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For study of quantum self-frictional (SF) relativistic nucleoseed spinor-type tensor (NSST) field theory of nature (SF-NSST atomic-
molecular-nuclear and cosmic-universe systems) we use the complete orthogonal basis sets of 2(2𝑠 + 1)-component column-
matrices type SF Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 -relativistic NSST orbitals (Ψ(𝛿∗)𝑠-RNSSTO) and SF 𝑋𝑠𝑛𝑙𝑗𝑚�푗 -relativistic Slater NSST orbitals (𝑋𝑠-RSNSSTO)
through the 𝜓(𝛿∗)𝑛𝑙𝑚�푙 -nonrelativistic scalar orbitals (𝜓(𝛿∗)-NSO) and 𝜒𝑛𝑙𝑚�푙 -nonrelativistic Slater type orbitals (𝜒-NSTO), respectively.
Here 𝛿∗ = 𝑝∗𝑙 or 𝛿∗ = 𝛼∗ and 𝑝∗𝑙 = 2𝑙 + 2 − 𝛼∗, 𝛼∗ are the integer (𝛼∗ = 𝛼, −∞ < 𝛼 ≤ 2) or noninteger (𝛼∗ ̸= 𝛼, −∞ < 𝛼∗ < 3)
SF quantum numbers, where 𝑠 = 0, 1/2, 1, 3/2, 2, . . .. We notice that the nonrelativistic 𝜓(𝛿∗)-NSO and 𝜒-NSTO orbitals themselves
are obtained from the relativisticΨ(𝛿∗)𝑠-RNSSTO and𝑋𝑠-RSNSSTO functions for 𝑠 = 0, respectively.The column-matrices-type SF
1𝑌𝑙𝑠𝑗𝑚�푗 -RNSST harmonics (1𝑌𝑙𝑠-RNSSTH) and 2𝑌𝑙𝑠𝑗𝑚�푗 -modified NSSTH (2𝑌𝑙𝑠-MNSSTH) functions for arbitrary spin 𝑠 introduced by
the author in the previous papers are also used.Theone- and two-center one-range addition theorems for𝜓(𝛿∗)-NSOandnoninteger𝑛 𝜒-NSTO orbitals are presented.The quantum SF relativistic nonperturbative theory for𝑉(𝛿∗)𝑛𝑙𝑗𝑚�푗 -RNSST potentials (𝑉(𝛿∗)-RNSSTP)
and their derivatives is also suggested. To study the transportations of mass and momentum in nature the quantum SF relativistic
NSST gravitational photon (gph) with 𝑠 = 1 is introduced.

1. Introduction

Construction of combined quantum approach for AMN and
CU systems of nature is the most important because the
classical aspect of field theories leads to contradictions (see
review papers [1, 2] and references therein). These contradic-
tions, as shown in Figures 1 and 2 for nonrelativistic and SF
relativistic NSST potentials and forces, arise for some values
of distance 𝑟 (10−16 ≤ 𝑟 ≤ 10−15, 10−14 ≤ 𝑟 ≤ 10−13, 10−12 ≤𝑟 ≤ 10−11, 10−9 ≤ 𝑟 ≤ 10−8, and 10−6 ≤ 𝑟 ≤ 10−5) between
fields of nature. The quantities 𝐺, (𝑁1 and 𝑁2), 𝐸, NW, and
NUA in Figures 1 and 2 describe the gravitational, nuclear,
electromagnetic, nuclear weak, and Newtonian (Newtonian
universal attraction law) fields, respectively (see [3, 4] on
observation of gravitational (𝐺) and nuclear (𝑁1 and 𝑁2)
fields). The difficulties arising for these values of 𝑟 are not

explained by classical field theories. Taking into account all
values of distance from nucleus (for 0 < 𝑟 < ∞), such a prob-
lem can be solved only using quantum SF relativistic NSST
field theory of nature presented in this work. We note that
the𝐺,𝑁, 𝐸, NW, andNUA fields are obtained from the single
quantum SF relativistic NSST field when the SF properties are
disappearing from sight.

According to the theory introduced by Lorentz in classical
electrodynamics [5–7], the electronsmove around the atomic
point-charge nuclei under total nuclear attraction forces 𝐹⃗𝐿 =𝐹⃗ + (2𝑒2/3𝑐3)... ⃗𝑟, where ... ⃗𝑟 is the time derivative of the accelera-
tion of the electron. We note that the inclusion of the third
derivative of displacement leads to the radiation and self-
force problems in classical electrodynamics. These problems
do not arise in the case of quantum SF relativistic NSST field
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Figure 1: Quantum scalar and SF relativistic NSST potentials for 𝜆 = 0 as a function of distance 𝑟 (for 𝑧 = 𝑟, 𝑛 = 2, 𝑙 = 1, 𝑗 = 1/2,𝑚𝑗 = −1/2,𝜁 = 1.5, 𝛼∗ = 0.5) for Ω = 𝐺 (10−18 ≤ 𝑟 ≤ 10−16), Ω = 𝑁1 (10−15 ≤ 𝑟 ≤ 10−14), Ω = 𝑁2 (10−13 ≤ 𝑟 ≤ 10−12), Ω = 𝐸 (10−11 ≤ 𝑟 ≤ 10−9),Ω = NW (10−8 ≤ 𝑟 ≤ 10−6), andΩ = NUA (10−5 ≤ 𝑟 ≤ 104).
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Figure 2: Quantum scalar and SF relativistic NSST attraction forces for 𝜆 = 0 as a function of distance 𝑟 (for 𝑧 = 𝑟, 𝑛 = 2, 𝑙 = 1, 𝑗 = 1/2,𝑚𝑗 = −1/2, 𝜁 = 1.5, 𝛼∗ = 0.5) for Ω = 𝐺 (10−18 ≤ 𝑟 ≤ 10−16), Ω = 𝑁1 (10−15 ≤ 𝑟 ≤ 10−14), Ω = 𝑁2 (10−13 ≤ 𝑟 ≤ 10−12), Ω = 𝐸 (10−11 ≤ 𝑟 ≤10−9),Ω = NW (10−8 ≤ 𝑟 ≤ 10−6), andΩ = NUA (10−5 ≤ 𝑟 ≤ 104).

theory. The analytical formulas for the quantum attraction
forces suggested in the previous papers [8–10] are the exten-
sions of Lorentz theory to the quantum cases in standard and
nonstandard conventions (see [11, 12] and references therein
to our works on standard and nonstandard conventions). In

the quantum cases, the SF particles move around the nucleus
under relativistic NSST attraction forces.These forces depend
on quantum numbers 𝑛, 𝑙, 𝛼∗ and scaling parameters 𝜁 and
distance 𝑟 from nucleus of SF-NSST AMN and CU systems.
We note that the new fields, which may be discovered in the
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future for 0 < 𝑟 < 10−18, depended on the productive capacity
of science and technology. The presented quantum nonrela-
tivistic and SF relativistic NSST field theory of nature is the
generalization introduced by the author of AMN approach to
the CU systems.

