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We calculate the particle ratios𝐾+/𝜋+,𝐾−/𝜋−, andΛ/𝜋− for a strongly interacting hadronic matter using nonlinearWalecka model
(NLWM) in relativistic mean field (RMF) approximation. It is found that interactions among hadrons modify 𝐾+/𝜋+ and Λ/𝜋−
particle ratios, while 𝐾−/𝜋− is found to be insensitive to these interactions.

1. Introduction

Since the discovery of asymptotic freedom [1] in case of
nonabelian gauge field theories, it was postulated that a phase
transition from nuclear state of matter to quark matter is
possible. It was further argued that this phase transition can
take place at sufficiently high temperature and/or densities
and can result in the transformations of hadrons into a new
state of matter dubbed as quark-gluon plasma (QGP). Since
then, a considerable effort has been put forward to create and
understand the properties of this new state of matter (QGP)
and the corresponding phase transition. In order to study
the dynamics of any phase transition in general, a complete
description of a given state of matter on the basis of some
underlying theory is required. To understand the dynamics
of quark-hadron phase transition, the equation of state for
both QGP phase and the hadronic phase is required. The
QGP phase so far has been fairly described using Lattice
Gauge theory in case of vanishing or low baryon chemical
potential. However, the description of strongly interacting
hadronic phase in terms of fundamental theory of strong
interactions has proven to be far from being trivial. This
is primarily due to strong coupling among hadrons, due to
which the conventional methods of quantum field theory,
for example, perturbative analysis, do not remain valid for
the description of such strongly interacting hadronic phase.
Therefore, one has to rely on alternate methods to describe
the properties of hadronic phase, for example, hadron
resonance gas models, chiral models, and quasi-particle
models.

However, one can use another approach to determine
the dynamics of strongly interacting hadronic phase and
consequently of quark-hadron phase transition. By studying
the spectra of hadrons, one can in principle comment on
some of the properties of the strongly interacting hadronic
matter. For example, by studying𝑝/𝑝 ratio, it has been argued
that transparency effects in case of high energy heavy-ion
collisions may become operative [2]. Recently, it has been
found that particle ratios of some of the hadrons, for example,𝐾+/𝜋+, 𝐾−/𝜋−, and Λ/𝜋−, show a sudden rise for a specified
range of center of mass energy √𝑆𝑁𝑁 in case of heavy-
ion collisions [3–6]. Taking into account the dependence
of baryon chemical potential 𝜇𝐵 and temperature 𝑇 on the
variable √𝑆𝑁𝑁, one can infer that the behaviour of these
particle ratios may be sensitive to the critical region of quark-
hadron phase transition. In this article, we therefore evaluate
the particle ratios 𝐾+/𝜋+, 𝐾−/𝜋−, and Λ/𝜋− for a strongly
interacting hadronic matter and analyse their behaviour
near first-order quark-hadron phase transition. For hadronic
phase, we use nonlinear Walecka model within relativistic
mean field (RMF) approximation. RMF theory has been
widely and successfully used to describe the properties of
the nuclear matter and finite nuclei. Further RMF theory
has been also used to describe the equation of state for
strongly interacting dense hadronicmatter for the application
in supernova and neutron stars [7–15]. In RMF theory,
hadrons interact via the exchange of scalar and vectormesons
and the interaction strength or coupling among hadrons is
determined by different methods. For example, the nucleon-
meson coupling constants are determined by reproducing the
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ground state properties of the finite nuclei or by using nuclear
matter properties, which is discussed in Section 2. To describe
the quark-gluon plasma (QGP) phase, we use a Bag model
equation of state.

2. Model

2.1. Hadronic Phase: Baryons. The equation of state for
asymmetric baryonic matter is presented in this section.
To describe baryonic matter, we use relativistic nonlin-
ear Walecka model (NLWM). In this model, the inter-
action between baryons is governed by the exchange
of various mesons. We include in this model baryons(𝑝, 𝑛, Σ+, Σ0, Σ−, Ξ−, Ξ0, Λ) along with their antiparticles. The
interaction between baryons is carried out by the exchange
of neutral 𝜎, isoscalar-vector 𝜔, isovector-vector 𝜌, and two
additional hidden strangeness mesons 𝜎∗ and 𝜙. In this
model, the Lagrangian density for baryons reads

