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By exploiting the supersymmetric invariant restrictions on the chiral and antichiral supervariables, we derive the off-shell nilpotent
symmetry transformations for a specific (0 + 1)-dimensional N = 2 supersymmetric quantum mechanical model which is
considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable 𝑡 and a pair of Grassmannian variables
(𝜃, 𝜃)). We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specificN = 2 SUSY
quantum mechanical model is a model for Hodge theory.

1. Introduction

Gauge theory is one of the most important theories of
modern physics because three out of four fundamental
interactions of nature are governed by the gauge theory.
The Becchi-Rouet-Stora-Tyutin (BRST) formalism is one of
the systematic approaches to covariantly quantize any 𝑝-
form (𝑝 = 1, 2, 3, . . .) gauge theories, where the local gauge
symmetry of a given theory is traded with the “quantum”
gauge (i.e., (anti-)BRST) symmetry transformations [1–4]. It
is important to point out that the (anti-)BRST symmetries
are nilpotent and absolutely anticommuting in nature. One
of the unique, elegant, and geometrically rich methods to
derive these (anti-)BRST transformations is the superfield
formalism, where the horizontality condition (HC) plays an
important role [5–12]. This HC is a useful tool to derive the
BRST, aswell as anti-BRST symmetry transformations for any
(non-)Abelian 𝑝-form (𝑝 = 1, 2, 3, . . .) gauge theory, where
no interaction between the gauge andmatter fields is present.

For the derivation of a full set of (anti-)BRST symmetry
transformations in the case of interacting gauge theories, a
powerful method known as augmented version of superfield
formalism has been developed in a set of papers [13–16].
In augmented superfield formalism, some conditions named
gauge invariant restrictions (GIRs), in addition to the HC,

have been imposed to obtain the off-shell nilpotent and
absolutely anticommuting (anti-)BRST transformations. It
is worthwhile to mention here that this technique has also
been applied in case of some N = 2 supersymmetric
(SUSY) quantum mechanical (QM) models to derive the
off-shell nilpotent SUSY symmetry transformations [17–20].
These SUSY transformations have been derived by using the
supersymmetric invariant restrictions (SUSYIRs) and it has
been observed that the SUSYIRs are the generalizations of the
GIRs, in case ofN = 2 SUSY QM theory.

The aim of present investigation is to explore and apply
the augmented version of HC to a new N = 2 SUSY QM
model which is different from the earlier models present in
the literature. In our present endeavor, we derive the off-
shell nilpotent SUSY transformations for a specific N =2 SUSY QM model by exploiting the potential and power
of the SUSYIRs. The additional reason behind our present
investigation is to take one more step forward in the direc-
tion of the confirmation of SUSYIRs (i.e., generalization of
augmented superfield formalism) as a powerful technique for
the derivation of SUSY transformations for any generalN = 2
SUSY QM system.

One of the key differences between the (anti-)BRST and
SUSY symmetry transformations is that the (anti-)BRST
symmetries are nilpotent as well as absolutely anticommuting
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in nature, whereas SUSY transformations are only nilpo-
tent and the anticommutator of fermionic transformations
produces an additional symmetry transformation of the
theory. Due to this basic reason, we are theoretically forced
to use the (anti)chiral supervariables generalized on the
(1, 1)-dimensional super-submanifolds of the full (1, 2)-
dimensional supermanifold. The latter is parametrized by
the superspace coordinate 𝑍𝑀 = (𝑡, 𝜃, 𝜃), where 𝜃, 𝜃 are
the Grassmannian variables and 𝑡 is the time-evolution
parameter.

The contents of present investigation are organized as
follows. In Section 2, we discuss the symmetry transforma-
tions associated with the specific N = 2 SUSY QM model.
It is to be noted that there are three continuous symmetries
associated with this particular model, in which two of them
are fermionic and one is bosonic in nature. Section 3 is
devoted to the derivation of one of the fermionic transfor-
mations by using the antichiral supervariable approach. We
derive the second SUSY fermionic symmetry by exploiting
the chiral supervariable approach in Section 4. In Section 5,
the Lagrangian of the model is presented in terms of the
(anti)chiral supervariables and the geometrical interpretation
for invariance of the Lagrangian in terms of the Grass-
mannian derivatives (𝜕𝜃 and 𝜕𝜃) is explicated. Furthermore,
we also represent the charges corresponding to the con-
tinuous symmetry transformations in terms of (anti)chiral
supervariables. In Section 6, we show that the fermionic
SUSY symmetry transformations satisfy the N = 2 SUSY
algebra, which is identical to the Hodge algebra obeyed by
the cohomological operators of differential geometry. Thus,
we show that this particular N = 2 SUSY QM model is an
example of Hodge theory. Finally, we draw conclusions in
Section 7, with remarks.

