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A new four-dimensional black hole solution of Einstein-Born-Infeld-Yang-Mills theory is constructed; several degenerated forms
of the black hole solution are presented. The related thermodynamical quantities are calculated, with which the first law of
thermodynamics is checked to be satisfied. Identifying the cosmological constant as pressure of the system, the phase transition
behaviors of the black hole in the extended phase space are studied.

1. Introduction

When considering electromagnetic field as the matter source
to construct black hole solution in Einstein gravity, one
usually use the standardMaxwell’s theory of𝑈(1) gauge field.
However, when the field is strong enough the linearMaxwell’s
theory becomes invalid; the nonlinearities of electromagnetic
field should be introduced as the correct electrodynamics. In
1930s, Born and Infeld proposed nonlinear electrodynamics
with the aim of obtaining a finite value of the self-energy
of electron [1]. Fradkin and Tseytlin reproduced Born-Infeld
(BI) action in the framework of string theory [2]. The D3-
brane dynamics was also noticed to be governed by BI action
[3]. Hoffmann first found a solution of Einstein gravity cou-
pled to BI electromagnetic field [4], which is devoid of essen-
tial singularity at the origin. Many black hole solutions of
Einstein-Born-Infeld (EBI) theory with or without a cosmo-
logical constant have been found [5–8]. Black hole solutions
of Gauss-Bonnet and three-order Lovelock gravity coupled to
BI electromagnetic field have also been found in [9, 10].

Since the condition for no-hair theorem in asymptotic
(A)dS spacetime is much relaxed, besides the usually used
matter sources such as scalar and Maxwell fields, it is natural
to couple Yang-Mills (YM) field to gravity and construct
black hole solutions. However, the YM equations are so
complicated that early attempts of searching for black hole
solutions of Einstein-Yang-Mills (EYM) theory were per-
formed numerically.The first analytic black hole solution was
found by Yasskin applying Wu-Yang ansatz [11]. This kind of

solutions have also been generalized to higher dimensions
and higher derivative gravity [12, 13]. Regular nonminimal
magnetic black hole solutions have been investigated recently
in [14]. To our knowledge, black hole solutions of Einstein
gravity coupled to both BI electromagnetic field and YM
field have not been studied; in this paper, we want to con-
struct black hole solution of Einstein-Born-Infeld-Yang-Mills
(EBIYM) gravity and study some properties of the black hole.

Among the properties of black holes, thermodynamical
properties have gained much attention in the past several
decades. Since the early work [15] studying thermal phase
transition between Schwarzchild-AdS black hole and AdS
vacuum, the behaviors of phase transition of black holes have
been studied intensively. In [16, 17], the thermodynamics of
charged AdS black hole have been studied and found that
there exist phase transitions between large/small black holes
at the sacrifice of viewing the electric charge as intensive
variable; the phase transition behavior resembles the one
of van der Waals liquid-gas system. In order to solve the
problem encountered in [16, 17], Kubizňák et al. extended
the phase space by identifying the cosmological constant as
the pressure of the gravitational system [18, 19]; then the
thermodynamic volume conjugate to pressure can be defined;
in this framework the phase transitions between large/small
black holes are founded too. Subsequently, the study was
extended to various other kinds of black holes [20–23]. In this
paper, we will also explore the phase transitions of the black
hole given below in extended phase space.
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The paper is organized as follows. In Section 2, we present
the black hole solution of four-dimensional Einstein-BI-
YM gravity and discuss its several degenerated forms. In
Section 3, we calculate the thermodynamical quantities,
check the first law of thermodynamics, and study the phase
transitions of the black hole in extended phase space. Finally,
some concluding remarks are given in Section 4.