LBary = ∑
𝛼

𝜓𝛼
⋅ [𝛾𝜇 (𝑖𝜕𝜇 − 𝑔𝜔𝛼𝜔𝜇 − 𝑔𝜙𝛼𝜙𝜇 − 𝑔𝜌𝛼 ⃗𝜏𝛼 ⋅ ⃗𝜌𝜇) −𝑀∗

𝛼] 𝜓𝛼
+ 12𝜕𝜇𝜎𝜕𝜇𝜎 − 𝑈 (𝜎) −

1
4𝑊𝜇]𝑊𝜇] + 12𝑚2𝜔𝜔𝜇𝜔𝜇 +

1
4

⋅ 𝑐3 (𝜔𝜇𝜔𝜇)2 − 14𝑅⃗𝜇] ⋅ 𝑅⃗𝜇] +
1
2𝑚2𝜌 ⃗𝜌𝜇 ⋅ ⃗𝜌𝜇 +

1
2

⋅ 𝜕𝜇𝜎∗𝜕𝜇𝜎∗ − 12𝑚2𝜎∗𝜎∗
2 − 14𝑆𝜇]𝑆𝜇] +

1
2𝑚2𝜙𝜙𝜇𝜙𝜇,

(1)

where 𝜓𝛼 is the fermionic field corresponding to baryon𝛼. The interaction between baryons is carried out by the
exchange of neutral 𝜎, isoscalar-vector 𝜔, isovector-vector𝜌, and two additional hidden strangeness mesons 𝜎∗ and 𝜙.𝑈(𝜎) = (1/2)𝑚2𝜎𝜎2 + (1/2)𝑔2𝜎3 + (1/2)𝑔3𝜎4 is the scalar
self-interaction term for 𝜎 field. Also 𝑆𝜇] = 𝜕𝜇𝜙] − 𝜕]𝜙𝜇,
𝑅⃗𝜇] = 𝜕𝜇 ⃗𝜌] − 𝜕] ⃗𝜌𝜇 + 𝑔𝜌( ⃗𝜌𝜇 × ⃗𝜌]),𝑊𝜇] = 𝜕𝜇𝜔] − 𝜕]𝜔𝜇, and
(1/4)𝑐3(𝜔𝜇𝜔𝜇)2 is the Bodmer correction or self-interaction
term for the vector field𝜔𝜇 and 𝑔𝑖𝛼 are the coupling constants
that characterise the strength of interaction between mesons𝑖 = 𝜔, 𝜎, 𝜎∗, 𝜌, 𝜙 and baryons 𝛼 = 𝑝, 𝑛, Λ, Σ, Ξ. Here,𝑀∗
𝛼 = 𝑀𝛼 + 𝑔𝜎𝛼𝜎 + 𝑔𝜎∗𝛼𝜎∗ is in-medium mass of baryon,

where 𝑀𝛼 is the bare mass of baryon. Also 𝑚𝑖 is the mass
of exchange mesons and ⃗𝜏 is the isospin operator. Using
relativistic mean field (RMF) approximation under which the
field variables are replaced by their space-time independent
classical expectation values, that is, 𝜎 → ⟨𝜎⟩ = 𝜎0, 𝜔𝜇 →⟨𝜔𝜇⟩ = 𝛿𝜇0𝜔0, ⃗𝜌𝜇 → ⟨ ⃗𝜌𝜇⟩ = 𝛿𝜇0𝛿𝑖3𝜌03, and 𝜙𝜇 →⟨𝜙𝜇⟩ = 𝛿𝜇0𝜙0, the thermodynamic potential per unit volume
corresponding to Lagrangian density (1) can be written as

(Ω𝑉)Bary =
1
2𝑚2𝜎𝜎20 +

1
3𝑔2𝜎30 +

1
4𝑔3𝜎40 −

1
2𝑚2𝜔𝜔20 −

1
4

⋅ 𝑐3𝜔40 − 12𝑚2𝜌𝜌203 +
1
2𝑚2𝜎∗𝜎∗0

2 − 12𝑚2𝜙𝜙20

− 2𝑇∑
𝛼

∫ 𝑑3𝑘(2𝜋)3
⋅ {ln [1 + 𝑒−𝛽(𝐸∗𝛼−]𝛼)] + ln [1 + 𝑒−𝛽(𝐸∗𝛼+]𝛼)]} ,

(2)

where effective baryon energy is 𝐸∗𝛼 = (𝑘2𝛼 + 𝑀∗
𝛼
2)1/2 and

effective baryon chemical potential is ]𝛼 = 𝜇𝛼 − 𝑔𝜔𝛼𝜔0 −𝑔𝜙𝛼𝜙0 − 𝑔𝜌𝛼𝜏3𝛼𝜌03. Also parameter 𝛽 is 𝛽 = 1/𝑇, where 𝑇
is the temperature.