The purpose of this work is to construct the combined
quantum nonrelativistic and relativistic NSST field theory of
nature in position space for arbitrary values of parameters.
This theory may open new avenues of approach to the
solution of problems related to the properties of AMN-CU
systems.

2. Gravitational Photon

To study the quantum SF relativistic NSST field theory
of nature, we use the Einstein classical relativistic relation
between mass and energy in the following form:

𝐸 (𝑚) = 𝑚𝑐2, (1)

where 𝑚 (for 0 < 𝑚 < ∞) is the mass of fermion; 𝑚𝑐2 and𝐸(𝑚) are the energies of fermion and gph boson with 𝑠 = 1,
respectively. The gph boson moves with the velocity of light
(V = 𝑐) and carries the mass 𝑚 = 𝐸(𝑚)/𝑐2 and momentum𝑝. We note that, in the case of classical electrodynamics,
the SF properties of fermions and bosons disappear and the
radiation problems arise.

3. Quantum Nonrelativistic Field Theory in
Standard Convention

It is easy to show that the SF relativistic NSST functions
are expressed through the corresponding nonrelativistic basis
sets. Therefore, the SF relativistic NSST particles can be
described by the use of nonrelativistic functions. Now we
investigate at first the nonrelativistic cases.

In order to study the scalar quantumfield theory of nature
in standard convention, we use the following formulas (see
[8–10]):

(1) The complete orthogonal sets are as follows:

L
(𝛿∗)
𝑛𝑙 (𝑡) = 𝛾(𝛿∗)𝑛𝑙Γ (𝑝∗𝑙 + 1)𝑡𝑙𝛿�훿∗�훼∗ 1𝐹1 (− [𝑛 − (𝑙 + 1)] ; 𝑝∗𝑙
+ 1; 𝑡)

(2a)

L
(𝛿∗)
𝑛𝑙 (𝑡) = 𝛾(𝛿∗)𝑛𝑙 𝑛∑

𝑛�耠=𝑙+1

𝑎(𝛿∗)𝑙
𝑛𝑛�耠

𝑡𝑛�耠−(𝑙𝛿�훿∗�푝∗�푙 +1) (2b)

L
(𝛿∗)

𝑛𝑙 (𝑡) = 1𝛾(𝑝∗�푙 )𝑛𝑙 L
(𝑝∗�푙 )

𝑛𝑙 (𝑡) for 𝛿∗ = 𝑝∗𝑙 (3a)

L
(𝛿∗)

𝑛𝑙 (𝑡) = 𝛽(𝛼∗)𝑛𝑙 (𝑡)L(𝛼∗)𝑛𝑙 (𝑡) for 𝛿∗ = 𝛼∗ (3b)

𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) = (2𝜁)3/2 𝑒−𝜁𝑟L(𝛿∗)𝑛𝑙 (𝑡) 𝑆𝑙𝑚�푙 (𝜃, 𝜙) (4a)

𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟)
= 𝛾(𝛿∗)𝑛𝑙 𝑛∑

𝑛�耠=𝑙+1

𝑎(𝛿∗)𝑙
𝑛𝑛�耠

√(2 (𝑛󸀠 − 𝑙𝛿𝛿∗𝑝∗
�푙
))!𝜒𝑛�耠−𝑙𝛿�훿∗�푝∗

�푙
𝑙𝑚�푙

(𝜁,
⃗𝑟)

(4b)

𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) = (2𝜁)3/2 𝑒−𝜁𝑟L(𝛿∗)𝑛𝑙 (𝑡) 𝑆𝑙𝑚�푙 (𝜃, 𝜙) = 𝛽(𝛿∗)𝑛𝑙 (𝑡)
⋅ 𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) (5a)

𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) = 𝜂(𝛿∗)𝑛𝑙 (𝑡)
⋅ 𝑛∑
𝑛�耠=𝑙+1

𝑎(𝛿∗)𝑙
𝑛𝑛�耠

√(2 (𝑛󸀠 − 𝑙𝛿𝛿∗𝑝∗
�푙
))!𝜒𝑛�耠−𝑙𝛿�훿∗�푝∗

�푙
𝑙𝑚�푙

(𝜁, ⃗𝑟) , (5b)

where

𝜒𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) = (2𝜁)𝑛+1/2√(2𝑛)! 𝑟𝑛−1𝑒−𝜁𝑟𝑆𝑙𝑚�푙 (𝜃, 𝜙) (6)

𝛽(𝛿∗)𝑛𝑙 (𝑡) = (𝑛 − (𝑙 + 1))!Γ (𝑞∗𝑛 + 1) 𝑡𝑝∗�푙 −2 for 𝛿∗ = 𝑝∗𝑙 (7a)

𝛽(𝛿∗)𝑛𝑙 (𝑡) = (2𝑛𝑡 )𝛼∗ for 𝛿∗ = 𝛼∗ (7b)

𝛾(𝛿∗)𝑛𝑙 = Γ (𝑞∗𝑛 + 1)(𝑛 − (𝑙 + 1))! for 𝛿∗ = 𝑝∗𝑙 (8a)

𝛾(𝛿∗)𝑛𝑙 = √ Γ (𝑞∗𝑛 + 1)(2𝑛)𝛼∗ (𝑛 − (𝑙 + 1))! for 𝛿∗ = 𝛼∗ (8b)