2. Preliminaries: A specific N = 2
SUSY QM Model

We begin with the action of a specific (0 + 1)-dimensional
N = 2 QMmodel [21]:

𝑆 = ∫𝑑𝑡𝐿0
= ∫𝑑𝑡 [(𝑑𝜙𝑑𝑡 + 𝑠𝜕𝑉𝜕𝜙 )

2 − 𝑖𝜓( 𝑑
𝑑𝑡 + 𝑠 𝜕2𝑉𝜕𝜙𝜕𝜙)𝜓] ,

(1)

where the bosonic variable 𝜙 and fermionic variables 𝜓, 𝜓
are the functions of time-evolution parameter 𝑡, 𝑉(𝜙) is a
general potential function, and 𝑠 is an independent constant
parameter. For algebraic convenience, we linearize the first
term in (1) by introducing an auxiliary variable 𝐴. As a
consequence, the action can be written as (henceforth, we
denote ̇𝜙 = 𝑑𝜙/𝑑𝑡, 𝑉󸀠 = 𝜕𝑉/𝜕𝜙, 𝑉󸀠󸀠 = 𝜕2𝑉/𝜕𝜙𝜕𝜙 in the text)

𝑆 = ∫𝑑𝑡𝐿

= ∫𝑑𝑡 [𝑖 ( ̇𝜙 + 𝑠𝑉󸀠)𝐴 + 𝐴2
2 − 𝑖𝜓 (𝜓̇ + 𝑠𝜓𝑉󸀠󸀠)] ,

(2)

where 𝐴 = −𝑖( ̇𝜙 + 𝑠𝑉󸀠) is the equation of motion. Using this
expression for 𝐴 in (2), one can recover the original action.

For the present QM system, we have the following off-
shell nilpotent (𝑠21 = 0, 𝑠22 = 0) SUSY transformations (we
point out that the SUSY transformations in (3) differ by an
overall 𝑖-factor from [21]):

𝑠1𝜙 = 𝑖𝜓,
𝑠1𝜓 = 0,
𝑠1𝜓 = 𝑖𝐴,
𝑠1𝐴 = 0,
𝑠2𝜙 = 𝑖𝜓,
𝑠2𝜓 = 0,
𝑠2𝜓 = 𝑖𝐴 − 2𝑠𝑉󸀠,
𝑠2𝐴 = 2𝑠𝜓𝑉󸀠󸀠.

(3)

Under the above symmetry transformations, the Lagrangian
in (2) transforms as

𝑠1𝐿 = 0,
𝑠2𝐿 = 𝑑

𝑑𝑡 (−𝐴𝜓) .
(4)

Thus, the action integral remains invariant (i.e., 𝑠1𝑆 = 0, 𝑠2𝑆 =0). According to Noether’s theorem, the continuous SUSY
symmetry transformations 𝑠1 and 𝑠2 lead to the following
conserved charges, respectively:

𝑄 = −𝜓𝐴,
𝑄 = −𝜓 [𝐴 + 2𝑖𝑠𝑉󸀠] . (5)

The conservation of the SUSY charges (i.e., 𝑄̇ = 0, 𝑄̇ = 0)
can be proven by exploiting the following Euler-Lagrange
equations of motion:

𝐴̇ = 𝑠𝐴𝑉󸀠󸀠 − 𝑠𝜓𝜓𝑉󸀠󸀠󸀠,
𝜓̇ = −𝑠𝜓𝑉󸀠󸀠,
𝐴 = −𝑖 ( ̇𝜙 + 𝑠𝑉󸀠) ,
𝜓̇ = −𝑠𝜓𝑉󸀠󸀠.

(6)

It turns out that these charges are the generators of SUSY
transformations (3). One can explicitly check that the follow-
ing relations are true:

𝑠1Φ = 𝑖 [Φ,𝑄]± ,
𝑠2Φ = 𝑖 [Φ,𝑄]

±
,
Φ = 𝜙, 𝐴, 𝜓, 𝜓,

(7)
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where the subscripts (±), on the square brackets, deal with
the (anti)commutator depending on the variables being
fermionic/bosonic in nature.

It is to be noted that the anticommutator of the fermionic
SUSY transformations (𝑠1 and 𝑠2) leads to a bosonic symme-
try (𝑠𝜔):

𝑠𝜔𝜙 = −2 (𝐴 + 𝑖𝑠𝑉󸀠) ,
𝑠𝜔𝜓 = −2𝑖𝑠𝜓𝑉󸀠󸀠,
𝑠𝜔𝜓 = 2𝑖𝑠𝜓𝑉󸀠󸀠,
𝑠𝜔𝐴 = 2𝑖𝑠 (𝐴𝑉󸀠󸀠 − 𝜓𝜓𝑉󸀠󸀠󸀠) .