2.2. Hadronic Phase: Bosons (Pions + Kaons). To incorporate
bosons (pions + kaons) in our model, we use an approach
similar to the one used to model baryonic phase; that is,
we use a meson-exchange type of Lagrangian for bosons as
well. The Lagrangian density in a minimal-coupling scheme
is [18, 19]

LBosons = ∑
𝑏

𝐷∗𝜇Φ∗𝑏𝐷𝜇Φ𝑏 − 𝑚∗𝑏 2Φ∗𝑏Φ𝑏, (3)

where Φ𝑏 is the bosonic field with summation carried over
bosons 𝑏. Here covariant derivative is

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑋𝜇, (4)

with the four-vector𝑋𝜇 defined as

𝑋𝜇 ≡ 𝑔𝜔𝑏𝜔𝜇 + 𝑔𝜌𝑏 ⃗𝜏𝑏 ⋅ ⃗𝜌𝜇 + 𝑔𝜙𝑏𝜙𝜇, (5)

and 𝑚∗𝑏 = 𝑚𝑏 + 𝑔𝜎𝑏𝜎 + 𝑔𝜎∗𝑏𝜎∗ is the effective mass of
bosons. Also 𝑔𝑖𝑏 are the coupling constants that characterise
the strength of interaction between exchange mesons 𝑖 =𝜎, 𝜔, 𝜌, 𝜙, 𝜎∗ and bosons (pions + kaons). Here, ⃗𝜏𝑏 is the
isospin operator with its third component defined as

𝜏3𝜋 = +1 (𝜋+) , 0 (𝜋0) , −1 (𝜋−) ;
𝜏3𝐾 = +1

2 (𝐾+, 𝐾0) ,
−1

2 (𝐾−, 𝐾0) .
(6)

It has to be mentioned that one can use even chiral
perturbation theory [20] to describe bosons in the hadronic
matter. In an earlier work [21], kaons were incorporated using
chiral perturbation theory, whereas baryons were incorpo-
rated using Walecka model. However, in [22], it was put
forward that this approach of modelling baryonic phase with
Walecka model and bosonic phase with chiral Lagrangian
has some inconsistency that may influence the final results.
In our approach, baryons and bosons are incorporated using
similar methodology, that is, using meson-exchange type
Lagrangian, and therefore this approach is expected to be
more consistent. In RMF approximation, the thermodynamic
potential for Lagrangian density (3) can be written as

(Ω𝑉)Bosons = 𝑇∑𝑏 Γ𝑏 ∫
𝑑3𝑘
(2𝜋)3

⋅ {ln [1 − 𝑒−𝛽(𝜔𝑏+−𝜇𝑏)] + ln [1 − 𝑒−𝛽(𝜔𝑏−+𝜇𝑏)]} ,
(7)
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where 𝜔𝑏± = 𝐸∗𝑏 ± 𝑋0, with effective energy defined as
𝐸∗𝑏 = √𝑘2 + 𝑚∗𝑏 2, and 𝑋0 is the temporal component of
four-vector 𝑋𝜇 ≡ 𝑔𝜔𝑏𝜔𝜇 + 𝑔𝜌𝑏 ⃗𝜏𝑏 ⋅ ⃗𝜌𝜇 + 𝑔𝜙𝑏𝜙𝜇. Also 𝜇𝑏
is the boson chemical potential and Γ𝑏 is the spin-isospin
degeneracy factor of boson 𝑏.
2.3. Hadronic Phase: Field Equations. The thermodynamic
potential per unit volume for hadronic medium (Ω/𝑉)𝐻 can
be therefore written as

(Ω𝑉)𝐻 = (
Ω
𝑉)Bary + (

Ω
𝑉)Bosons , (8)

where (Ω/𝑉)Bary and (Ω/𝑉)Bosons are as defined in (2) and (7),
respectively.

Thedifferent thermodynamic observables of the hadronic
system, for example, entropy, pressure, and number density,
can be evaluated as follows:

𝑆 (𝑇, 𝑉, 𝜇𝐻) = − 𝜕Ω𝐻𝜕𝑇
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑉,𝜇𝐻

𝑃 (𝑇, 𝑉, 𝜇𝐻) = − 𝜕Ω𝐻𝜕𝑉
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇,𝜇𝐻

𝑁(𝑇,𝑉, 𝜇𝐻) = − 𝜕Ω𝐻𝜕𝜇𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇,𝑉 ,

(9)

provided the expectation values of the exchange mesons field
variables (𝜎0, 𝜎∗0 , 𝜔0, 𝜌0, 𝜙0) are known.