𝜂(𝛿∗)𝑛𝑙 (𝑡) = 𝛾(𝛿∗)𝑛𝑙 𝛽(𝛿∗)𝑛𝑙 (𝑡) = 𝑡𝑝∗�푙 −2 for 𝛿∗ = 𝑝∗𝑙 (9a)

𝜂(𝛿∗)𝑛𝑙 (𝑡) = 𝛾(𝛿∗)𝑛𝑙 𝛽(𝛿∗)𝑛𝑙 (𝑡) = 1𝑡𝛼∗√ (2𝑛)𝛼∗ Γ (𝑞∗𝑛 + 1)(𝑛 − (𝑙 + 1))!
for 𝛿∗ = 𝛼∗

(9b)

and 𝑡 = 2𝜁𝑟, 𝑝∗𝑙 = 2𝑙 + 2 − 𝛼∗, 𝑞∗𝑛 = 𝑛 + 𝑙 + 1 − 𝛼∗, andL
(𝛿∗)
𝑛𝑙

are the NSST polynomials (L(𝛿
∗)-NSSTP), 𝜒𝑛𝑙𝑚�푙(𝜁, ⃗𝑟) are the

nonrelativistic Slater type orbitals, and the 𝑆𝑙𝑚�푙 is the complex
(for 𝑆𝑙𝑚�푙 ≡ 𝑌𝑙𝑚�푙) or real spherical harmonic (see [13]). We
note that our definition of phases for the complex spherical
harmonics (𝑌∗𝑙𝑚�푙 = 𝑌𝑙−𝑚�푙) differs from the Condon-Shortley
phases [14] by the sign factor (−1)𝑚�푙 .

The confluent hypergeometric function 1𝐹1 [15] occur-
ring in ((2a) and (2b)) can be determined by

1𝐹1 (− [𝑛 − (𝑙 + 1)] ; 𝑝∗𝑙 + 1; 𝑡)
= Γ (𝑝∗𝑙 + 1) 𝑛∑

𝑛�耠=𝑙+1

𝑎(𝛿∗)𝑙
𝑛𝑛�耠

𝑡𝑛�耠−(𝑙+1), (10)
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where

𝑎(𝑝∗�푙 )𝑙
𝑛𝑛�耠

= 𝑎(𝛼∗)𝑙
𝑛𝑛�耠

= (− [𝑛 − (𝑙 + 1)])𝑛�耠−(𝑙+1)Γ (𝑝∗𝑙 + 1) (𝑝∗𝑙 + 1)
𝑛�耠−(𝑙+1)

(𝑛󸀠 − (𝑙 + 1))! .
(11)

As we see, all of the functions 𝜓(𝛿∗)𝑛𝑙𝑚�푙(𝜁, ⃗𝑟), 𝜓(𝛿∗)𝑛𝑙𝑚�푙(𝜁, ⃗𝑟),L(𝛿∗)𝑛𝑙 (𝑡),
and L

(𝛿∗)

𝑛𝑙 (𝑡) are expressed through the Pochhammer sym-
bols.

The orthogonality relations are defined as

∫𝜓(𝛿∗)∗𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) 𝜓(𝛿∗)𝑛�耠𝑙�耠𝑚�耠
�푙
(𝜁, ⃗𝑟) 𝑑3 ⃗𝑟 = 𝛿𝑛𝑛�耠𝛿𝑙𝑙�耠𝛿𝑚�푙𝑚�耠�푙

∫∞
0

𝑒−𝑡 (𝑡𝑝∗�푙 −2)𝛿�훿∗�푝∗�푙 (𝑡𝛽(𝛿∗)𝑛𝑙 (𝑡))L(𝛿∗)𝑛𝑙 (𝑡) ( 𝑡𝛽(𝛿∗)
𝑛�耠𝑙

(𝑡))
⋅L(𝛿∗)𝑛�耠𝑙 (𝑡) 𝑑𝑡 = 𝛿𝑛𝑛�耠

∫𝜒∗𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) 𝜒𝑛�耠𝑙�耠𝑚�耠
�푙
(𝜁, ⃗𝑟) 𝑑3 ⃗𝑟 = (𝑛 + 𝑛󸀠)!

√(2𝑛)! (2𝑛󸀠)!
⋅ 𝛿𝑙𝑙�耠𝛿𝑚�푙𝑚�耠�푙 .

(12)

(2)The eigenvalues corresponding to the𝜓(𝛿∗)𝑛𝑙𝑚�푙(𝜁, ⃗𝑟) scalar
functions are the same and determined by

𝐸(𝛿∗) = 𝐸 = −𝜁22 , (13)

where 𝜁 (0 < 𝜁 < ∞) is the screening constant. We note
that the parameters 𝜁 can be chosen properly according to the
nature of corresponding field under consideration.

(3) The scalar potentials are as follows:

𝑉(𝛿∗)𝑛𝑙 (𝜁, 𝑟) = −𝜁𝑛𝑟 𝑈(𝛿∗)𝑛𝑙 (𝑡) (14)

𝑈(𝛿∗)𝑛𝑙 (𝑡) = 1 + 𝛼∗ − 1𝑛 𝑞∗𝑛L(𝑝
∗
�푙 +1)

𝑛−1𝑙 (𝑡)
L
(𝑝∗
�푙
)

𝑛𝑙 (𝑡)
for 𝛿∗ = 𝑝∗𝑙

(15a)

𝑈(𝛿∗)𝑛𝑙 (𝑡) = 1 + 𝛼∗ − 1𝑛 √2𝑛 (𝑛 − (𝑙 + 1))L(𝛼∗+1)𝑛𝑙+1 (𝑡)𝑡L(𝛼∗)𝑛𝑙 (𝑡)
for 𝛿∗ = 𝛼∗.