2. Black Hole Solution of
Einstein-BI-YM Theory

We intend to search for a four-dimensional black hole
solution of EBIYM theory; the action of the theory is given
by

I = ∫𝑑4𝑥√−𝑔 [𝑅 − 2Λ16𝜋𝐺 + 𝐿 (𝐹) − Tr (𝐹(𝑎)𝜇] 𝐹(𝑎)𝜇])] , (1)

where 𝐺 is the Newton constant; we take the convention16𝜋𝐺 = 1 in the following for convenience, Tr(⋅) means sum
over the gauge group indices, and

𝐿 (𝐹) = 4𝛽2(1 − √1 + 𝐹𝜇]𝐹𝜇]2𝛽2 ) . (2)

Here 𝛽 is the BI parameter with dimension of mass. In the
limit 𝛽 → 0, 𝐿(𝐹) → 0. In the limit 𝛽 → ∞, 𝐿(𝐹) reduces to
the standard Maxwell form:

𝐿 (𝐹) = −𝐹𝜇]𝐹𝜇] + O (𝐹4) . (3)

Take variation with respect to the metric, the Maxwell
field 𝐴𝜇, and the YM field 𝐴(𝑎)𝜇 , respectively, we have the
equations of motion

𝐺𝜇] + Λ𝑔𝜇] = 𝑇𝑀𝜇] + 𝑇YM
𝜇] , (4)

∇𝜇( 𝐹𝜇]√1 + 𝐹𝜌𝜎𝐹𝜌𝜎/2𝛽2) = 0, (5)

∇𝜇𝐹(𝑎)𝜇] + 𝑓(𝑎)(𝑏)(𝑐)𝐴(𝑏)𝜇 𝐹(𝑐)𝜇] = 0, (6)

where 𝑓(𝑎)
(𝑏)(𝑐)

are the real structure constants of the gauge
group and

𝑇EM
𝜇] = 12𝑔𝜇]𝐿 (𝐹) + 2𝐹𝜇𝜌𝐹𝜌]√1 + 𝐹𝜌𝜎𝐹𝜌𝜎/2𝛽2 ,

𝑇YM
𝜇] = −12𝑔𝜇]𝐹(𝑎)𝜌𝜎 𝐹(𝑎)𝜌𝜎 + 2𝐹(𝑎)𝜇𝜌 𝐹(𝑎)𝜌] .

(7)

In order to find a static solution of the field equations, we
take a general metric ansatz

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑓 (𝑟) + 𝑟2𝑑Ω22, (8)

where 𝑑Ω22 is the line element of 2-sphere. Before solving (4),
we need to solve equations of motion of the matter fields (5)
and (6) first. Under the electrostatic potential assumption, all
other components of the strength tensor 𝐹𝜇] vanish except𝐹𝑡𝑟; solving (5) one obtains

𝐹𝑡𝑟 = 𝛽𝑞√𝛽2𝑟4 + 𝑞2 , (9)

where 𝑞 is an integration constant. Note that unlike the
field strength in Maxwell electrodynamics, the one in BI
electrodynamics is finite at 𝑟 = 0. To solve equations of
motion of the YM field (6), we take the magnetic Wu-Yang
ansatz of the gauge potential [14]. Since we want to find a
black hole solution with global YM charge, the gauge group
is supposed to be 𝑆𝑈(2); then the real structure constants𝑓(𝑎)(𝑏)(𝑐) are the complete antisymmetric symbols 𝜀(𝑎)(𝑏)(𝑐).
We use the position dependent generators t(𝑟), t(𝜃), t(𝜑) of the
gauge group; the relations between the generators t(𝑟), t(𝜃), t(𝜑)
and the standard 𝑆𝑈(2) generators are
t(𝑟) = cos (]𝜑) sin 𝜃t(1) + sin (]𝜑) sin 𝜃t(2) + cos 𝜃t(3),
t(𝜃) = cos (]𝜑) cos 𝜃t(1) + sin (]𝜑) cos 𝜃t(2) − sin 𝜃t(3),
t(𝜑) = − sin (]𝜑) t(1) + cos (]𝜑) t(2),

(10)

where ] is a nonvanishing integer; as will become clear later, it
relates to global YM charge. Using the commutation relations[t(𝑎), t(𝑏)] = 𝜀(𝑎)(𝑏)(𝑐)t(𝑐), where 𝑎, 𝑏, and 𝑐 take values from 1 to
3 and 𝜀(1)(2)(3) = 1, it is straightforward to check the following
commutation relations:[t(𝑟), t(𝜃)] = t(𝜑),

