑𝑄, (21)

where Φ is the electric potential and there is no angular
momentum term. Thus, the horizon has its own associated
temperature and entropy and we can use (21) to define
the entropy [1]. Since the constant 𝑀

0
plays the role of a

fundamental length, the thermodynamic properties of a two-
dimensional black hole require this length [1]. This seems
to have the characteristic of theories that break down at
the semiclassical regime. So, a minimum measurable length
implies a major revision of quantum physics [95]. These
approaches are precisely the GUP, as we see in Section 3.

Several other interesting thermodynamic quantities can
also be found as follows. The specific heat is given by

𝐶 = 𝑇
𝜕𝑆

𝜕𝑇
, (22)

which from (18) and (20) reads

𝐶HL1 = 𝜋. (23)

Furthermore, the Hawking temperature can be used to
compute the emission rate. Let us assume that in the black
hole the energy loss is dominated by photons [104, 105].Then,
using the Stefan-Boltzmann law in two-dimensional space-
time, we have

𝑑𝑀

𝑑𝑡
∝ 𝑇
2
. (24)

Thus, the emission rate in this case is

𝑑𝑀HL1
𝑑𝑡

∝
𝑀
2

𝜋2
. (25)

2.2. Second Case: Reissner-Nordström-Like Black Hole. In this
second case, we will make 𝐵 = 𝐶

1
= 𝐶
2
= 0 and 𝐶 = −3𝑄2Λ2

in (4), so for the function 𝑓(𝑥) we have

𝑓 (𝑥) =
𝐴

𝜂
𝑥
2
−
𝑄
2
Λ
2

𝜂𝑥2
. (26)

Now, choosing𝐴 = Λ−2 and𝑄2 = 𝑀2Λ2 (for an extreme-like
case), we have that the event horizons are

𝑥
±

h = ±(
𝑄
2
Λ
2

𝐴
)

1/4

= ±Λ√𝑀Λ. (27)

Using (14), the temperature is given by

𝑇HL2 =
1

𝜋𝜂
(𝑄
2
Λ
2
𝐴
3
)
1/4

=
1

𝜋𝜂

√
𝑀

Λ
. (28)

Here, unlike the first case, theHawking temperature is propor-
tional to√𝑀. For the entropy, we find the following result:

𝑆HL2 = ∫
𝑑𝑀

𝑇HL2
= 2𝜋𝜂√𝑀Λ. (29)

Now, following the same steps of the previous case, we can
also compute identical thermodynamic quantities. From (28)
and (29), the specific heat now reads

𝐶HL2 = 2𝜋𝜂√𝑀Λ, (30)

and the emission rate is

𝑑𝑀HL2
𝑑𝑡

∝
1

(𝜋𝜂)
2

𝑀

Λ
. (31)
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2.3. The AdS-Schwarzschild-Like Case. In this case, we con-
sider 𝐴 ̸= 0, 𝐵 ̸= 0, and 𝐶 = 𝐶

1
= 𝐶
2
= 0 into (4) and the

metric becomes

𝑓 (𝑥) =
𝐴

𝜂
𝑥
2
+
𝐵

𝜂𝑥
. (32)

Now, choosing 𝐴 = Λ
−2 and 𝐵 = −4𝑀Λ2, we get the real

event horizon which is

𝑥h = (−
𝐵

𝐴
)

1/3

= (4𝑀Λ
4
)
1/3

. (33)

Using (14), the temperature is given by

𝑇AdS-S =
3

4𝜋𝜂
(−𝐴
2
𝐵)
1/3

=
3

42/3𝜋𝜂
(
𝑀

Λ2
)

1/3

. (34)

For the entropy, we find the following result:

𝑆AdS-S = 2
1/3
𝜋𝜂 (𝑀Λ)

2/3
. (35)

Finally, in the present case, from (34) and (35), we find the
specific heat

𝐶AdS-S = 2
4/3
𝜋𝜂Λ

𝑀

(𝑀Λ)
1/3
. (36)

The emission rate now reads

𝑑𝑀AdS-S
𝑑𝑡

∝
9

44/3𝜋2𝜂2
(
𝑀

Λ2
)

2/3

. (37)

Notice that, except in the first example, all the thermody-
namic quantities go to zero as 𝑀 → 0. This phenomenon
prevents the existence of black hole remnants [96, 97, 104,
105]. In the next section, we will find black holes with richer
thermodynamic scenarios due to the GUP.