(15b)

(4) The scalar forces are as follows:

𝐹(𝛿∗)𝑛𝑙 (𝜁, 𝑟) = −𝜁𝑛𝑟2 𝐺(𝛿∗)𝑛𝑙 (𝑡) (16)

𝐺(𝛿∗)𝑛𝑙 (𝑡) = 1 + 𝛼∗ − 1𝑛 𝑞∗𝑛L(𝑝
∗
�푙 +1)

𝑛−1𝑙 (𝑡)
L
(𝑝∗
�푙
)

𝑛𝑙 (𝑡)
{{{1

+ 𝑡[[𝑞
∗
𝑛

L
(𝑝∗�푙 +1)

𝑛−1𝑙 (𝑡)
L
(𝑝∗
�푙
)

𝑛𝑙 (𝑡) − (𝑞∗𝑛 − 1) L(𝑝∗�푙 +2)𝑛−2𝑙 (𝑡)
L
(𝑝∗
�푙
+1)

𝑛−1𝑙 (𝑡)]]
}}}

for 𝛿∗ = 𝑝∗𝑙

(17a)

𝐺(𝛿∗)𝑛𝑙 (𝑡) = 1 − 𝛼∗ − 1𝑛 (𝑛 − (𝑙 + 1)) × {1
− L
(𝛼∗+1)
𝑛𝑙+1 (𝑡)𝑡L(𝛼∗)𝑛𝑙 (𝑡) [√ 2𝑛𝑛 − (𝑙 + 1) (𝑝∗𝑙 + 2 − 𝑡)

− (2𝑛) L(𝛼∗+1)𝑛𝑙+1 (𝑡)
L
(𝛼∗)
𝑛𝑙 (𝑡) ]} for 𝛿∗ = 𝛼∗.

(17b)

(5)The one- and two-center one-range addition theorems
for nonrelativistic 𝜓(𝛿∗)-NSO and noninteger 𝑛 𝜒-NSTO
functions in standard convention are determined by the
following relations.

𝜓(𝛿∗)-NSO Functions. For 𝑅⃗𝑎𝑏 ̸= 0
𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟𝑎)

= ∞∑
𝜇=]+1

𝜇−1∑
]=0

]∑
𝜎=−]

Λ̃(𝛿∗)]𝜇]𝜎,𝑛𝑙𝑚�푙 (𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏) 𝜓(𝛿∗)𝜇]𝜎 (𝜁󸀠, ⃗𝑟𝑏) , (18)

where

Λ̃(𝛿∗)]𝜇]𝜎,𝑛𝑙𝑚�푙 (𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏) = 𝑛∑
𝑛�耠=𝑙+1

𝜇∑
𝜇�耠=]+1

Ω̃(𝛿∗)𝑙
𝑛𝑙,𝑛�耠𝑙

Ω̃(𝛿∗)]
𝜇],𝜇�耠]𝜏(𝛿∗)]𝜇],𝜇�耠]𝑆∗(𝑛�耠−𝑙𝛿�훿∗�푝∗

�푙
)𝑙𝑚�푙 ,(𝜇

�耠+]𝛿�훿∗�푝∗
�푙
−𝛼∗)]𝜎 (𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏) (19)

𝜏(𝛿∗)]
𝜇],𝜇�耠] = (𝜇 − (] + 1))!Γ (𝑞∗𝜇 + 1) √ Γ (2 (𝜇󸀠 + ] − 𝛼∗) + 1)(2 (𝜇󸀠 − ]))! for 𝛿∗ = 𝑝∗𝑙 (20a)

𝜏(𝛿∗)]
𝜇],𝜇�耠] = (2𝜇)𝛼∗ √Γ (2 (𝜇󸀠 − 𝛼∗) + 1)(2𝜇󸀠)! for 𝛿∗ = 𝛼∗ (20b)
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Ω̃(𝛿∗)𝑙
𝑛𝑙,𝑛�耠𝑙

= 𝛾(𝛿∗)𝑛𝑙 𝑎(𝛿∗)𝑙
𝑛𝑛�耠

√(2 (𝑛󸀠 − 𝑙𝛿𝛿∗𝑝∗
�푙
))!, (21)

𝑆∗𝑛𝑙𝑚�푙 ,𝑛∗]𝜎 (𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏) = ∫𝜒∗𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟𝑎) 𝜒𝑛∗]𝜎 (𝜁󸀠, ⃗𝑟𝑏) 𝑑3 ⃗𝑟. (22)

For 𝑅⃗𝑎𝑏 = 0
𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) = ∞∑

𝜇=𝑙+1

Λ̃(𝛿∗)𝑙𝜇𝑙𝑚�푙,𝑛𝑙𝑚�푙 (𝜁, 𝜁󸀠) 𝜓(𝛿∗)𝜇𝑙𝑚�푙 (𝜁󸀠, ⃗𝑟) (23)

Λ̃(𝛿∗)𝑙𝜇𝑙𝑚�푙 ,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠) = 𝛿𝜇𝑛 for 𝜁 = 𝜁󸀠 (24a)

Λ̃(𝛿∗)𝑙𝜇𝑙𝑚�푙 ,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠)
= 𝑛∑
𝑛�耠=𝑙+1

𝜇∑
𝜇�耠=𝑙+1

Ω̃(𝛿∗)𝑙
𝑛𝑙,𝑛�耠𝑙

Ω̃(𝛿∗)𝑙
𝜇𝑙,𝜇�耠𝑙

𝜏(𝛿∗)𝑙
𝜇𝑙,𝜇�耠𝑙

𝑆∗𝑛�耠−𝑙𝛿�훿∗�푝∗
�푙
𝑙𝑚�푙,𝜇
�耠+𝑙𝛿�훿∗�푝∗

�푙
−𝛼∗𝑙𝑚�푙

(𝜁,
𝜁󸀠) for 𝜁 ̸= 𝜁󸀠

(24b)

𝑆∗𝑛𝑙𝑚�푙 ,𝑛∗]𝜎 (𝜁, 𝜁󸀠) = 𝛿]𝑙𝛿𝜎𝑚�푙 Γ (𝑛 + 𝑛∗ + 1)√(2𝑛)!Γ (2𝑛∗ + 1) (1 + 𝑡)𝑛+1/2 (1
− 𝑡)𝑛∗+1/2 ,

(25)

𝑡 = 𝜁 − 𝜁󸀠𝜁 + 𝜁󸀠 . (26)

See [16] for the calculation of overlap integrals.