[t(𝜃), t(𝜑)] = t(𝑟),
[t(𝜑), t(𝑟)] = t(𝜃),

(11)

which are satisfied.The gauge field characterized byWu-Yang
ansatz is of the form

𝐴(𝑎)0 = 0,
𝐴(𝑎)𝑟 = 0,
𝐴(𝑎)𝜃 = −𝛿(𝑎)(𝜑),
𝐴(𝑎)𝜑 = ] sin 𝜃𝛿(𝑎)(𝜃) .

(12)

One can check that the equations ofmotion ofYMfield (6) are
satisfied under the choice of gauge (12). Under the gauge (12),
the only nonvanishing component of the YM field strength
tensor is

F𝜃𝜑 = −] sin 𝜃t(𝑟). (13)

With the field strength tensors (9), (13), and the metric
ansatz (8), one can work out the expression of energy
momentum tensor straightforwardly. Substituting (7) and (8)
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into (4) and solving (4) we find the following new black hole
solution:

𝑓 (𝑟) = 1 − 𝑚0𝑟 + 13 (2𝛽2 − Λ) 𝑟2 + ]2𝑟2
− 2𝛽3 √𝑞2 + 𝑟4𝛽2
+ 4𝑞23𝑟2 2𝐹1 [12 , 14 , 54 , − 𝑞2𝑟4𝛽2] .

(14)

Here 𝑚0 is the mass parameter and 2𝐹1[1/2, 1/4, 5/4,−𝑞2/𝑟4𝛽2] is the Gaussian hypergeometric function. Before
further analysis of solution (14), we discuss its several limiting
forms.When the parameter ] in (14) vanishes, the Einstein-BI
black hole in (A)dS space is reproduced [8]. When 𝛽 → ∞,
BI electrodynamics reduces to the standard Maxwell form;
solution (14) reduces to

𝑓 (𝑟) = 1 − 𝑚0𝑟 − 13Λ𝑟2 + 𝑞2𝑟2 + ]2𝑟2 , (15)

which is a new black hole with both electric charge and mag-
netic YM charge. When 𝛽 → 0, the electric charge vanishes
automatically; one obtains a magnetic black hole with only
YM charge

𝑓 (𝑟) = 1 − 𝑚0𝑟 − 13Λ𝑟2 + ]2𝑟2 , (16)

which is of the same form as the 4-dimensional (A)dS-
Reinssner-Nordström (RN) black hole. When ] = 0 and𝛽 → ∞, solution (14) degenerates to RN black hole in (A)dS
space.

3. Thermodynamics

In this section, we will first calculate the thermodynamic
quantities of the black hole obtained in the last section, then
check the first law of thermodynamics, and finally extend the
phase space to explore the phase transition behaviors of the
black hole.

3.1. Calculations of Thermodynamical Quantities. Since the
black hole (14) is asymptotic to (A)dS, in order to calculate
the mass of the black hole, one should adopt the method
proposed by Abbott and Deser [24], which gives

𝑀 = 8𝜋𝑚0. (17)

Note that the area of unit 2-sphere 𝜔2 = 4𝜋 is used. In order
to calculate the temperature, one should take the Euclidean
continuation (𝑡 → −𝑖𝜏) and demand the absence of conical
singularity at the horizon; the period of the Euclidean time 𝜏
is the inverse of Hawking temperature 1/𝑇; one obtains

𝑇 = 14𝜋𝑟+ (1 + 2𝛽2𝑟2+ − Λ𝑟2+ − ]2𝑟2+ − 2𝛽√𝑞2 + 𝑟4+𝛽2) , (18)

where 𝑟+ is the radius of the outmost horizon of the black
hole. Inmodel (1) we considered that entropy of the black hole
(14) obeys the area law, which is