(8)

The application of bosonic symmetry (𝑠𝜔) on the Lagrangian
produces total time derivative:

𝑠𝜔𝐿 = (𝑠1𝑠2 + 𝑠2𝑠1) 𝐿 = 𝑑
𝑑𝑡 (−𝑖𝐴2) . (9)

Thus, according to Noether’s theorem, the above continuous
bosonic symmetry leads to a bosonic conserved charge (𝑄𝜔)
as follows:

𝑄𝜔 = −𝑖𝐴2 + 2𝑠𝐴𝑉󸀠 + 2𝑠𝜓𝜓𝑉󸀠󸀠

= 2𝑖 [Π𝜙Π𝜙2 − 𝑠Π𝜙𝑉󸀠 − 𝑠𝜓Π𝜓𝑉󸀠󸀠] ≡ (2𝑖)𝐻,
(10)

where Π𝜙 = 𝑖𝐴,Π𝜓 = 𝑖𝜓 are the canonical momenta
corresponding to the variables 𝜙, 𝜓, respectively. It is clear
that the bosonic charge 𝑄𝜔 is the Hamiltonian𝐻 (modulo a
constant 2𝑖-factor) of our present model.

One of the important features of SUSY transformations is
that the application of this bosonic symmetry must produce
the time translation of the variable (modulo a constant 2𝑖-
factor), which can be checked as

𝑠𝜔Φ = {𝑠1, 𝑠2}Φ = (2𝑖) Φ̇, Φ = 𝜙, 𝐴, 𝜓, 𝜓, (11)

where, in order to prove the sanctity of this equation, we have
used the equations of motion mentioned in (6).

3. Off-Shell Nilpotent SUSY Transformations:
Antichiral Supervariable Approach

In order to derive the continuous transformation 𝑠1, we
shall focus on the (1, 1)-dimensional super-submanifold (of
general (1, 2)-dimensional supermanifold) parameterized by
the supervariable (𝑡, 𝜃). For this purpose, we impose super-
symmetric invariant restrictions (SUSYIRs) on the antichiral

supervariables.We then generalize the basic (explicit 𝑡 depen-
dent) variables to their antichiral supervariable counterparts:

𝜙 (𝑡) 󳨀→ Φ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Φ̃ (𝑡, 𝜃) = 𝜙 (𝑡) + 𝜃𝑓1 (𝑡) ,
𝜓 (𝑡) 󳨀→ Ψ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Ψ̃ (𝑡, 𝜃) = 𝜓 (𝑡) + 𝑖𝜃𝑏1 (𝑡) ,
𝜓 (𝑡) 󳨀→ Ψ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Ψ̃ (𝑡, 𝜃) = 𝜓 (𝑡) + 𝑖𝜃𝑏2 (𝑡) ,
𝐴 (𝑡) 󳨀→ 𝐴(𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ 𝐴 (𝑡, 𝜃) = 𝐴 (𝑡) + 𝜃𝑃 (𝑡) ,

(12)

where 𝑓1(𝑡), 𝑃(𝑡) and 𝑏1(𝑡), 𝑏2(𝑡) are the fermionic and
bosonic secondary variables, respectively.

It is observed from (3) that 𝑠1(𝜓, 𝐴) = 0 (i.e., both 𝜓 and𝐴 are invariant under 𝑠1). Therefore, we demand that both
variables should remain unchanged due to the presence of
Grassmannian variable 𝜃. As a result of the above restrictions,
we obtain

Ψ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Ψ̃ (𝑡, 𝜃) = 𝜓 (𝑡) 󳨐⇒ 𝑏1 = 0,
𝐴 (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ 𝐴 (𝑡, 𝜃) = 𝐴 (𝑡) 󳨐⇒ 𝑃 = 0. (13)

We further point out that 𝑠1(𝜙𝜓) = 0 and 𝑠1( ̇𝜙𝜓̇) = 0
due to the fermionic nature of 𝜓 (i.e., 𝜓2 = 0). Thus, these
restrictions yield

Φ̃ (𝑡, 𝜃) Ψ̃ (𝑡, 𝜃) = 𝜙 (𝑡) 𝜓 (𝑡) 󳨐⇒ 𝑓1𝜓 = 0,
̇̃Φ (𝑡, 𝜃) ̇̃Ψ (𝑡, 𝜃) = ̇𝜙 (𝑡) 𝜓̇ (𝑡) 󳨐⇒ ̇𝑓1𝜓̇ = 0. (14)

The trivial solution for the above relationships is 𝑓1 ∝ 𝜓;
for algebraic convenience, we choose 𝑓1 = 𝑖𝜓. Here, the 𝑖-
factor has been taken due to the convention we have adopted
for the present SUSY QM theory. Substituting the values
of the secondary variables in the expansions of antichiral
supervariables (12), one obtains

Φ̃(𝑎𝑐) (𝑡, 𝜃) = 𝜙 (𝑡) + 𝜃 (𝑖𝜓) ≡ 𝜙 (𝑡) + 𝜃 (𝑠1𝜙 (𝑡)) ,
Ψ̃(𝑎𝑐) (𝑡, 𝜃) = 𝜓 (𝑡) + 𝜃 (0) ≡ 𝜓 (𝑡) + 𝜃 (𝑠1𝜓 (𝑡)) ,
𝐴(𝑎𝑐) (𝑡, 𝜃) = 𝐴 (𝑡) + 𝜃 (0) ≡ 𝐴 (𝑡) + 𝜃 (𝑠1𝐴 (𝑡)) .