3. Quantum Corrections to the Entropy

In this section, wewill consider theGUP andwewill apply the
Hamilton-Jacobi method in tunneling formalism to calculate
the quantum-corrected Hawking temperature and entropy
for a two-dimensional Horava-Lifshitz black hole. Hence, for
the GUP, we have [79–95, 100]

Δ𝑥Δ𝑝 ≥ ℏ(1 − 𝛼

𝑙p

ℏ
Δ𝑝 +

𝛼
2
𝑙
2

p

ℏ2
(Δ𝑝)
2

) , (38)

where 𝛼 is a dimensionless positive parameter and 𝑙p is the
Planck length. We can still write (38) as follows:

Δ𝑝 ≥

(Δ𝑥 + 𝛼𝑙p)

2𝛼2𝑙2p
(1 − √1 −

4𝛼
2
𝑙
2

p

(Δ𝑥 + 𝛼𝑙p)
2
), (39)

wherewe have chosen the negative sign and ℏ = 1. Here, since
𝑙p/Δ𝑥 ≪ 1, the above equation can be expanded into Taylor
series as

Δ𝑝 ≥
1

Δ𝑥
[1 −

𝛼𝑙p

Δ𝑥
+

2𝛼
2
𝑙
2

p

(Δ𝑥)
2
+ ⋅ ⋅ ⋅] . (40)

Now, with ℏ = 1, the uncertainty principle becomes Δ𝑥Δ𝑝 ≥
1 and applying the saturated formof the uncertainty principle
we have 𝜔Δ𝑥 ≥ 1. Thus, (40) can be written as

𝜔G ≥ 𝜔[1 −
𝛼𝑙p

2 (Δ𝑥)
+

𝛼
2
𝑙
2

p

2 (Δ𝑥)
2
+ ⋅ ⋅ ⋅] , (41)

where 𝜔 is the energy of a quantum particle.
Therefore, for a particle with energy corrected 𝜔G, the

tunneling probability reads

ΓG ≅ exp [−2 Im 𝐼G] . (42)

Consequently, the corrected temperature becomes

𝑇HLG =
𝜔

2 Im 𝐼G

= 𝑇HL [1 −
𝛼𝑙p

2 (Δ𝑥)
+

𝛼
2
𝑙
2

p

2 (Δ𝑥)
2
+ ⋅ ⋅ ⋅]

−1

.

(43)

In the following, we will consider three cases.

3.1. The First Case with GUP. Here, we choose Δ𝑥 = 2𝑥+h =
2Λ√2/𝜂. Thus, for the first case, the corrected temperature
due to the GUP is

𝑇HLG1 = 𝑇HL1 [1 −
𝛼𝑙p

4Λ
√
𝜂

2
+

𝜂𝛼
2
𝑙
2

p

16Λ2
+ ⋅ ⋅ ⋅]

−1

. (44)

Hence, the corrected entropy becomes

𝑆HLG1 = ∫
𝑑𝑀

𝑇HLG1

= [𝜋 −

𝜋𝛼𝑙p

4Λ
√
𝜂

2
+

𝜋𝜂𝛼
2
𝑙
2

p

16Λ2
+ ⋅ ⋅ ⋅] ln( 𝑀

𝑀
0

) .

(45)

Corrections due to GUP for entropy do not change the
dependence of the mass parameter that is always of the type
ln(𝑀).

As in the previous section, other thermodynamic quanti-
ties can also be found. Here, they appear to be corrected by
the GUP. Namely, the corrected specific heat is

𝐶HLG1 = 𝐶HL1 [1 −
𝛼𝑙p

4Λ
√
𝜂

2
+

𝜂𝛼
2
𝑙
2

p

16Λ2
+ ⋅ ⋅ ⋅] (46)

and the corrected emission rate reads

𝑑𝑀HLG1
𝑑𝑡

∝
𝑀
2

𝜋2
[1 −

𝛼𝑙p

4Λ
√
𝜂

2
+

𝜂𝛼
2
𝑙
2

p

16Λ2
+ ⋅ ⋅ ⋅]

−2

. (47)

Due to the GUP we can also address the issue of minimum
mass of black holes. Thus, from (39), we can ensure the
following inequality (notice that we have reinserted a factor
such as Δ𝑥 → 2Δ𝑥 in the GUP):