𝑆 = 16𝜋2𝑟2+; (19)

note that the convention 16𝜋𝐺 = 1 is adopted. The electric
charge is defined as

𝑄𝑒 = 14𝜋 ∫∗𝐹𝑑Ω2 = 𝑞, (20)

where ∗𝐹 represents Hodge dual of the strength tensor and
the integration is performed on the 𝑡 = const and 𝑟 →∞ hypersurface. The electrostatic potential Φ, measured at
infinity with respect to the horizon, is defined as

Φ = 𝐴𝜇𝜒𝜇𝑟→∞ − 𝐴𝜇𝜒𝜇𝑟=𝑟
+

. (21)

Our calculation givesΦ = (𝑞/𝑟+) 2𝐹1[1/2, 1/4, 5/4, −𝑞2/𝑟4+𝛽2].
Since the gauge group is 𝑆𝑈(2), we can define a global YM
charge, for which we take the definition [25–27]

𝑄YM = 14𝜋 ∫√𝐹(𝑎)
𝜃𝜑

𝐹(𝑎)
𝜃𝜑

𝑑𝜃 𝑑𝜑. (22)

Just as the definition of electric charge, the integration in (22)
is performed on 𝑡 = const and 𝑟 → ∞ hypersurface too. Our
calculation gives

𝑄YM = −]. (23)

In order to preserve the YM charge being positive, ] is taken
to be negative. Now with all the thermodynamic quantities
above in hand, one can check that the first law of thermody-
namics

𝑑𝑀 = 𝑇𝑑𝑆 + Φ𝑑𝑄𝑒 + 𝑈𝑑𝑄YM (24)

is satisfied, where 𝑈 defined by 𝑈 ≡ (𝜕𝑀/𝜕𝑄YM)𝑆,𝑄
𝑒

is the
thermodynamic potential conjugate to the YM charge 𝑄YM.

3.2. Phase Transition in Extended Phase Space. In extended
phase space, cosmological constant is identified as pressure
of the gravitational system:

𝑃 = − Λ8𝜋. (25)

There are some reasons to do so. First, one can suppose there
exist more fundamental theories, where the cosmological
constant arises as vacuum expectation value. Second, the
Smarr relation becomes inconsistent with the first law of
thermodynamics unless the variation of Λ is included [18].
Now the mass of the black hole is viewed as enthalpy𝐻 ≡ 𝑀
rather than internal energy of the system [28]; then the Gibbs
free energy of the system is𝐺 = 𝐻−𝑇𝑆. If the BI parameter 𝛽
is viewed as a free thermodynamic variable too, one can check
the first law of thermodynamics in extended phase space

𝑑𝐻 = 𝑇𝑑𝑆 + Φ𝑑𝑄𝑒 + 𝑈𝑑𝑄YM + 𝑉𝑑𝑃 + B𝑑𝛽 (26)
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Figure 1: Isobaric plots for 𝑄YM = 2, 𝑄𝑒 = 1. The isobars on 𝑇-𝑟+ plot correspond one-to-one with the 𝐺-𝑇 plot. On both (a) and (b), from
top to bottom, the pressures are, respectively, 𝑃 = 1.2𝑃𝑐 (dotted), 𝑃 = 𝑃𝑐 (dashed), and 𝑃 = 0.8𝑃𝑐 (solid).
is satisfied, where

𝑉 = (𝜕𝐻𝜕𝑃 )
𝑆,𝛽,𝑄
𝑒
,𝑄YM

= 64𝜋2𝑟3+3 (27)

is the thermodynamic volume conjugate to the pressure, and

B = (𝜕𝐻𝜕𝛽 )
𝑆,𝑃,𝑄
𝑒
,𝑄YM

= 4𝜋3 (8𝛽𝑟3+ − 8𝑟+√𝑟4+𝛽2 + 𝑄2𝑒
+ 4𝑄2𝑒𝛽𝑟+ 2𝐹1 [12 , 14 , 54 , − 𝑄2𝑒𝑟4+𝛽2]) (28)

is the thermodynamic quantity conjugate to 𝛽.
Before studying the phase transitions of the black hole

(14) for a general 𝛽, let us first discuss two limiting cases𝛽 → 0 and𝛽 → ∞.When𝛽 → 0, in terms of the temperature
and horizon radius, the pressure of the system can be written
as