(15)

The superscript (𝑎𝑐) in the above represents the antichiral
supervariables, obtained after the application of SUSIRs.
Furthermore, we note that the 1D potential function 𝑉(𝜙)
can be generalized to 𝑉̃(Φ̃(𝑎𝑐)) onto (1, 1)-dimensional super-
submanifold as

𝑉 (𝜙) 󳨀→ 𝑉̃ (Φ̃(𝑎𝑐)) = 𝑉̃(𝑎𝑐) (𝜙 + 𝜃 (𝑖𝜓)) = 𝑉 (𝜙) + 𝜃 (𝑖𝜓𝑉󸀠) ≡ 𝑉 (𝜙) + 𝜃 (𝑠1𝑉 (𝜙)) , (16)
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where we have used the expression of antichiral supervariable
Φ̃(𝑎𝑐)(𝑡, 𝜃) as given in (15).

In order to find out the SUSY transformation for 𝜓, it
can be checked that the application of 𝑠1 on the following
vanishes:

𝑠1 [𝑖 ( ̇𝜙 + 𝑠𝑉󸀠)𝐴 − 𝑖𝜓 (𝜓̇ + 𝑠𝜓𝑉󸀠󸀠)] = 0. (17)

As a consequence, the above can be used as a SUSYIR
and we replace the ordinary variables by their antichiral
supervariables as

[𝑖 ( ̇̃Φ(𝑎𝑐) + 𝑠𝑉̃󸀠(𝑎𝑐))𝐴(𝑎𝑐)

− 𝑖Ψ̃ ( ̇̃Ψ(𝑎𝑐) + 𝑠Ψ̃(𝑎𝑐)𝑉̃󸀠󸀠(𝑎𝑐))] = [𝑖 ( ̇𝜙 + 𝑠𝑉󸀠)𝐴
− 𝑖𝜓 (𝜓̇ + 𝑠𝜓𝑉󸀠󸀠)] .

(18)

After doing some trivial computations, we obtain 𝑏2 =𝐴. Recollecting all the value of secondary variables and
substituting them into (12), we finally obtain the following
antichiral supervariable expansions:

Φ̃(𝑎𝑐) (𝑡, 𝜃) = 𝜙 (𝑡) + 𝜃 (𝑖𝜓) ≡ 𝜙 (𝑡) + 𝜃 (𝑠1𝜙 (𝑡)) ,
Ψ̃(𝑎𝑐) (𝑡, 𝜃) = 𝜓 (𝑡) + 𝜃 (0) ≡ 𝜓 (𝑡) + 𝜃 (𝑠1𝜓 (𝑡)) ,
Ψ̃(𝑎𝑐) (𝑡, 𝜃) = 𝜓 (𝑡) + 𝜃 (𝑖𝐴) ≡ 𝜓 (𝑡) + 𝜃 (𝑠1𝜓 (𝑡)) ,
𝐴(𝑎𝑐) (𝑡, 𝜃) = 𝐴 (𝑡) + 𝜃 (0) ≡ 𝐴 (𝑡) + 𝜃 (𝑠1𝐴 (𝑡)) .

(19)

Finally, we have derived explicitly the SUSY transformation 𝑠1
for all the variables by exploiting SUSY invariant restrictions
on the antichiral supervariables. These symmetry transfor-
mations are

𝑠1𝜙 = 𝑖𝜓,
𝑠1𝜓 = 0,
𝑠1𝜓 = 𝑖𝐴,
𝑠1𝐴 = 0,
𝑠1𝑉 = 𝑖𝜓𝑉󸀠.

(20)

It is worthwhile to mention here that, for the antichiral
supervariable expansions given in (11), we have the following
relationship between the Grassmannian derivative 𝜕𝜃 and
SUSY transformations 𝑠1:

𝜕
𝜕𝜃Ω̃
(𝑎𝑐) (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ 𝜕

𝜕𝜃Ω̃
(𝑎𝑐) (𝑡, 𝜃) = 𝑠1Ω (𝑡) , (21)

where Ω(𝑎𝑐)(𝑡, 𝜃) is the generic supervariable obtained by
exploiting the SUSY invariant restriction on the antichiral
supervariables. It is easy to check from the above equation
that the symmetry transformation (𝑠1) for any generic vari-
able Ω(𝑡) is equal to the translation along the 𝜃-direction
of the antichiral supervariable. Furthermore, it can also be
checked that nilpotency of the Grassmannian derivative 𝜕𝜃
(i.e., 𝜕2

𝜃
= 0) implies 𝑠21 = 0.