4𝛼
2
𝑙
2

p ≤ (2Δ𝑥 + 𝛼𝑙p)
2

. (48)
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However, in the present case, since the horizon is mass inde-
pendent, that is, Δ𝑥 = 2Λ√2/𝜂, we simply find a minimum
length scale given by

Λmin =
𝛼𝑙p

4√2/𝜂
. (49)

3.2.The Second Case with GUP. Now, for the second case, we
haveΔ𝑥 = 2Λ√𝑀Λ and the corrected temperature due to the
GUP reads

𝑇HLG2 = 𝑇HL2 [1 −
𝛼𝑙p

4Λ√𝑀Λ
+

𝛼
2
𝑙
2

p

8𝑀Λ3
+ ⋅ ⋅ ⋅]

−1

. (50)

Consequently, for the corrected entropy, we obtain

𝑆HLG2 = ∫
𝑑𝑀

𝑇HLG2

= 2𝜋𝜂√𝑀Λ −

𝜋𝜂𝛼𝑙p

4Λ
ln( 𝑀

𝑀
0

) −

𝜋𝜂𝛼
2
𝑙
2

p

4Λ3
√
Λ

𝑀

+ ⋅ ⋅ ⋅ .

(51)

In this example, besides other types of corrections, a log-
arithmic correction to the entropy of the black hole has
been obtained. This logarithmic correction arises from the
contribution 𝛼𝑙p(Δ𝑝) in the GUP.

Again, computing other thermodynamic quantities, we
have now the corrected specific heat given by

𝐶HLG2 = 2𝜋𝜂√𝑀Λ −
𝜋𝜂𝛼𝑙p

2Λ
+

𝜋𝜂𝛼
2
𝑙
2

p

4√Λ/𝑀𝑀Λ2
+ ⋅ ⋅ ⋅ (52)

and the corrected emission rate now reads
𝑑𝑀HLG2
𝑑𝑡

∝
1

(𝜋𝜂)
2

𝑀

Λ
[1 −

𝛼𝑙p

4Λ√𝑀Λ
+

𝛼
2
𝑙
2

p

8𝑀Λ3
+ ⋅ ⋅ ⋅]

−2

.

(53)

In the present case, the horizon is mass dependent. Thus,
substituting Δ𝑥 = 2Λ√𝑀Λ into (48), the minimum mass is
given by

𝑀min =
𝛼
2
𝑙
2

p

16Λ3
. (54)

3.3. The AdS-Schwarzschild-Like Case with GUP. Now, in
this case, we have Δ𝑥 = 2(4𝑀Λ

4
)
1/3 and the corrected

temperature due to the GUP reads

𝑇AdS-S-G = 𝑇AdS-S [1 −
𝛼𝑙p4
2/3

16 (𝑀Λ4)
1/3
+

𝛼
2
𝑙
2

p4
1/3

32 (𝑀Λ4)
2/3

+ ⋅ ⋅ ⋅]

−1

.

(55)

Consequently, for the corrected entropy, we obtain

𝑆AdS-S-G = ∫
𝑑𝑀

𝑇AdS-S-G

= 2
1/3
𝜋𝜂 (𝑀Λ)

2/3
−
1

4

𝜋𝜂2
2/3
𝛼𝑙p (𝑀Λ)

1/3

Λ

+
1

24

𝜋𝜂𝛼
2
𝑙
2

p

Λ2
ln( 𝑀

𝑀
0

) + ⋅ ⋅ ⋅ .

(56)

Note that the result has other terms besides the logarithmic
contribution.𝑀1/3 and logarithmic terms come from𝛼𝑙p(Δ𝑝)
and 𝛼2𝑙2p(Δ𝑝)

2 corrections into the GUP, respectively.
Finally, in the third case, the corrected specific heat is

𝐶AdS-S-G = 2
4/3
𝜋𝜂 (Λ𝑀)

1/2
−
2
2/3

4

𝜋𝜂𝛼𝑙p𝑀

(𝑀Λ)
2/3

+
1

8

𝜋𝜂𝛼
2
𝑙
2

p

Λ2
+ ⋅ ⋅ ⋅

(57)

and the corrected emission rate is given by

𝑑𝑀AdS-S-G
𝑑𝑡

∝
9

44/3𝜋2𝜂2
(
𝑀

Λ2
)

2/3

⋅ [1 −

𝛼𝑙p4
2/3

16 (𝑀Λ4)
1/3
+

𝛼
2
𝑙
2

p4
1/3

32 (𝑀Λ4)
2/3
+ ⋅ ⋅ ⋅]

−2

.