Noninteger 𝑛 𝜒-NSTO Functions. For 𝑅⃗𝑎𝑏 ̸= 0
𝜒𝑛∗𝑙𝑚�푙 (𝜁, ⃗𝑟𝑎)
= ∞∑
𝜇=]+1

𝜇∑
𝑢=]+1

𝜇−1∑
]=0

]∑
𝜎=−]

Π̃(𝛿∗)]𝜇𝑢,]𝜎,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏) 𝜒𝑢−]𝛿�훿∗�푝∗] ]𝜎 (𝜁󸀠, ⃗𝑟𝑏) , (27)

where

𝜒𝑛∗𝑙𝑚�푙 (𝜁, ⃗𝑟) = (2𝜁)𝑛∗+1/2√Γ (2𝑛∗ + 1)𝑟𝑛∗−1𝑒−𝜁𝑟𝑆𝑙𝑚�푙 (𝜃, 𝜑) (28)

Π̃(𝛿∗)]𝜇𝑢,]𝜎,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏) = Ω̃(𝛿∗)]𝜇],𝑢]Λ̃(𝛿∗)]𝜇]𝜎,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏) . (29)

See (19) for definition of quantities Λ̃(𝛿∗)]𝜇]𝜎,𝑛∗𝑙𝑚�푙(𝜁, 𝜁󸀠; 𝑅⃗𝑎𝑏)
occurring in (29).

For 𝑅𝑎𝑏 = 0
𝜒𝑛∗𝑙𝑚�푙 (𝜁, ⃗𝑟)

= ∞∑
𝜇=𝑙+1

𝜇∑
𝑢=𝑙+1

Π̃(𝛿∗)𝑙𝜇𝑢,𝑙𝑚�푙,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠) 𝜒𝑢−𝑙𝛿�훿∗�푝∗�푙 𝑙𝑚�푙 (𝜁󸀠, ⃗𝑟) . (30)

Here

Π̃(𝛿∗)𝑙𝜇𝑢,𝑙𝑚�푙,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠) = Ω̃(𝛿∗)𝑙𝜇𝑙,𝑢𝑙 Λ̃(𝛿∗)𝑙𝜇𝑙𝑚�푙,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠) (31a)

Λ̃(𝛿∗)𝑙𝜇𝑙𝑚�푙,𝑛∗𝑙𝑚�푙 (𝜁, 𝜁󸀠)
= 𝜇∑
𝜇�耠=𝑙+1

𝑎(𝛿∗)𝑙
𝜇𝜇�耠

𝜅(𝛿∗)𝑙
𝜇𝜇�耠

𝑆∗𝑛∗𝑙𝑚�푙,𝜇�耠+𝑙𝛿�훿∗�푝∗
�푙
−𝛼∗𝑙𝑚�푙

(𝜁, 𝜁󸀠) , (31b)

where

𝜅(𝛿∗)𝑙
𝜇𝜇�耠

= √Γ (2 (𝜇󸀠 + 𝑙 − 𝛼∗) + 1) for 𝛿∗ = 𝑝∗𝑙 (32a)

𝜅(𝛿∗)𝑙
𝜇𝜇�耠

= √ (2𝜇)𝛼∗ Γ (𝑞∗𝜇 + 1) Γ (2 (𝜇󸀠 − 𝛼∗) + 1)(𝜇 − (𝑙 + 1))!
for 𝛿∗ = 𝛼∗

(32b)

𝑆∗𝑛∗𝑙𝑚�푙 ,𝑛�耠∗𝑙�耠𝑚�耠�푙 (𝜁, 𝜁󸀠)
= Γ (𝑛∗ + 𝑛󸀠∗ + 1)
√Γ (2𝑛∗ + 1) Γ (2𝑛󸀠∗ + 1) (1 + 𝑡)𝑛∗+1/2

⋅ (1 − 𝑡)𝑛�耠∗+1/2 .
(32c)

We note that the (27) and (30) are obtained by the use of
complete orthogonal functions 𝜓(𝛿∗)-NSO.
4. Quantum Nonrelativistic Field Theory in
Nonstandard Convention

Nowwe investigate the properties of nonrelativistic functions
for 𝛼∗ = 1 and 𝜁 = 𝑍/𝑛. In this case, these functions are
determined by the following.

4.1. The Scalar Energies

𝐸(𝛿∗) = 𝐸 = − 𝑍22𝑛2 . (33)

4.2. The Scalar Potentials

𝑉(𝛿∗)𝑛𝑙 (𝑟) = 𝑉 (𝑟) = −𝑍𝑟 . (34)

4.3. The Scalar Forces

𝐹(𝛿∗) (𝑟) = 𝐹 (𝑟) = −𝑍𝑟2 . (35)

4.4. The Scalar Eigenfunctions

𝜓(𝛿∗)𝑛𝑙𝑚�푙 (𝜁, ⃗𝑟) = 𝜓𝑛𝑙𝑚�푙 (𝑍𝑛 , ⃗𝑟)
= (2𝑍𝑛 )3/2 𝑒−(𝑍/𝑛)𝑟𝐿𝑝�푙𝑛𝑙 (2𝑍𝑛 𝑟) 𝑆𝑙𝑚�푙 (𝜃, 𝜙) ,

(36)
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where 𝐿𝑝�푙𝑛𝑙((2𝑍/𝑛)𝑟) are the associated Laguerre polynomials
(𝐿𝑝�푙-ALP) defined by

L
(𝛼∗)
𝑛𝑙 (𝑡) = 𝐿𝑝�푙𝑛𝑙 (2𝑍𝑛 𝑟)
= (𝑛 + 𝑙)!(𝑛 − (𝑙 + 1))! 1𝐹1 (− [𝑛 − (𝑙 + 1)] ; 𝑝𝑙 + 1; 𝑡)

for 𝛼∗ = 1, 𝜁 = 𝑍𝑛 .
(37)

Here 𝜀, 𝑉(𝑟), 𝐹(𝑟), and 𝜓𝑛𝑙𝑚�푙(𝑍/𝑛, ⃗𝑟) are the Schrödinger’s
eigenvalue, potential, force, and eigenfunction for the
hydrogen-like atoms in nonstandard convention. As we see
from (37), the 𝐿𝑝�푙-ALP polynomials are the special cases of
L(𝛿
∗) -NSSTP for 𝛼∗ = 1 and 𝜁 = 𝑍/𝑛. The similar calcula-

tions can be also performed in the case of nonrelativistic
standard convention. It should be noted that the eigenfunc-
tions 𝜓𝑝�푙𝑛𝑙𝑚�푙(𝑍/𝑛, ⃗𝑟) and Laguerre polynomials 𝐿𝑝�푙𝑛𝑙((2𝑍/𝑛)𝑟)
obtained in nonrelativistic standard conventions are not
complete basis sets.Therefore these functions cannot be used
especially in the series expansion studies (see [17–20]).