4. Off-Shell Nilpotent SUSY Transformations:
Chiral Supervariable Approach

For the derivation of second fermionic SUSY transforma-
tion 𝑠2, we concentrate on the chiral super-submanifold
parametrized by the supervariables (𝑡, 𝜃). Now, all the ordi-
nary variables (depending explicitly on 𝑡) are generalized to a
(1, 1)-dimensional chiral super-submanifold as

𝜙 (𝑡) 󳨀→ Φ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Φ̃ (𝑡, 𝜃) = 𝜙 (𝑡) + 𝜃𝑓1 (𝑡) ,
𝜓 (𝑡) 󳨀→ Ψ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Ψ̃ (𝑡, 𝜃) = 𝜓 (𝑡) + 𝑖𝜃𝑏1 (𝑡) ,
𝜓 (𝑡) 󳨀→ Ψ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Ψ̃ (𝑡, 𝜃) = 𝜓 (𝑡) + 𝑖𝜃𝑏2 (𝑡) ,
𝐴 (𝑡) 󳨀→ 𝐴(𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ 𝐴 (𝑡, 𝜃) = 𝐴 (𝑡) + 𝜃𝑃 (𝑡) .

(22)

In the above, secondary variables𝑓1(𝑡), 𝑃(𝑡) and 𝑏1(𝑡), 𝑏2(𝑡)
are fermionic and bosonic variables, respectively. We can
derive the values of these secondary variables in terms of the
basic variables, by exploiting the power and potential of SUSY
invariant restrictions.

It is to be noted from (3) that 𝜓 does not transform under
SUSY transformations 𝑠2 (i.e., 𝑠2𝜓 = 0) so the variable 𝜓
would remain unaffected by the presence of Grassmannian
variable 𝜃. As a consequence, we have the following:

Ψ̃ (𝑡, 𝜃, 𝜃)󵄨󵄨󵄨󵄨󵄨󵄨𝜃=0 ≡ Ψ̃ (𝑡, 𝜃) = 𝜓 (𝑡) 󳨐⇒ 𝑏2 = 0. (23)

Furthermore, we observe that 𝑠2(𝜙𝜓) = 0 and 𝑠2( ̇𝜙𝜓̇) = 0
due to the fermionic nature of𝜓. Generalizing these invariant
restrictions to the chiral supersubmanifold, we have the
following SUSYIRs in the following forms; namely,

Φ̃ (𝑡, 𝜃) Ψ̃ (𝑡, 𝜃) = 𝜙 (𝑡) 𝜓 (𝑡) ,
̇̃Φ (𝑡, 𝜃) Ψ̇ (𝑡, 𝜃) = ̇𝜙 (𝑡) 𝜓̇ (𝑡) .

(24)

After putting the expansions for supervariable (22) in the
above, we get

𝑓1𝜓 = 0,
𝑓̇1𝜓̇ = 0. (25)

The solution for the above relationship is 𝑓1 = 𝑖𝜓. Substitut-
ing the value of secondary variables in the chiral supervari-
able expansions (21), we obtain the following expressions:

Φ̃(𝑐) (𝑡, 𝜃) = 𝜙 (𝑡) + 𝜃 (𝑖𝜓) ≡ 𝜙 (𝑡) + 𝜃 (𝑠2𝜙 (𝑡)) ,
Ψ̃(𝑐) (𝑡, 𝜃) = 𝜓 (𝑡) + 𝑖𝜃 (0) ≡ 𝜓 (𝑡) + 𝜃 (𝑠2𝜓 (𝑡)) ,

(26)

where superscript (𝑐) represents the chiral supervariables
obtained after the applicationof SUSYIRs. Using (26), one
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can generalize 𝑉(𝜙) to 𝑉̃(Φ̃(𝑐)) onto the (1, 1)-dimensional
chiral super-submanifold as

𝑉 (𝜙) 󳨀→ 𝑉̃ (Φ̃(𝑐)) = 𝑉̃(𝑐) (𝜙 + 𝜃 (𝑖𝜓)) = 𝑉 (𝜙) + 𝜃 (𝑖𝜓𝑉󸀠 (𝜙)) ≡ 𝑉 (𝜙) + 𝑠2 (𝑉 (𝜙)) , (27)

where we have used the expression of chiral supervariable
Φ̃(𝑐)(𝑡, 𝜃) given in (26).

We note that 𝑠2[𝑖𝐴−2𝑠𝜓𝑉󸀠] = 0 because of the nilpotency
of 𝑠2 [cf. (3)]. Thus, we have the following SUSYIR in our
present theory:

𝑖𝐴(𝑐) − 2𝑠Ψ̃𝑉̃󸀠(𝑐) = [𝑖𝐴 − 2𝑠𝜓𝑉󸀠] . (28)

This restriction serves our purpose for the derivation of SUSY
transformation of 𝐴(𝑡). Exploiting the above restriction, we
get the value of secondary variable 𝑃(𝑡) in terms of basic
variables as 𝑃 = 2𝑠𝜓𝑉󸀠󸀠.