(58)

In this case, replacing Δ𝑥 = 2(4𝑀Λ4)1/3 into (48), we get the
minimummass

𝑀min =
𝛼
3
𝑙
3

p

256Λ4
. (59)

As we can easily check, in the three examples studied above,
the temperature and emission rate go to zero as 𝑀 →

0, though neither the entropy (unless by considering back
reaction effects [48, 49] in order to address the issue of
information loss) nor specific heat vanishes at this limit.
However, it has already been shown in the literature that at
the minimal mass the specific heat indeed goes to zero. This
is particularly clear as one considers the exact formula of the
specific heat [96, 97, 104, 105] rather than the approximated
formulas above. By properly working with the GUP, we can
find an exact expression for the temperature as

𝑇HLG = 2𝑇H (1 +
𝛼𝑙p

2Δ𝑥
)

−1

⋅
[
[

[

1 + √1 −
4

(1 + 2Δ𝑥/𝛼𝑙p)
2

]
]

]

−1

,

(60)

which approaches the maximum 𝑇max = 𝑇H when bound
(48) is saturated, that is, at Δ𝑥 = 𝛼𝑙p/2, where the black hole
achieves the minimummass, as we have discussed above.
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As a consequence, we can also find an exact expression
for the specific heat as follows. Let us first consider the last
two cases above, where the horizons depend on black hole
mass𝑀. Since 𝑇H = 1/4𝜋Δ𝑥, then, making the scaling Δ𝑥 =
𝛼𝑙p𝑓(𝑀)/2 into (60), where 𝑓(𝑀) is a function of the mass
whose first derivative 𝑓󸀠(𝑀) ̸= 0, we find the specific heat

𝐶HLG = − (1 + 𝑓 (𝑀))
2

⋅ √
(𝑓 (𝑀) + 3) (𝑓 (𝑀) − 1)

(1 + 𝑓 (𝑀))
2

(1

+ √
(𝑓 (𝑀) + 3) (𝑓 (𝑀) − 1)

(1 + 𝑓 (𝑀))
2

)

𝛼𝑙p𝜋

𝑓󸀠 (𝑀)
.

(61)

Notice that, for minimum mass, that is, as Δ𝑥 → 𝛼𝑙p/2, we
have 𝑓(𝑀) → 1 and then the specific heat 𝐶HLG → 0. On
the other hand, in the first case above, entropy (45) vanishes
as 𝑀 → 𝑀

0
, where 𝑀

0
(a minimum mass) is normally

associated with the Planck scale. Interestingly, the minimum
length scale found in (49) appears to be directly related to
the Planck length 𝑙p, which suggests that𝑀

0
∼ 1/Λmin is a

natural choice.
Thus, the studies of the three cases above show that the

minimum masses (or length scale, in the first case) imply
the existence of black hole remnants at which the specific
heat (or entropy) vanishes and ceases to radiate even if the
effective temperature (𝑇HLG) reaches a maximum [96, 97]. In
other words, in such a scenario, one prevents black holes from
entire evaporation [104, 105].

4. Product of Event Horizons

In this section, we will consider the products of horizon.
Such products are often formulated in terms of the areas
of inner (Cauchy) horizons and outer (event) horizons and
sometimes include the effects of unphysical virtual horizons.
It is conjectured that the product of the areas formultihorizon
stationary black holes is in some cases independent of the
mass of the black hole [106–112]. However, there are studies
in the literature where the areas product is dependent on the
mass [113]. It was also shown in [114] for acoustic black hole
that the universal aspects of the areas product depend only
on quantized quantities such as conserved electric charge
and angular momentum. Recently, in [60], it has been shown
for noncommutative BTZ black holes that the product of
entropy is dependent on the mass parameter𝑀 up to linear
order in the noncommutative parameter 𝜃 and becomes
independent of the mass when 𝜃 = 0. The areas product
with the intriguing property of depending only on conserved
charges has attracted much interest in string theory [106–112]
microscopic description of black hole entropy once the area
products in terms of quantized charges and quantized angular
momenta may provide the basis of microstates counting.
In the following, we are going to investigate such universal
aspects with the introduction of the GUP.

Let us first start withmetric (15) assuming𝐶
2
= 1/2,𝐶

1
=

−𝑀, and 𝐵 = −4𝑀Λ2, so

𝑥
±

h =
1

4𝑀
± √

1

16𝑀2
+
2Λ
2

𝜂
. (62)

Note that

𝑥
+

h𝑥
−

h = −
2Λ
2

𝜂
. (63)

The product of the radii of horizons is independent of the
mass parameter𝑀.