5. Quantum SF Relativistic NSST Field Theory

In order to construct the complete orthogonal basis sets of
SF relativisticΨ(𝛿∗)𝑠-RNSSTO and𝑋𝑠-RSNSSTO orbitals, we
use the properties of eigenfunctions of operators 𝑗2, 𝑗𝑧, 𝑙̂2, and𝑠2 which are determined by the following column-matrices
[21, 22]:

1𝑌𝑙𝑠𝑗𝑚�푗 (𝜃, 𝜙) =
[[[[[[[[[[[[

𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)𝑎𝑙𝑠𝑗𝑚�푗 (1) 𝑌𝑙𝑚�푙(1) (𝜃, 𝜙)...
𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠 − 1) 𝑌𝑙𝑚�푙(2𝑠−1) (𝜃, 𝜙)𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠) 𝑌𝑙𝑚�푙(2𝑠) (𝜃, 𝜙)

]]]]]]]]]]]]

2𝑌𝑙𝑠𝑗𝑚�푗 (𝜃, 𝜙) =
[[[[[[[[[[[[

𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠) 𝑌𝑙𝑚�푙(2𝑠) (𝜃, 𝜙)𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠 − 1) 𝑌𝑙𝑚�푙(2𝑠−1) (𝜃, 𝜙)...
𝑎𝑙𝑠𝑗𝑚�푗 (1) 𝑌𝑙𝑚�푙(1) (𝜃, 𝜙)𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)

]]]]]]]]]]]]

.

(38)

Here 𝑎𝑙𝑠𝑗𝑚�푗(𝜆) = (𝑙𝑠𝑚𝑙(𝜆)𝑚𝑠(𝜆)/𝑙𝑠𝑗𝑚𝑗) are the Clebsch-Gor-
dan coefficients [23], where

−𝑙 ≤ 𝑚𝑙 (𝜆) ≤ 𝑙,
−𝑠 ≤ 𝑚𝑠 (𝜆) ≤ 𝑠,
0 ≤ 𝜆 ≤ 2𝑠,

𝑚𝑙 (𝜆) = 𝑚𝑗 − 𝑠 + 𝜆,

|𝑙 − 𝑠| ≤ 𝑗 ≤ 𝑙 + 𝑠,
−𝑗 ≤ 𝑚𝑗 ≤ 𝑗.

(39)

It is easy to show that the 1𝑌𝑙𝑠-RNSSTH and 2𝑌𝑙𝑠-MRNSSTH
harmonics for 𝑠 = 0 are transformed into the scalar spherical
harmonics:

1𝑌𝑙𝑠𝑗𝑚�푗 (𝜃, 𝜙) = 2𝑌𝑙𝑠𝑗𝑚�푗 (𝜃, 𝜙) = [𝑆𝑙𝑚�푙 (𝜃, 𝜙)𝑆𝑙𝑚�푙 (𝜃, 𝜙)]
for 𝑠 = 0, 𝑗 = 𝑙, 𝑚𝑗 = 𝑚𝑙, −𝑙 ≤ 𝑚𝑙 ≤ 𝑙.

(40)

It should be noted that (see [21, 22, 24, 25]) the fermions
(for 𝑠 = 0, 1/2, 3/2, . . .) and bosons (for 𝑠 = 1, 2, 3, . . .) are the
special cases of SF particles when the SF properties disappear
from the sight.

5.1. Study of Properties of Quantum SF Relativistic NSST Func-
tions. The 1𝑌𝑙𝑠-RNSSTH and 2𝑌𝑙𝑠-MRNSSTH harmonics for
fixed 𝑠 satisfy the following orthonormality relations [21, 22]:

∫𝜋
0
∫2𝜋
0

1𝑌𝑙𝑠+𝑗𝑚�푗 (𝜃, 𝜙) 1𝑌𝑙�耠𝑠𝑗�耠𝑚�耠�푗 (𝜃, 𝜙) Sin 𝜃 𝑑𝜃 𝑑𝜙
= 𝛿𝑙𝑙�耠𝛿𝑗𝑗�耠𝛿𝑚�푗𝑚�耠�푗

∫𝜋
0
∫2𝜋
0

2𝑌𝑙𝑠+𝑗𝑚�푗 (𝜃, 𝜙) 2𝑌𝑙�耠𝑠𝑗�耠𝑚�耠�푗 (𝜃, 𝜙) Sin 𝜃 𝑑𝜃 𝑑𝜙
= 𝛿𝑙𝑙�耠𝛿𝑗𝑗�耠𝛿𝑚�푗𝑚�耠�푗 .

(41)

Using (38)–(41), we obtain for Clebsch-Gordan coeffi-
cients the following properties:
2𝑠∑
𝜆=0

[𝑎𝑙𝑠𝑗𝑚�푗 (𝜆) 𝑎𝑙𝑠𝑗�耠𝑚�耠�푗 (𝜆) 𝛿𝑚�푙(𝜆)𝑚�耠�푙 (𝜆)] 𝛿𝑙𝑙�耠 = 𝛿𝑙𝑙�耠𝛿𝑗𝑗�耠𝛿𝑚�푗𝑚�耠�푗 , (42)

where −𝑙 ≤ 𝑚𝑙(𝜆) ≤ 𝑙 and 0 ≤ 𝜆 ≤ 2𝑠.
The SF relativistic NSST functions for arbitrary spin are

defined by the following column-matrices:

Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)

= 1√2

[[[[[[[[[[[[[[[[[[[[[[[

𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (1) 𝑌𝑙𝑚�푙(1) (𝜃, 𝜙)...
𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠) 𝑌𝑙𝑚�푙(2𝑠) (𝜃, 𝜙)
R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠) 𝑌𝑙𝑚�푙(2𝑠) (𝜃, 𝜙)...