It is important to note that the following sum of the
composite variables is invariant under 𝑠2; namely,

𝑠2 [𝑖𝑠𝑉󸀠𝐴 + 1
2𝐴2 − 𝑖𝑠𝜓𝜓𝑉󸀠󸀠] = 0. (29)

In order to calculate the fermionic symmetry transformation
corresponding to variable 𝜓, we use the above relationship as
a SUSYIR:

𝑖𝑠𝑉̃󸀠(𝑐)𝐴(𝑐) + 1
2𝐴2(𝑐) − 𝑖𝑠Ψ̃(𝑐)Ψ̃𝑉̃󸀠󸀠(𝑐)

= 𝑖𝑠𝑉󸀠𝐴 + 1
2𝐴2 − 𝑖𝑠𝜓𝜓𝑉󸀠󸀠,

(30)

and after some computations, one gets 𝑏1 = 𝐴 + 2𝑖𝑠𝑉󸀠.
Recollecting all the values of secondary variables and

substituting them into (21), we have the expansions of the
chiral supervariables as

Φ̃(𝑐) (𝑡, 𝜃) = 𝜙 (𝑡) + 𝜃 (𝑖𝜓) ≡ 𝜙 (𝑡) + 𝜃 (𝑠2𝜙 (𝑡)) ,
Ψ̃(𝑐) (𝑡, 𝜃) = 𝜓 (𝑡) + 𝜃 (𝑖𝐴 − 2𝑠𝑉󸀠)

≡ 𝜓 (𝑡) + 𝜃 (𝑠2𝜓 (𝑡)) ,
Ψ̃(𝑐) (𝑡, 𝜃) = 𝜓 (𝑡) + 𝑖𝜃 (0) ≡ 𝜓 (𝑡) + 𝜃 (𝑠2𝜓 (𝑡)) ,
𝐴(𝑐) (𝑡, 𝜃) = 𝐴 (𝑡) + 𝜃 (2𝑠𝜓𝑉󸀠󸀠) ≡ 𝐴 (𝑡) + 𝜃 (𝑠2𝐴 (𝑡)) .

(31)

Finally, the supersymmetric transformations (𝑠2) for all the
basic and auxiliary variables are listed as

𝑠2𝜙 = 𝑖𝜓,
𝑠2𝜓 = 0,
𝑠2𝜓 = 𝑖𝐴 − 2𝑠𝑉󸀠,
𝑠2𝑉 = 𝑖𝜓𝑉󸀠,
𝑠2𝐴 = 2𝑠𝜓𝑉󸀠󸀠.

(32)

It is important to point out here that we have the following
mapping between the Grassmannian derivative (𝜕𝜃) and the
symmetry transformation 𝑠2:

𝜕
𝜕𝜃Ω̃(𝑐) (𝑡, 𝜃, 𝜃)

󵄨󵄨󵄨󵄨󵄨𝜃=0 = 𝜕
𝜕𝜃Ω̃(𝑐) (𝑡, 𝜃) = 𝑠2Ω (𝑡) , (33)

where Ω̃(𝑐)(𝑡, 𝜃) is the generic chiral supervariables obtained
after the application of supersymmetric invariant restrictions
and Ω(𝑡) denotes the basic variables of our present QM
theory. The above equation captures the geometrical inter-
pretation of transformation (𝑠2) in terms of the Grassman-
nian derivative (𝜕𝜃) because of the fact that the translation
along 𝜃-direction of chiral supervariable is equivalent to the
symmetry transformation (𝑠2) of the same basic variable. We
observe from (33) that the nilpotency of SUSY transformation𝑠2 (i.e., 𝑠22 = 0) can be generalized in terms of Grassmannian
derivative 𝜕2𝜃 = 0.
5. Invariance and Off-Shell Nilpotency:

Supervariable Approach

It is interesting to note that, by exploiting the expansions of
supervariables (11), the Lagrangian in (2) can be expressed in
terms of the antichiral supervariables as

𝐿 󳨐⇒ 𝐿(𝑎𝑐) = 𝑖 ( ̇̃Φ(𝑎𝑐) + 𝑠𝑉̃󸀠(𝑎𝑐))𝐴(𝑎𝑐) + 1
2𝐴(𝑎𝑐)𝐴(𝑎𝑐) − 𝑖Ψ̃(𝑎𝑐) ( ̇̃Ψ(𝑎𝑐) + 𝑠Ψ̃(𝑎𝑐)𝑉̃󸀠󸀠(𝑎𝑐)) . (34)

In the earlier section, we have shown that SUSY transforma-
tion (𝑠1) and translational generator (𝜕𝜃) are geometrically
related to each other (i.e., 𝑠1 ↔ 𝜕𝜃). As a consequence, one can

also capture the invariance of the Lagrangian in the following
fashion: 𝜕

𝜕𝜃𝐿
(𝑎𝑐) = 0 ⇐⇒ 𝑠1𝐿 = 0. (35)
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Similarly, Lagrangian (2) can also be written in terms of the
chiral supervariables as

𝐿 󳨐⇒ 𝐿(𝑐) = 𝑖 ( ̇̃Φ(𝑐) + 𝑠𝑉̃󸀠(𝑐))𝐴(𝑐) + 1
2𝐴(𝑐)𝐴(𝑐) − 𝑖Ψ̃(𝑐) ( ̇̃Ψ(𝑐) + 𝑠Ψ̃(𝑐)𝑉̃󸀠󸀠(𝑐)) . (36)

Since the fermionic symmetry (𝑠2) is geometrically connected
with the translational generator (𝜕𝜃), therefore, the invariance
of the Lagrangian can be geometrically interpreted as follows:

𝜕
𝜕𝜃𝐿(𝑐) =

𝑑
𝑑𝑡 [−𝜓𝐴] ⇐⇒ 𝑠2𝐿 = 𝑑

𝑑𝑡 [−𝜓𝐴] . (37)

As a result, the action integral 𝑆 = ∫ 𝑑𝑡𝐿(𝑐)|𝜃=0 remains
invariant.