On the other hand, considering the quantum corrections
due to the GUP, the horizon radius is changed. From (38)
(with ℏ = 1) and solving for Δ𝑥, we have

Δ𝑥 ⩾
1

Δ𝑝
(1 − 𝛼𝑙pΔ𝑝 + 𝛼

2
𝑙
2

p (Δ𝑝)
2

) , (64)

which can be written as

𝑟G ⩾ 𝑟h (1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
) , (65)

where we have identified Δ𝑥 = 2𝑟G, 1/Δ𝑝 = 2𝑟h, and Δ𝑝 =
𝑀. Thus,

𝑥
±

G ⩾ 𝑥
±

h (1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
) , (66)

and the product 𝑥+G𝑥
−

G becomes

𝑥
+

G𝑥
−

G = −
2Λ
2

𝜂
(1 − 𝛼𝑙p𝑀+ 𝛼

2
𝑙
2

p𝑀
2
)
2

. (67)

This product is now dependent on the mass parameter𝑀.
Now, we consider the case where 𝐶

1
= 0, 𝐶

2
= 1/2, 𝐶 =

3𝑄
2
Λ
2, and 𝐴 = −1/Λ2 in (4):

𝑓 (𝑥) = 1 −
1

Λ2𝜂
𝑥
2
+
𝐵

𝜂𝑥
+
𝑄
2
Λ
2

𝜂𝑥2
. (68)

At 𝑓(𝑥) = 0, we find the quartic written as

𝑥
4
− Λ
2
(𝜂𝑥
2
+ 𝐵𝑥 + 𝑄

2
Λ
2
) = 0, (69)

or better

𝑥
4
− Λ
2
(𝑥 − 𝑥

+
) (𝑥 − 𝑥

−
) = 0, (70)

where

𝑥
±
=

−𝐵 ± √𝐵2 − 4𝜂𝑄2Λ2

2𝜂
.

(71)

4.1. Approximate Results. First, we rearrange the quartic to
yield the exact equation

𝑥 = 𝑥
±
+

𝑥
4

Λ2 (𝑥 − 𝑥
∓
)

(72)
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and then try to solve it perturbatively, so for the event horizon
we can write the following approximation:

𝑥E ≈ 𝑥+ +
𝑥
4

+

Λ2 (𝑥
+
− 𝑥
−
)
= 𝑥
+
(1 +

𝑥
3

+

Λ2 (𝑥
+
− 𝑥
−
)
) . (73)

On the other hand, for the inner (Cauchy) horizon, we find

𝑥C ≈ 𝑥− −
𝑥
4

−

Λ2 (𝑥
+
− 𝑥
−
)
= 𝑥
−
(1 −

𝑥
3

−

Λ2 (𝑥
+
− 𝑥
−
)
) . (74)

Consequently, the product of horizons is

𝑥E𝑥C ≈ 𝑥+𝑥− (1 +
𝑥
3

+
− 𝑥
3

−

Λ2 (𝑥
+
− 𝑥
−
)
) , (75)

or simply

𝑥E𝑥C ≈ 𝑥+𝑥− (1 +
𝑥
2

+
+ 𝑥
+
𝑥
−
+ 𝑥
2

−

Λ2
) . (76)

In terms of 𝐵 and 𝜂, we know that

𝑥
+
𝑥
−
=
𝑄
2
Λ
2

𝜂
,

𝑥
2

±
=

2𝐵
2
∓ 2𝐵√(𝐵2 − 4𝜂𝑄2Λ2) + 4𝜂𝑄

2
Λ
2

4𝜂2
,

(77)

so that

𝑥
2

+
+ 𝑥
+
𝑥
−
+ 𝑥
2

−
=
𝐵
2
+ 𝜂𝑄
2
Λ
2

𝜂2
. (78)

This implies a product of horizons as follows:

𝑥E𝑥C ≈
𝑄
2
Λ
2

𝜂
(1 +

𝐵
2
− 3𝜂𝑄

2
Λ
2

Λ2𝜂2
) . (79)

In addition, we also have the relationship

𝑥E + 𝑥C ≈ −
𝐵

𝜂
+

𝑥
4

+
− 𝑥
4

−

Λ2 (𝑥
+
− 𝑥
−
)
, (80)

which again is explicitly dependent on parameters 𝑄 and 𝐵.
For Λ2 → ∞, identifying 𝑄 as the charge and 𝐵 = −4𝑀Λ2,
the product of the radii of horizons is independent of themass
parameter𝑀, that is, 𝑥E𝑥C ≈ 𝑄

2
Λ
2
/𝜂, whereas the sumof the

radii is dependent on themass𝑀,𝑥E+𝑥C ≈ 4𝑀Λ
2
/𝜂. In [113],

it has been argued that the nondependence of the mass often
fails when the cosmological constant is added to calculate the
product of the radii of the horizons.