To evaluate the expectation value of exchangemeson field
variables, one can solve the following set of coupled equations
of motion for different field variables that are obtained after
minimising the action integral 𝑆 = ∫(LBary + Lbosons)𝑑4𝑥
with respect to different exchange meson field variables; that
is,

𝑚2𝜎𝜎0
= −𝑔2𝜎20 − 𝑔3𝜎30
−∑
𝛼

𝑔𝜎𝛼 Γ𝛼(2𝜋)3 ∫
𝑑3𝑘

√(𝑘2 +𝑀∗
𝛼
2)𝑀

∗
𝛼 (𝐹(+)𝛼 + 𝐹(−)𝛼 )

− 12∑
𝑏

𝑚𝑏𝑔𝜎𝑏 Γ𝑏(2𝜋)3 ∫𝑑
3𝑘 × (𝜔−1𝑏+𝐹(+)𝑏 + 𝜔−1𝑏−𝐹(−)𝑏 ) ,

𝑚2𝜔𝜔0
= −𝑐3𝜔30 +∑

𝛼

𝑔𝜔𝛼𝑛𝛼 + 12∑
𝑏

𝑔𝜔𝑏𝑛𝑏

− 12∑
𝑏

𝑔𝜔𝑏𝑋0 Γ𝑏(2𝜋)3 ∫𝑑
3𝑘 (𝜔−1𝑏+𝐹(+)𝑏 + 𝜔−1𝑏−𝐹(−)𝑏 ) ,

𝑚2𝜌𝜌0
= ∑

𝛼

𝑔𝜌𝛼𝜏3𝛼𝑛𝛼 + 12∑
𝑏

𝑔𝜌𝑏𝜏3𝑏𝑛𝑏

− 12∑
𝑏

𝑔𝜌𝑏𝜏3𝑏𝑋0 Γ𝑏(2𝜋)3 ∫𝑑
3𝑘 (𝜔−1𝑏+𝐹(+)𝑏 + 𝜔−1𝑏−𝐹(−)𝑏 ) ,

𝑚2𝜎∗𝜎∗0
= ∑

𝛼

𝑔𝜎∗𝛼 Γ𝛼(2𝜋)3 ∫
𝑑3𝑘

√(𝑘2 +𝑀∗
𝛼
2)𝑀

∗
𝛼 (𝐹(+)𝛼 + 𝐹(−)𝛼 )

− 12∑
𝑏

𝑚𝑏𝑔𝜎∗𝑏 Γ𝑏(2𝜋)3 ∫𝑑
3𝑘 (𝜔−1𝑏+𝐹(+)𝑏 + 𝜔−1𝑏−𝐹(−)𝑏 ) ,

(10)

𝑚2𝜙𝜙0
= ∑

𝛼

𝑔𝜙𝛼𝑛𝛼 + 12∑
𝑏

𝑔𝜙𝑏𝑛𝑏

− 12∑
𝑏

𝑔𝜙𝑏 Γ𝑏(2𝜋)3 ∫𝑑
3𝑘 (𝜔−1𝑏+𝐹(+)𝑏 + 𝜔−1𝑏−𝐹(−)𝑏 ) ,

(11)

where distribution functions for baryons 𝐹(+)𝛼 and antibary-
ons 𝐹(−)𝛼 are given by

𝐹(±)𝛼 = 1
𝑒𝛽(𝐸∗𝛼∓]𝛼) + 1 (12)

and net-baryon density is

𝑛Bary = ∑
𝛼

𝑛𝛼 = ∑
𝛼

2
(2𝜋)3 ∫(𝐹

(+)
𝛼 − 𝐹(−)𝛼 ) 𝑑3𝑘. (13)

Similarly, the distribution function of bosons 𝐹(+)
𝑏

and
their antiparticles 𝐹(−)

𝑏
is

𝐹(±)𝑏 = 1
𝑒𝛽(𝜔𝑏±∓𝜇𝑏) − 1 =

1
𝑒𝛽[(𝜖∗𝑏 ±𝑋0)∓𝜇𝑏] − 1

= 1
𝑒𝛽(𝜖∗𝑏 ∓]𝑏) − 1 ,

(14)

where ]𝑏 = 𝜇𝑏−𝑋0 is the effective chemical potential of boson𝑏. Also the boson density is

𝑛bosons = ∑
𝑏

𝑛𝑏 = ∑
𝑏

Γ𝑏 ∫ 𝑑
3𝑘
(2𝜋)3 (𝐹

(+)
𝑏 − 𝐹(−)𝑏 ) . (15)

2.4. Hadronic Phase: The Coupling Constants. To fix baryon-
meson coupling constants, we use two very successful
parameter sets of RMF model, namely, parameter sets TM1
and NL3. These parameter sets are listed in Table 1. These
parameters have been obtained by evaluating the ground
state properties of finite nuclei [16, 23]. For meson-hyperon
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Table 1: TMI parameter set used in our calculation.