𝑃 = 𝑇2𝑟+ − 18𝜋𝑟2+ + 𝑄2YM8𝜋𝑟4+ . (29)

The critical points of the thermal phase transition are deter-
mined by the following critical equations:

𝜕𝑃𝜕𝑟+
𝑟
+
=𝑟
𝑐
,𝑇=𝑇
𝑐

= 𝜕2𝑃𝜕𝑟2+
𝑟
+
=𝑟
𝑐
,𝑇=𝑇
𝑐

= 0. (30)

The critical equations (30) can be solved analytically, which
gives the critical horizon radius

𝑟𝑐 = √6𝑄YM (31)

and the critical temperature

𝑇𝑐 = 13√6𝜋𝑄YM
. (32)

It is easy to see that the critical horizon radius and tem-
perature and consequently the critical pressure are solely
determined by the YM charge. This is because, as previously
mentioned, when 𝛽 → 0, the electric charge vanishes
automatically and the black hole carries only YM charge as
shown in (16).

When 𝛽 → ∞, this case corresponds to the black hole
described by the metric (8) with 𝑓(𝑟) given in (15). The
pressure of the system is given by

𝑃 = 𝑇2𝑟+ − 18𝜋𝑟2+ + 𝑄2𝑒 + 𝑄2YM8𝜋𝑟4+ . (33)

Solving the critical equations (30), we obtain the critical
horizon radius

𝑟𝑐 = √6 (𝑄2𝑒 + 𝑄2YM) (34)

and the critical temperature

𝑇𝑐 = 13𝜋√6 (𝑄2𝑒 + 𝑄2𝑌𝑀) . (35)

The critical horizon radius, temperature, and pressure are
determined by both electric and YM charge. Now, for the
black hole (15) by taking proper values of the related parame-
ters we can plot the isobars as displayed in Figure 1. On 𝑇-𝑟+
plot of Figure 1, the dotted line is the isobar of 𝑃 > 𝑃𝑐; in this
case there is only a single phase which is in analogy to the
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Table 1: Critical values for 𝑄𝑒 = 1.
𝛽 𝑄YM 𝑟𝑐 𝑇𝑐 𝑃𝑐 𝑃𝑐𝑟𝑐/𝑇𝑐
10 3 7.7459654 0.0136979 0.0003316 0.1875150
10 2 5.4772185 0.0193717 0.0006631 0.1875024
10 1 3.4640315 0.0306296 0.0016579 0.1874989
1 2 5.4765161 0.0193728 0.0006632 0.1874807
0.1 2 5.4113483 0.0194752 0.0006714 0.1865541
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Figure 2: Isobaric plots for𝑄YM = 2,𝑄𝑒 = 1, and 𝛽 = 10. The isobars on 𝑇-𝑟+ plot and 𝐺-𝑇 plot are in one-to-one correspondence with each
other. On both (a) and (b), from top to bottom, the pressures are, respectively, 𝑃 = 1.2𝑃𝑐 (dotted), 𝑃 = 𝑃𝑐 (dashed), and 𝑃 = 0.8𝑃𝑐 (solid).
thermal behavior of “ideal gas.” The dashed line is the isobar
of 𝑃 = 𝑃𝑐. The solid line is the isobar of 𝑃 < 𝑃𝑐; one can see
that there are two branches of black holeswhose temperatures
increase with the increase of horizon radius; one branch is
in small radius region and the other one is in large radius
region. Between the two branches, there is a region whose
temperature decreases with the increase of horizon radius,
which means the thermal expansion coefficient is negative;
this region corresponds to an unstable phase. For appropriate
value of temperature, two horizon radii are permitted; thus
large/small black holes phase transition occurs. This kind
of thermal behavior resembles the one of van der Waals
gas/liquid system. The phase transition can also be seen in𝐺-𝑇 plot, where “swallow tail” appears when 𝑃 < 𝑃𝑐, just as
the solid line shows us. The dashed line on 𝐺-𝑇 plot is the
isobar of 𝑃 = 𝑃𝑐, and the dotted line corresponding to 𝑃 > 𝑃𝑐
describes “ideal gas” phase.