R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (1) 𝑌𝑙𝑚�푙(1) (𝜃, 𝜙)

R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)

]]]]]]]]]]]]]]]]]]]]]]]
for 𝑠 = 12 , 1, 32 , 2, . . .

(43a)
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Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)
= 1√2 [[

𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)
R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)]]

for 𝑠 = 0, 𝑗 = 𝑙, 𝑚𝑗 = 𝑚𝑙 (0) , −𝑙 ≤ 𝑚𝑙 (0) ≤ 𝑙
(43b)

Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = 𝛽(𝛿∗)𝑛𝑙 (𝑡) Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)
for 𝑠 = 12 , 1, 32 , 2, . . .

(44a)

Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = 𝛽(𝛿∗)𝑛𝑙 (𝑡) Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)
for 𝑠 = 0, 𝑗 = 𝑙, 𝑚𝑗 = 𝑚𝑙 (0) , −𝑙 ≤ 𝑚𝑙 (0) ≤ 𝑙 (44b)

𝑋𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)

= 1√2

[[[[[[[[[[[[[[[[[[[[[[[

𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (1) 𝑌𝑙𝑚�푙(1) (𝜃, 𝜙)...
𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠) 𝑌𝑙𝑚�푙(2𝑠) (𝜃, 𝜙)
R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (2𝑠) 𝑌𝑙𝑚�푙(2𝑠) (𝜃, 𝜙)...

R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (1) 𝑌𝑙𝑚�푙(1) (𝜃, 𝜙)

R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)

]]]]]]]]]]]]]]]]]]]]]]]
for 𝑠 = 12 , 1, 32 , 2, . . .

(45a)

𝑋𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)
= 1√2 [[

𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)
R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) 𝑎𝑙𝑠𝑗𝑚�푗 (0) 𝑌𝑙𝑚�푙(0) (𝜃, 𝜙)]]

for 𝑠 = 0, 𝑗 = 𝑙, 𝑚𝑗 = 𝑚𝑙 (0) , −𝑙 ≤ 𝑚𝑙 (0) ≤ 𝑙,
(45b)

where 𝑛 ≥ 1, 𝑠 ≤ 𝑗 ≤ 𝑠 + 𝑛 − 1, 𝑗 − 𝑠 ≤ 𝑙 ≤ min(𝑗 + 𝑠, 𝑛 −1), 𝑛 = 𝑛 + 2|𝑗 − 𝑙|. See (53) and [21, 22, 24–32] for the exact
definition of functions occurring in ((43a) and (43b))–((45a)
and (45b)).

The relativistic orbitals of arbitrary spin (𝑠 = 0, 1/2, 1,3/2, 2, . . .) and nonrelativistic functions are determined by
the following relations:

Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = Ψ(𝛿∗)𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)
[[[[[[[[[[[[[[[

11...11...11

]]]]]]]]]]]]]]]

(46a)

Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = 𝜓(𝛿∗)𝑛𝑙𝑚�푙(0) (𝜁, ⃗𝑟)
for 𝑗 = 𝑙, 𝑚𝑗 = 𝑚𝑙 (0) , −𝑙 ≤ 𝑚𝑙 (0) ≤ 𝑙 (46b)

Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = 𝛽(𝛿∗)𝑛𝑙 (𝑡) Ψ(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) (47a)

Ψ(𝛿∗)𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = 𝜓(𝛿∗)𝑛𝑙𝑚�푙(0) (𝜁, ⃗𝑟)
for 𝑗 = 𝑙, 𝑚𝑗 = 𝑚𝑙 (0) , −𝑙 ≤ 𝑚𝑙 (0) ≤ 𝑙 (47b)

𝑋𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = 𝑋𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟)

[[[[[[[[[[[[[[[[[[[[

11...11...11

]]]]]]]]]]]]]]]]]]]]

(48a)

𝑋𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) = 𝜒𝑛𝑙𝑚�푙(0) (𝜁, ⃗𝑟)
for 𝑗 = 𝑙, 𝑚𝑗 = 𝑚𝑙 (0) , −𝑙 ≤ 𝑚𝑙 (0) ≤ 𝑙. (48b)

Using ((46a) and (46b))–((48a) and (48b)) it is easy to
show that the SF relativisticNSST functions for spin 𝑠 = 0 and𝑗 = 𝑙 simple are reduced to the corresponding nonrelativistic
scalar basis sets:

Ψ(𝛿∗)01000 (𝜁, ⃗𝑟) = [[
Ψ(𝛿∗)1000 (𝜁, ⃗𝑟)
Ψ(𝛿∗)1000 (𝜁, ⃗𝑟)]] (49a)

Ψ(𝛿∗)1000 (𝜁, ⃗𝑟) = 𝜓(𝛿∗)100 (𝜁, ⃗𝑟) (49b)

Ψ(𝛿∗)01000 (𝜁, ⃗𝑟) = [[
Ψ(𝛿∗)1000 (𝜁, ⃗𝑟)
Ψ(𝛿∗)1000 (𝜁, ⃗𝑟)]] (50a)

Ψ(𝛿∗)1000 (𝜁, ⃗𝑟) = 𝜓(𝛿∗)100 (𝜁, ⃗𝑟) (50b)

𝑋01000 (𝜁, ⃗𝑟) = [𝑋1000 (𝜁, ⃗𝑟)𝑋1000 (𝜁, ⃗𝑟)] (51a)

𝑋1000 (𝜁, ⃗𝑟) = 𝜒100 (𝜁, ⃗𝑟) . (51b)