𝑚𝑁 𝑚𝜎 𝑚𝜔 𝑚𝜌 𝑔𝜎𝑁 𝑔𝜔𝑁 𝑔𝜌𝑁 𝑔2 (𝑓𝑚−1) 𝑔3 𝑐3
TM1 938.0 511.198 783.0 770.0 10.029 12.614 4.632 −7.2323 0.618 71.308
NL3 939.0 508.194 782.501 763.0 10.217 12.868 4.474 −10.431 −28.885 —

Table 2: Meson-hyperon coupling constants.

𝑔𝜎Λ 𝑔𝜎Σ 𝑔𝜎Ξ 𝑔𝜎∗Λ 𝑔𝜎∗Ξ
TM1 6.170 4.472 3.202 7.018 12.600
NL3 6.269 4.709 3.242 7.138 12.809

coupling constants, we use quark model values of vector
couplings. These are given by

1
3𝑔𝜔𝑁 =

1
2𝑔𝜔Λ =

1
2𝑔𝜔Σ = 𝑔𝜔Ξ,

𝑔𝜌𝑁 = 12𝑔𝜌Σ = 𝑔𝜌Ξ,
𝑔𝜌Λ = 0,
2𝑔𝜙Λ = 2𝑔𝜙Σ = 𝑔𝜙Ξ = −2√23 𝑔𝜔𝑁,
𝑔𝜙𝑁 = 0.

(16)

The potential depth for hyperons in baryonic matter is
fixed as follows. Representing the potential depth of hyperon
ℎ in baryonic matter 𝐵 as 𝑈(𝐵)

ℎ
, we use 𝑈(𝑁)Λ = −28MeV,

𝑈(𝑁)Σ = +30MeV, and 𝑈(𝑁)Ξ = −18MeV to determine the
value of scalar coupling constants 𝑔𝜎Λ, 𝑔𝜎Σ, and 𝑔𝜎Ξ respec-
tively [24–26]. The hyperon couplings with strange mesons
are restricted by the relation 𝑈(Ξ)Ξ ≃ 𝑈(Ξ)Λ ≃ 2𝑈(Λ)Ξ ≃ 2𝑈(Λ)Λ
obtained in [27]. For the hyperon-hyperon interactions, we
use the square well potential with depth 𝑈(Λ)Λ = −20MeV
[28]. In Table 2, we list the values of the coupling constants
determined from these hyperon potentials. Next, in Tables
3 and 4, we give kaon-meson and pion-meson coupling
constants that are used in our calculation.

Regarding antibaryon-meson couplings [29], there is
no reliable information particularly for high-density mat-
ter. Therefore, we will use in our work the values of the
antibaryon-meson couplings that are derived using G-parity
transformation. The G-parity transformation is analogous
to ordinary parity transformation in configurational space,
which inverts the direction of three vectors. The G-parity
transformation is defined as the combination of charge
conjugation and rotation. The 𝜋 degree of rotation is done
around the second axis of isospin space.

It is already known that exchange mesons 𝜎 and 𝜌
have positive G-parity and 𝜔 and 𝜙 have negative G-parity.
Therefore, by applying G-parity transformation to nucleon
potentials, one can obtain the corresponding potential for

Table 3: Kaon-meson coupling constants.

Set TM2 GL85
UK[S] UK[W]

Reference [16] [11]
𝑔𝜎𝐾 2.27 1.27
𝑔𝜔𝐾 3.02 3.02
𝑔𝜌𝐾 3.02 3.02
𝑔𝜎∗𝐾 2.65 2.65
𝑔𝜙𝐾 4.27 4.27

Table 4: Pion-meson coupling constants [17].

𝑔𝜎𝜋 𝑔𝜔𝜋 𝑔𝜌𝜋 𝑔𝜎∗𝜋 𝑔𝜙𝜋−0.170 −0.001 0.506 0.0 0.0

antinucleons. The result of G-parity transformation can be
written as

𝑔𝜎𝛼 = 𝑔𝜎𝛼,
𝑔𝜔𝛼 = −𝑔𝜔𝛼,
𝑔𝜌𝛼 = 𝑔𝜌𝛼,
𝑔𝜙𝛼 = −𝑔𝜙𝛼,

(17)

where 𝛼 and 𝛼 denote baryons and antibaryons, respectively.
It is worthwhile to mention here that kaon-meson couplings
can be fixed for two different kaonic potentials, namely,
strongly attractive potential UK[S] and weakly attractive
potential UK[W]. These are given in Table 3. Finally, the
pion-meson couplings are given in Table 4. Since the pion is
nonstrange particle, its coupling with strange mesons 𝜎∗ and𝜙 is essentially zero.
3. Results and Discussions