We point out that the conserved charges 𝑄 and 𝑄
corresponding to the continuous symmetry transformations𝑠1 and 𝑠2 can also be expressed as

𝑄 = 𝑠1 [−𝑖𝜓𝜓] = −𝜓𝐴 ⇐⇒ 𝑄 = 𝜕
𝜕𝜃 [−𝑖Ψ̃

(𝑎𝑐)Ψ̃(𝑎𝑐)] ,
𝑄 = 𝑠2 [𝑖𝜓𝜓] = −𝜓 [𝐴 + 𝑖𝑠𝑉󸀠] ⇐⇒ 𝑄 = 𝜕

𝜕𝜃 [𝑖Ψ̃(𝑐)Ψ̃
(𝑐)] .

(38)

The nilpotency properties of the above charges can be shown
in a straightforward manner with the help of symmetry
properties:

𝑠1𝑄 = +𝑖 {𝑄, 𝑄} = 0 󳨐⇒ 𝑄2 = 0,
𝑠2𝑄 = +𝑖 {𝑄,𝑄} = 0 󳨐⇒ 𝑄2 = 0. (39)

In the language of translational generators, these properties
can be written as 𝜕𝜃𝑄 = 0 ⇒ 𝑄2 = 0 and 𝜕𝜃𝑄 = 0 ⇒
𝑄2 = 0. These relations hold due to the nilpotency of the
Grassmannian derivatives (i.e., 𝜕2

𝜃
= 0, 𝜕2𝜃 = 0).

6. N = 2 SUSY Algebra and Its Interpretation

We observe that, under the discrete symmetry

𝑡 󳨀→ 𝑡,
𝜙 󳨀→ 𝜙,
𝜓 󳨀→ 𝜓,
𝜓 󳨀→ 𝜓,
𝑠 󳨀→ −𝑠,
𝐴 󳨀→ 𝐴 + 2𝑖𝑠𝑉󸀠,

(40)

the Lagrangian (𝐿) transforms as 𝐿 → 𝐿+(𝑑/𝑑𝑡)[𝑖𝜓𝜓−2𝑠𝑉].
Hence, action integral (2) of the SUSY QM system remains
invariant. It is to be noted that the above discrete symmetry
transformations are important because they relate the two
SUSY transformations (𝑠1, 𝑠2):

𝑠2Ω = ± ∗ 𝑠1 ∗ Ω, (41)

where Ω is the generic variables present in the model. It is
to be noted that, generally, the (±) signs are governed by the
two successive operations of the discrete symmetry on the
variables as

∗ (∗Ω) = ±Ω. (42)

In the present case, only the (+) sign will occur for all the
variables (i.e., Ω = 𝜙, 𝜓, 𝜓, 𝐴). It can be easily seen that
relationship (41) is analogous to the relationship 𝛿 = ± ∗𝑑∗ of differential geometry (where 𝑑 and 𝛿 are the exterior
and coexterior derivative, resp., and (∗) is the Hodge duality
operation).

We now focus on the physical identifications of the de
Rham cohomological operators of differential geometry in
terms of the symmetry transformations. It can be explicitly
checked that the continuous symmetry transformations,
together with discrete symmetry for our SUSY QM model,
satisfy the following algebra [17–20, 22–24]:

𝑠21 = 0,
𝑠22 = 0,

{𝑠1, 𝑠2} = (𝑠1 + 𝑠2)2 = 𝑠𝜔,
[𝑠1, 𝑠𝜔] = 0,
[𝑠2, 𝑠𝜔] = 0,

𝑠2 = ± ∗ 𝑠1∗,

(43)

which is identical to the algebra obeyed by the de Rham
cohomological operators (𝑑, 𝛿, Δ) [25–29],

𝑑2 = 0,
𝛿2 = 0,

{𝑑, 𝛿} = (𝑑 + 𝛿)2 = Δ,
[𝑑, Δ] = 0,
[𝛿, Δ] = 0,

𝛿 = ± ⋆ 𝑑 ⋆ .

(44)

Here, Δ is the Laplacian operator. From (43) and (44), we
can identify the exterior derivative with 𝑠1 and coexterior
derivative 𝛿 with 𝑠2. The discrete symmetry (40) provides
the analogue of Hodge duality (⋆) operation of differential
geometry. In fact, there is a one-to-one mapping between the
symmetry transformations and the de Rham cohomological
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operators. It is also clear from (43) and (44) that the bosonic
symmetry (𝑠𝜔) and Laplacian operator (Δ) are the Casimir
operators of the algebra given in (43) and (44), respectively.
Thus, our present N = 2 SUSY model provides a model for
Hodge theory. Furthermore, a similar algebra given in (44) is
also satisfied by the conserved charges 𝑄, 𝑄, and 𝑄𝜔:

𝑄2 = 0,
𝑄2 = 0,

{𝑄, 𝑄} = 𝑄𝜔 = 2𝑖𝐻,
[𝑄,𝐻] = 0,
[𝑄,𝐻] = 0.