The orthogonality relations for SF relativistic NSST functions
are determined by

∫Ψ(𝛿∗)𝑠†𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) Ψ(𝛿∗)𝑠𝑛�耠𝑙�耠𝑗�耠𝑚�耠�푗 (𝜁, ⃗𝑟) 𝑑3 ⃗𝑟 = 𝛿𝑛𝑛�耠𝛿𝑙𝑙�耠𝛿𝑗𝑗�耠𝛿𝑚�푗𝑚�耠�푗
∫𝑋𝑠†𝑛𝑙𝑗𝑚�푗 (𝜁, ⃗𝑟) 𝑋𝑠𝑛�耠𝑙�耠𝑗�耠𝑚�耠�푗 (𝜁, ⃗𝑟) 𝑑3 ⃗𝑟 = 𝛿𝑛𝑛�耠𝛿𝑙𝑙�耠𝛿𝑗𝑗�耠𝛿𝑚�푗𝑚�耠�푗 ,

(52)
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where 𝑛 ≥ 1, 𝑠 ≤ 𝑗 ≤ 𝑠 + 𝑛 − 1, −𝑗 ≤ 𝑚𝑗 ≤ 𝑗, 𝑗 − 𝑠 ≤ 𝑙 ≤
min(𝑗 + 𝑠, 𝑛 − 1) and

𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) = 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟) ,
R̃
(𝛿∗)𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) = 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟) ,

𝑅̃(𝛿∗)𝑠𝑛𝑙𝑗 (𝜁, 𝑟) = 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟) ,
R̃
(𝛿∗)𝑠

𝑛𝑙𝑗 (𝜁, 𝑟) = 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟) ,
𝑅̃𝑠𝑛𝑙𝑗 (𝜁, 𝑟) = 𝑅𝑛𝑙 (𝜁, 𝑟) ,
R̃
𝑠
𝑛𝑙𝑗 (𝜁, 𝑟) = 𝑅𝑛𝑙 (𝜁, 𝑟) ,

(53)

where 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟), 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟), 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟), 𝑅(𝛿∗)𝑛𝑙 (𝜁, 𝑟) and𝑅𝑛𝑙(𝜁, 𝑟) = 𝑅𝑛(𝜁, 𝑟), 𝑅𝑛𝑙(𝜁, 𝑟) = 𝑅𝑛(𝜁, 𝑟) functions are the
radial parts of nonrelativistic scalar orbitals 𝜓(𝛿∗)𝑛𝑙𝑚�푙(𝜁, ⃗𝑟),𝜓(𝛿∗)𝑛𝑙𝑚�푙(𝜁, ⃗𝑟), and 𝜒𝑛𝑙𝑚�푙(𝜁, ⃗𝑟), respectively.
5.2. The SF Relativistic NSST and Nonrelativistic Energies

𝐸𝑠𝑛𝑙𝑗𝑚�푗 (𝜁) = 𝐸𝑛𝑙𝑗𝑚�푗 (𝜁) 𝐼2(2𝑠+1) (54a)

𝐸𝑛𝑙𝑗𝑚�푗 (𝜁) = 𝐸𝑛𝑙 (𝜁) = −𝜁22 . (54b)

5.3. The SF Relativistic NSTT and Nonrelativistic Potentials
and Their Derivatives

𝑉(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, 𝑟) = 𝑉(𝛿∗)𝑛𝑙𝑗𝑚�푗 (𝜁, 𝑟) 𝐼2(2𝑠+1) (55a)

𝑑𝑘𝑑𝑟𝑘𝑉(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, 𝑟) = 𝑑𝑘𝑑𝑟𝑘𝑉(𝛿∗)𝑛𝑙𝑗𝑚�푗 (𝜁, 𝑟) 𝐼2(2𝑠+1) (55b)

𝑑𝑘𝑑𝑟𝑘𝑉(𝛿∗)𝑠𝑛𝑙𝑗𝑚�푗 (𝜁, 𝑟) = 𝑑𝑘𝑑𝑟𝑘𝑉(𝛿∗)𝑛𝑙 (𝜁, 𝑟) , (55c)

where 1 ≤ 𝑘 < ∞.
The (55a), (55b), and (55c) describe the features of quan-

tum SF relativistic NSST nonperturbative theory. In the case
of non-self-frictional (NSF) relativistic field, the nonpertur-
bative approach is reduced to the perturbation series which
are divergent in Quantum Electrodynamics (see [33–35]).

In the literature (see [33–37] and references therein), the
NSF relativistic nonperturbative theory has been considered.
We notice that the radiation and self-force problems arise in
the NSF nonperturbative theory presented in [33–37].

As an application of quantum SF relativistic NSST non-
perturbative theory, the comparative values of scalar and SF
relativistic NSST potentials𝑉(𝛿∗)(𝜁, 𝑟) and forces 𝐹(𝛿∗)(𝜁, ⃗𝑟) =−(𝑑/𝑑𝑟)𝑉(𝛿∗)(𝜁, 𝑟) for 𝛿∗ = 𝛼∗ and 10−18 ≤ 𝑟 ≤ 104 are shown
in Figures 1 and 2.

6. Conclusion

Theconstruction of quantum self-frictional relativistic nucle-
oseed spinor-type tensor field theory of nature is based on the
generalization of AMN approach to the CU systems intro-
duced by the author in the previous papers. It has been shown
that the gravitational, nuclear (𝑁1 and 𝑁2), electromagnetic,
nuclear weak, and Newtonian fields are the special cases of
quantum SF relativistic NSST field presented in this work.We
note that the fermions and bosons are obtained from the SF
particles of arbitrary spin (𝑠 = 0, 1/2, 1, 3/2, 2, . . .)when their
SF properties disappear.

The one- and two-center one-range addition theorems for
nonrelativistic noninteger 𝑛 𝜒-NSTO orbitals have been sug-
gested. The SF relativistic NSST field through the nonrela-
tivistic field, and vice versa, has been presented.The quantum
self-frictional relativistic nonperturbative theory has been
also suggested.

The anomaly in [3, 4] could lead to a fundamental revision
of the Quantum Electrodynamics theory known as the best-
tested and best-understood theory in all of science until now.
We believe that the presented quantum SF relativistic NSST
field approach will be of interest in the quantum mechanics
of cosmic sciences and combined open shell Hartree-Fock
theory suggested by the author (see [38] and references
therein to our papers).

The application of presented theory is in progress in our
group for the study of SF-NSST atomic-molecular-nuclear
and cosmic-universe systems.
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