In this article, our main aim is to evaluate the proper-
ties of strongly interacting hadronic matter at finite tem-
perature. Therefore, we make an attempt to analyse the
properties of particle ratios 𝐾+/𝜋+, 𝐾−/𝜋−, Λ/𝜋− for this
matter. Using the values of baryon-meson and boson-meson
coupling constants as defined in the previous section, one
can solve the coupled integral equations for the field vari-
ables (𝜎0, 𝜔0, 𝜌0, 𝜎∗0 , 𝜙0) and consequently one can obtain
the thermodynamic observables of the hadronic system for
given values of temperature 𝑇 and baryon chemical potential𝜇𝐵. In the discussion to follow, we use following parameter
sets for fixing baryon-meson and boson-meson coupling
constants used in this model. For baryon-meson couplings,
we use parameter set TMI as listed in Tables 1 and 2.
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Figure 1: 𝐾+/𝜋+ ratio as a function of temperature 𝑇 for fixed value of baryon chemical potential 𝜇𝐵 = 0MeV and 𝜇𝐵 = 450MeV for
strongly interacting hadronic matter with coupled baryons and bosons with two parameter sets TM1 and NL3 for kaonic potentials UK[S]
and UK[W], respectively, for strongly interacting hadronic matter with decoupled baryons and bosons RMF[D], and for hadron resonance
gas (HRG) model. CR is the critical region of first-order quark-hadron phase transition calculated with Bag value 𝐵1/4 = 165–200MeV. 𝛼𝑆 is
the coupling strength for quarks.

For kaon-meson coupling constants, we use parameter sets
TM2 and GL85 that correspond to strongly attractive and
weakly attractive kaonic potentials, respectively, and are listed
in Table 3. The pion-meson coupling constants are listed
in Table 4. In the following analysis, we will impose the
strangeness conservation criteria 𝑆 − 𝑆 = 0, where 𝑆 and 𝑆
are total strangeness and antistrangeness of the system under
consideration.

In Figure 1, we plot the variation of 𝐾+/𝜋+ with temper-
ature for fixed values of baryon chemical potential. For 𝜇𝐵 =0MeV, we show 𝐾+/𝜋+ for hadronic matter with coupled
baryons and bosons for two parameter sets TM1 and NL3
with kaonic potentials UK[S] and UK[W], respectively. The
result obtained for noninteracting hadrons is calculated using
hadron resonance gas (HRG)model.The effect of chiral sym-
metry is analysed by decoupling Nambu-Goldstone modes
(pions and kaons) from baryons and result is denoted by
RMF[D]. This is obtained by setting 𝑔𝜎𝑏 = 𝑔𝜎∗𝑏 = 𝑔𝜔𝑏 =𝑔𝜙𝑏 = 𝑔𝜌𝑏 = 0. It is worthwhile to mention here that,
with this choice of boson-meson couplings, baryons can still
interact strongly via the exchange of mesons (𝜎, 𝜎∗, 𝜔, 𝜌, 𝜙),
while bosons (pions + kaons) get decoupled from baryons
and hence remain in the system as free particle with no
interaction. One can see that, for 𝜇𝐵 = 0MeV, the effect of
interaction is negligible on 𝐾+/𝜋+ ratio even up to relatively
high temperature of about 𝑇 = 150MeV. For higher baryon
chemical potential, that is, 𝜇𝐵 = 450MeV, one can see that
the interactions modify 𝐾+/𝜋+ ratio. For hadronic phase
with coupled baryons and bosons, the effect of interaction
is to increase 𝐾+/𝜋+ ratio. Further, one can see that the
rise of 𝐾+/𝜋+ ratio is significant only in the critical region
(CR) of first-order quark-hadron phase transition, which
corresponds to large value of Bag constant 𝐵. Here, we

have calculated critical region with equation of state for
quark-gluon plasma which is consistent with Lattice QCD
(see Appendix). The Bag value was fixed in the range 𝐵1/4 =
165–200MeV. However, on decoupling baryons from bosons,
one can see that the ratio 𝐾+/𝜋+ drops and in fact becomes
slightly lower than HRG model’s result.

In Figure 2, we plot the variation of 𝐾+/𝜋+ with baryon
chemical potential 𝜇𝐵 at fixed value of temperature 𝑇 =50MeV and 𝑇 = 70MeV. At lower temperature, 𝐾+/𝜋+ ratio
for NL3 parameter set is the same as that for HRG model,
while, for TM1 parameter set, 𝐾+/𝜋+ ratio is less compared
to that of HRG model. However, at higher temperature, the
particle ratio𝐾+/𝜋+ for both parameter sets, that is, TM1 and
NL3, is less compared to HRG model.