Now, let us consider phase transition of the black hole (14)
for a general value of 𝛽. For general 𝛽, the pressure of the
system is

𝑃 = − 18𝜋𝑟2+ + 𝑇2𝑟+ + 𝛽24𝜋√1 + 𝑄2𝑒𝛽2𝑟4+ − 𝛽24𝜋 + 𝑄2YM8𝜋𝑟4+ . (36)

In this case, the critical equations (30) are too complicated to
be solved analytically, we solve them numerically, the results
are collected in Table 1. From the data in the table, one learns
that, with the increase of 𝛽 or 𝑄YM, 𝑇𝑐 and 𝑃𝑐 decrease while𝑟𝑐 and the ratio 𝑃𝑐𝑟𝑐/𝑇𝑐 increase. Figure 2 gives the isobaric
plots near the critical point of 𝑃𝑐 = 0.0006631 and Figure 3
displays the effects of YM charge and BI parameter on the
critical pressures. On 𝑇-𝑟+ plot of Figure 2, just as the case of𝛽 → ∞, 𝑃 > 𝑃𝑐 isobar describes the “ideal gas” phase. The
isobar of 𝑃 < 𝑃𝑐 shows that the “large black hole” region and
“small black hole” region are thermodynamical stable while
the medium region is thermodynamical unstable, which
indicates the existence of phase transition. On 𝐺-𝑇 plot of
Figure 2, the isobars show that when 𝑃 < 𝑃𝑐 phase transition
characterized by the “swallow tail” occurs. On Figure 3(b)
one can see that, although corresponding to different orders
of magnitude of 𝛽, the dotted line (𝛽 = 1) and the dashed
line (𝛽 = 10) are almost coincident, and the deviation of the
solid line (𝛽 = 0.1) from the dotted or dashed one is small; it
seems that the influence of the values of 𝛽 to critical pressure
is not that large just as the authors found in [23]. This may be
attributed to the parameter region we choose.
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Figure 3: Isobaric plots that reflect the effects of YM charge (a) and BI parameter (b). On (a), the parameters of all the isobars are taken as𝑄𝑒 = 1, 𝛽 = 10, and 𝑃 = 0.7𝑃𝑐; the difference is that the solid, dashed, and dotted lines correspond to 𝑄YM = 1, 2, 3, respectively. On (b), the
parameters of all the isobars are taken as 𝑄𝑒 = 1, 𝑄YM = 2, and 𝑃 = 0.7𝑃𝑐; the solid, dotted, and dashed lines correspond to 𝛽 = 0.1, 1, 10,
respectively.

4. Conclusion

In this paper, we construct a black hole solution of Einstein
gravity coupled to BI electromagnetic field and 𝑆𝑈(2) YM
field.When the parameter ] = 0, one reproduces the Einstein-
BI balck hole in (A)dS space.When the BI parameter𝛽 → ∞,
the solution degenerates to a new black hole with electrostatic
charge and magnetic YM charge. When 𝛽 → 0, the solution
reduces to a black hole with only YM charge. When the
parameters ] = 0 and 𝛽 → ∞, one obtains the (A)dS-RN
black hole.We calculate the thermodynamical quantities such
asmass, temperature, entropy, electric charge, andYMcharge
and check that the fist law of thermodynamics is satisfied.

We study the phase transition behaviors of the black
hole in extended phase space by identifying the cosmological
constant as pressure of the system. The critical equations
can be solved analytically when taking 𝛽 → ∞ limit while
they have to be solved numerically for general 𝛽. After
plotting the isobars one sees that when above the critical
pressure there is only an “ideal gas” phase, when below the
critical pressure, there are two stable regions corresponding,
respectively, to large/small black hole phases with an unstable
medium region,which implies the existence of the large/small
black hole phase transition; this thermal behavior of black
hole is in analogy to the one of van der Waals gas. The effects
of 𝛽 and 𝑄YM on critical pressures are also considered and
displayed in the isobaric plots.
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