Now, we consider the quantum corrections due to the
GUP for this product. The corrections to (73) and (74) are

𝑥EG = 𝑥E (1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
) ,

𝑥CG = 𝑥C (1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
) ,

(81)

so for the product 𝑥EG𝑥CG we have obtained

𝑥EG𝑥CG = 𝑥E𝑥C (1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
)
2

≈
𝑄
2
Λ
2

𝜂
(1 +

𝐵
2
− 3𝜂𝑄

2
Λ
2

Λ2𝜂2
)

⋅ (1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
)
2

.

(82)

For the sum of the radii, we have

𝑥EG + 𝑥CG = (𝑥E + 𝑥C) [1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
]

≈ (−
𝐵

𝜂
+

𝑥
4

+
− 𝑥
4

−

Λ2 (𝑥
+
− 𝑥
−
)
) [1 − 𝛼𝑙p𝑀+ 𝛼

2
𝑙
2

p𝑀
2
] .

(83)

Before finishing this section, let us address the issues
concerning cosmological and virtual horizons as in the
following.

4.1.1. Cosmological Horizon. Let us go back to the quartic to
write it as in the following:

𝑥
2
=
Λ
2
(𝑥 − 𝑥

+
) (𝑥 − 𝑥

−
)

𝑥2
. (84)

For a zero-order approximation, we have

𝑥CH = Λ, (85)

and that for a first order of approximation gives

𝑥CH = Λ
√
(Λ − 𝑥

+
) (Λ − 𝑥

−
)

Λ2

= Λ(1 −
𝑥
+
+ 𝑥
−

2Λ
+ ⋅ ⋅ ⋅) ,

= Λ(1 +
𝐵

2𝜂Λ
+ ⋅ ⋅ ⋅) .

(86)

Hence, the cosmological horizon becomes

𝑥CH = Λ +
𝐵

2𝜂
. (87)

Thus, in this order of approximation, the result for the
cosmological horizon does not depend on 𝑄 but depends
on 𝐵 = −4𝑀Λ

2 and consequently depends on the mass
parameter𝑀.

The corrected cosmological horizon is

𝑥CHG = 𝑥CH [1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
]

= (Λ +
𝐵

2𝜂
) [1 − 𝛼𝑙p𝑀+ 𝛼

2
𝑙
2

p𝑀
2
] .

(88)
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4.1.2. Virtual Horizon. Therefore, considering the exact
result, we have the following virtual horizon:

𝑥V = − (𝑥E + 𝑥C + 𝑥CH) = −Λ −
𝐵

𝜂
, (89)

which is also dependent on the mass parameter𝑀.
The corrected virtual horizon is

𝑥VG = 𝑥V [1 − 𝛼𝑙p𝑀+ 𝛼
2
𝑙
2

p𝑀
2
]

= (−Λ −
𝐵

𝜂
) [1 − 𝛼𝑙p𝑀+ 𝛼

2
𝑙
2

p𝑀
2
] .

(90)

Notice that the effect of theGUP is essential to revealmass
dependence of the event horizon products. As we previously
mentioned, a similar role is played by noncommutative
black holes. This effect at least shows more examples where
the conjectured mass independence of the event horizon
products often fails once either a cosmological constant is
added or quantum corrections via GUP are present.

5. Conclusions

In summary, by considering the GUP, we derive the two-
dimensional Horava-Lifshitz black hole temperature and
entropy using the Hamilton-Jacobi version of the tunneling
formalism. In our calculations, the Hamilton-Jacobi method
was applied to calculate the imaginary part of the action and
the GUP was introduced by the correction to the energy of a
particle due to gravity near horizon. We apply this to essen-
tially three types of black holes: Schwarzschild, Reissner-
Nordström, and AdS-Schwarzschild-like black holes. Fur-
thermore, we also addressed the issues of event horizon
products that can find relevance in computation of the
microscopic entropy in AdS

2
/CFT
1
correspondence. Sev-

eral other interesting issues, such as applying holography
techniques in two-dimensional models of QCD by using
2D AdS-Schwarzschild-like black holes, should be addressed
elsewhere.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank CAPES and CNPq for
financial support.