In Figure 3, we next plot the variation of particle ratioΛ/𝜋− with temperature for fixed values of baryon chemical
potential 𝜇𝐵. At lower baryon chemical potential, that is, 𝜇𝐵 =0MeV, the effect of interaction among hadrons is negligible
on particle ratio Λ/𝜋− even for relatively high temperature
of 𝑇 = 150MeV. However, for higher baryon chemical
potential, that is, 𝜇𝐵 = 450MeV, the effect of interaction
among hadrons increases the ratio Λ/𝜋−. One can again see
that the rise of Λ/𝜋− is somewhat significant in the critical
region of phase transition which corresponds to a large value
of Bag constant𝐵. Here, CRdenotes the critical region of first-
order quark-hadron phase transition which is calculated with
Bag value 𝐵1/4 = 165–200MeV and lattice motivated equation
of state (see Appendix). Interestingly, one can see that the
effect of interaction on Λ/𝜋− vanishes if bosons decouple
from baryons. Λ/𝜋− ratio for a system of strongly interacting
hadrons with baryons decoupled from bosons is represented
by RMF[D].
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Figure 2: 𝐾+/𝜋+ as a function of baryon chemical potential 𝜇𝐵 at fixed values of temperature 𝑇 = 50MeV and 𝑇 = 70MeV for strongly
interacting hadronicmatter with coupled baryons and bosons with two parameter sets TM1 andNL3 for kaonic potentials UK[S] andUK[W],
respectively, and for noninteracting hadrons using hadron resonance gas (HRG) model.
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Figure 3: Λ/𝜋− as a function of temperature 𝑇 for fixed values of baryon chemical potential 𝜇𝐵 = 0MeV and 𝜇𝐵 = 450MeV for strongly
interacting hadronicmatter with coupled baryons and bosons with two parameter sets TM1 andNL3 for kaonic potentials UK[S] andUK[W],
respectively, for strongly interacting hadronic matter with decoupled baryons and bosons RMF[D], and for hadron resonance gas (HRG)
model. CR is the critical region of first-order quark-hadron phase transition calculated with Bag value 𝐵1/4 = 165–200MeV. 𝛼𝑆 is the coupling
constant for quarks.

In Figure 4, we next plot the variation of particle ratioΛ/𝜋− with baryon chemical potential at fixed values of
temperature 𝑇 = 50MeV and 𝑇 = 70MeV. At lower
temperature, that is, 𝑇 = 50MeV, the particle ratio Λ/𝜋−
behaves differently under parameter sets TM1 and NL3.
However, at large temperature, that is, 𝑇 = 70MeV, the
particle ratioΛ/𝜋− for parameter sets TM1 andNL3 coincides
with noninteracting systems even up to very large values of
baryon chemical potential.

In Figure 5, we next plot the variation of particle ratio𝐾−/𝜋− as a function of temperature for fixed baryon chemical
potential, that is, 𝜇𝐵 = 0MeV and 𝜇𝐵 = 450MeV. For

lower value of baryon chemical potential, that is, 𝜇𝐵 =0MeV, the effect of interactions among hadrons with coupled
baryons and bosons is negligible on the particle ratio𝐾−/𝜋−.
Interestingly, even for higher baryon chemical potential, that
is, 𝜇𝐵 = 450MeV, the effect of interaction is still negligible on𝐾−/𝜋− ratio. However, on decoupling bosons from baryons,
theΛ/𝜋− ratio becomes large at higher values of temperature.
For a reference, we have again shown the critical region of
first-order quark-hadron phase transition CR. Here, we have
used equation of state for quark-gluon plasma phase with
Bag value 𝐵1/4 = 165–200MeV and strong coupling constant𝛼𝑆 = 0.2.
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hadron phase transition calculated with Bag value 𝐵1/4 = 165–200MeV. 𝛼𝑆 is the strong coupling constant for quarks.

Finally, in Figure 6, we show the variation of particle ratio𝐾−/𝜋− with baryon chemical potential 𝜇𝐵 for fixed values of
temperature 𝑇 = 50MeV and 𝑇 = 70MeV. For the case of
strongly interacting hadronic matter with coupled baryons
and bosons, the particle ratio 𝐾−/𝜋− is the same as that of
a system of noninteracting hadrons even up to very large
baryon chemical potential values.

In Figure 7, we plot the variation of effective chemical
potential ]Hadrons and effective mass (𝑚∗) to bare mass (𝑚)
ratio 𝑚∗/𝑚 of hadrons as a function of temperature for
fixed values of baryon chemical potential 𝜇𝐵 = 0MeV
and 𝜇𝐵 = 450MeV. Next, in Figure 8, we have shown the