(45)

In the above, we have used the canonical quantum
(anti)commutation relations [𝜙, 𝐴] = 1 and {𝜓, 𝜓} = 1.
It is important to mention here that the bosonic charge (i.e.,
the Hamiltonian of the theory modulo a 2𝑖-factor) is the
Casimir operator in algebra (45).

Some crucial properties related to the de Rham cohomo-
logical operators (𝑑, 𝛿, Δ) can be captured by these charges.
For instance, we observe from (45) that the Hamiltonian is
the Casimir operator of the algebra.Thus, it can be easily seen
that 𝐻𝑄 = 𝑄𝐻 implies that 𝑄𝐻−1 = 𝐻−1𝑄, if the inverse
of the Hamiltonian exists. Since we are dealing with the no-
singular Hamiltonian, we presume that the Casimir operator
has its well-defined inverse value. By exploiting (45), it can be
seen that

[𝑄𝑄𝐻 ,𝑄] = 𝑄,

[𝑄𝑄𝐻 ,𝑄] = −𝑄,

[𝑄𝑄𝐻 ,𝑄] = −𝑄,

[𝑄𝑄𝐻 ,𝑄] = 𝑄.

(46)

Let us define an eigenvalue equation (𝑄𝑄/𝐻)|𝜒⟩𝑝 = 𝑝|𝜒⟩𝑝,
where |𝜒⟩𝑝 is the quantumHilbert state with eigenvalue 𝑝. By
using algebra (46), one can verify the following:

(𝑄𝑄
𝐻 )𝑄 󵄨󵄨󵄨󵄨𝜒⟩𝑝 = (𝑝 + 1) 󵄨󵄨󵄨󵄨𝜒⟩𝑝 ,

(𝑄𝑄
𝐻 )𝑄 󵄨󵄨󵄨󵄨𝜒⟩𝑝 = (𝑝 − 1) 󵄨󵄨󵄨󵄨𝜒⟩𝑝 ,

(𝑄𝑄
𝐻 )𝐻 󵄨󵄨󵄨󵄨𝜒⟩𝑝 = 𝑝 󵄨󵄨󵄨󵄨𝜒⟩𝑝 .

(47)

As a consequence of (47), it is evident that 𝑄|𝜒⟩𝑝, 𝑄|𝜒⟩𝑝,
and 𝐻|𝜒⟩𝑝 have the eigenvalues (𝑝 + 1), (𝑝 − 1), and 𝑝,
respectively, with respect to to the operator 𝑄𝑄/𝐻.

The above equation provides a connection between the
conserved charges (𝑄, 𝑄,𝐻) and de Rham cohomological
operators (𝑑, 𝛿, Δ) because as we know the action of 𝑑 on
a given form increases the degree of the form by one,
whereas application of 𝛿 decreases the degree by one unit and
operatorΔ keeps the degree of a form intact.These important
properties can be realized by the charges (𝑄, 𝑄, 𝑄𝜔), where
the eigenvalues and eigenfunctions play the key role [22].

7. Conclusions

In summary, exploiting the supervariable approach, we have
derived the off-shell nilpotent symmetry transformations for
the N = 2 SUSY QM system. This has been explicated
through the 1D SUSY invariant quantities, which remain
unaffected due to the presence of the Grassmannian vari-
ables 𝜃 and 𝜃. Furthermore, we have provided the geomet-
rical interpretation of the SUSY transformations (𝑠1 and𝑠2) in terms of the translational generators (𝜕𝜃 and 𝜕𝜃)
along the Grassmannian directions 𝜃 and 𝜃, respectively.
Further, we have expressed the Lagrangian in terms of
the (anti)chiral supervariables and the invariance of the
Lagrangian under continuous transformations (𝑠1, 𝑠2) has
been shown within the translations generators along (𝜃, 𝜃)-
directions.The conserved SUSY charges corresponding to the
fermionic symmetry transformations have been expressed in
terms of (anti)chiral supervariables and the Grassmannian
derivatives. The nilpotency of fermionic charges has been
captured geometrically, within the framework of supervari-
able approach by the Grassmannian derivatives.

Finally, we have shown that the algebra satisfied by the
continuous symmetry transformations 𝑠1, 𝑠2, and 𝑠𝜔 (and
corresponding charges) is exactly analogous to the Hodge
algebra obeyed by the de Rham cohomological operators
(𝑑, 𝛿, andΔ) of differential geometry.The discrete symmetry
of the theory provides physical realization of the Hodge
duality (∗) operation. Thus, the present N = 2 SUSY QM
model provides a model for Hodge theory.
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