References

[1] R. B. Mann, A. Shiekh, and L. Tarasov, “Classical and quantum
properties of two-dimensional black holes,” Nuclear Physics B,
vol. 341, no. 1, pp. 134–154, 1990.

[2] C. G. Callan, S. B. Giddings, J. A. Harvey, and A. Strominger,
“Evanescent black holes,” Physical Review D, vol. 45, no. 4, p.
1005, 1992.

[3] A. E. Sikkema and R. B. Mann, “Gravitation and cosmology in
(1 + 1) dimensions,” Classical and Quantum Gravity, vol. 8, no.
1, pp. 219–235, 1991.

[4] D. Christensen and R. B. Mann, “The causal structure of two-
dimensional spacetimes,” Classical and Quantum Gravity, vol.
9, no. 7, pp. 1769–1786, 1992.

[5] C. Eling and T. Jacobson, “Two-dimensional gravity with a
dynamical aether,” Physical Review D, vol. 74, no. 8, Article ID
084027, 9 pages, 2006.

[6] S. M. Christensen and S. A. Fulling, “Trace anomalies and the
Hawking effect,” Physical ReviewD, vol. 15, no. 8, pp. 2088–2104,
1977.

[7] S. P. Trivedi, “Semiclassical extremal black holes,” Physical
Review D, vol. 47, no. 10, pp. 4233–4238, 1993.

[8] A. M. Polyakov, “Quantum gravity in two dimensions,”Modern
Physics Letters A, vol. 2, no. 11, pp. 893–898, 1987.

[9] C. Teitelboim, “The Hamiltonian structure of two-dimensional
space-time and its relation with the conformal anomaly,” in
Quantum Theory of Gravity, S. Christensen, Ed., pp. 327–344,
Adam Hilger, Bristol, UK, 1984.

[10] R. Jackiw, “Liouville field theory: a two-dimensional model for
gravity?” in QuantumTheory of Gravity, S. Christensen, Ed., p.
403, Adam Hilger, Bristol, UK, 1984.

[11] R. Jackiw, “Lower dimensional gravity,” Nuclear Physics B, vol.
252, pp. 343–356, 1985.

[12] V. Knizhnik, A.M. Polyakov, andA. B. Zamolodchikov, “Fractal
structure of 2d—quantum gravity,” Modern Physics Letters A,
vol. 3, no. 8, pp. 819–826, 1988.

[13] M. Leblanc, R. B. Mann, and B. Shadwick, “Regularization
ambiguities of the nonlinear 𝜎model in 2 and 2+𝜀 dimensions,”
Physical Review D, vol. 37, no. 12, pp. 3548–3556, 1988.

[14] J. Gegenberg, P. F. Kelly, R. B. Mann, R. McArthur, and D. E.
Vincent, “Reinterpretation of the non-linear sigma model with
torsion,”Modern Physics Letters A, vol. 3, no. 18, p. 1791, 1988.

[15] J. Gegenberg, P. F. Kelly, G.Kunstatter, R. B.Mann, R.McArthur,
and D. E. Vincent, “Quantum properties of algebraically
extended bosonic 𝜎models,” Physical Review D, vol. 40, article
1919, 1989.

[16] U. Lindstrom and M. Rocek, “A gravitational first-order action
for the bosonic string,” Classical and Quantum Gravity, vol. 4,
no. 4, p. L79, 1987.

[17] P.Horava, “Quantumgravity at a Lifshitz point,”Physical Review
D, vol. 79, no. 8, Article ID 084008, 2009.

[18] M. Visser, “Lorentz symmetry breaking as a quantum field the-
ory regulator,” Physical Review D. Particles, Fields, Gravitation,
and Cosmology, vol. 80, no. 2, 025011, 6 pages, 2009.

[19] T. P. Sotiriou, M. Visser, and S. Weinfurtner, “Quantum gravity
without Lorentz invariance,” Journal of High Energy Physics, vol.
2009, no. 10, article 033, 2009.

[20] C. Bogdanos and E. N. Saridakis, “Perturbative instabilities in
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