variation of these observables, that is, ]Hadrons and 𝑚∗/𝑚, as
a function of baryon chemical potential 𝜇𝐵 at fixed values of
temperature 𝑇 = 50MeV and 𝑇 = 70MeV.These observables
have been calculated for a system of strongly interacting
hadrons with coupled baryons and bosons with parameter set
TM1. For kaon-meson coupling, we use parameter set TM2
which corresponds to strongly attractive kaonic potential
UK[S]. To complete our discussion, we next plot in Figure 9
the variation of strange chemical potential 𝜇𝑆 as functions
of baryon chemical potential 𝜇𝐵 and temperature 𝑇 at
fixed values of temperature and baryon chemical potential,
respectively. The strangeness chemical potential is fixed by
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Figure 6: Particle ratio𝐾−/𝜋− as a function of baryon chemical potential 𝜇𝐵 for fixed values of temperature 𝑇 = 50MeV and 𝑇 = 70MeV for
strongly interacting hadronic matter with coupled baryons and bosons with two parameter sets TM1 and NL3 for kaonic potentials UK[S]
and UK[W]s, respectively, and for system of noninteracting hadrons modelled using hadron resonance gas (HRG) model.

imposing the constraint of strangeness conservation (𝑆 −
𝑆 = 0) in the hadronic medium. The values of strangeness
chemical potential 𝜇𝑆 show a decrease with increasing baryon
chemical potential with increasing temperature. Further, we
also observe that the strangeness chemical potential decreases
with the increase of temperature for increasing values of
baryon chemical potential.This is consistent with the hadron
resonance gas model [30].

4. Summary

In this article, we have calculated particle ratios 𝐾+/𝜋+,𝐾−/𝜋−, Λ/𝜋− for a strongly interacting hadronicmatter using
nonlinear Walecka model in relativistic mean field (RMF)
approximation. In the hadronic medium, we incorporate
baryons and bosons (pions + kaons). To describe baryons
and bosons, we use a meson-exchange type of Lagrangian
and evaluate thermodynamic observables of hadronic matter
in RMF approximation. It is found that the interaction
among hadrons which in the present model is mediated by
the exchange of 𝜎, 𝜎∗, 𝜔, 𝜌 and 𝜙 mesons can result in the
modification of 𝐾+/𝜋+ and Λ/𝜋− ratios, while the particle
ratio 𝐾−/𝜋− is found to be independent of the interaction
among hadrons.

Appendix

Quark-Gluon Plasma Phase

In this section, we present equation of state for quark-gluon
plasma (QGP) phase. We consider three quark flavours, up
(u), down (d), and strange (s), and gluons. We use a Bag
model equation of state with perturbative corrections of the

order of 𝛼𝑠 which is consistent with Lattice data [31, 32]. The
pressure 𝑃 and energy density 𝜖 are given by

𝑃QGP

= (𝑁̃𝑔 + 212 𝑁̃𝑓)
𝜋2𝑇4
90 + 𝑁̃𝑓 (

𝜇2𝑇2
18 +

𝜇4
324𝜋2)

+ 1 − 𝜁𝜋2 ∫
∞

𝑚𝑠

𝑑𝐸 (𝐸2 − 𝑚2𝑠)3/2 (𝐹(+)𝑞 + 𝐹(−)𝑞 ) − 𝐵,
𝜖QGP

= (𝑁̃𝑔 + 212 𝑁̃𝑓)
𝜋2𝑇4
30 + 3𝑁̃𝑓 (

𝜇2𝑇2
18 +

𝜇4
324𝜋2)

+ 3(1 − 𝜁𝜋2 )∫
∞

𝑚𝑠

𝑑𝐸 (𝐸2 − 𝑚2𝑠)3/2 (𝐹(+)𝑞 + 𝐹(−)𝑞 )
+ 𝐵,

(A.1)

where 𝑁̃𝑔 = 16(1 − (4/5)𝜁) and 𝑁̃𝑓 = 2(1 − 𝜁) are the
effective numbers of gluons and fermions, respectively. The
quark chemical potential is 𝜇𝑞 and 𝜁 = 𝛼𝑠 is the coupling
constant. For the determination of coupling constant 𝛼𝑠, see,
for example, [33]. Here, 𝐹(+)𝑞 and 𝐹(−)𝑞 are the Fermi-Dirac
distribution functions for quarks and antiquarks, respectively,
and 𝐵 is the Bag constant. To see the possible effect of Bag
constant on various observables, see, for example, [34]. In the
above calculation, up (u) and down (d) quarks are considered
massless, while strange quark (s) is of finite mass 𝑚𝑠 =150MeV. In the present discussion, heavy quark flavours have
not been considered.
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Figure 7: Effective chemical potential ]Hadrons and mass ratio 𝑚∗/𝑚 of hadrons as a function of temperature 𝑇 for fixed values of baryon
chemical potential 𝜇𝐵 = 0MeV and 𝜇𝐵 = 450MeV in case of strongly interacting hadronic matter with coupled baryons and bosons. Here,
parameter set TM1 is used.
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