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For study of quantum self-frictional (SF) relativistic nucleoseed spinor-type tensor (NSST) field theory of nature (SE-NSST atomic-
molecular-nuclear and cosmic-universe systems) we use the complete orthogonal basis sets of 2(2s + 1)-component column-

matrices type SF wOs_relativistic NSST orbitals (\I’@‘)S—RNSSTO) and SF X* . -relativistic Slater NSST orbitals (X°*-RSNSSTO)

nljm; nljm;

through the wfl‘;;i—nonrelativistic scalar orbitals (w(é*)—NSO) and y;;,, -nonrelativistic Slater type orbitals (x-NSTO), respectively.

Here 8" = p; or 6" = a” and p; = 2] +2 — a”, a” are the integer (" = &, —00 < a < 2) or noninteger (a” # &, —00 < a* < 3)
SF quantum numbers, where s = 0,1/2,1,3/2,2,.... We notice that the nonrelativistic 1//(5* J_NSO and y-NSTO orbitals themselves
are obtained from the relativistic #° *-RNSSTO and X*-RSNSSTO functions for s = 0, respectively. The column-matrices-type SF

'y’ -RNSST harmonics ('y"-RNSSTH) and *Y'; -modified NSSTH (*y"-MNSSTH) functions for arbitrary spin s introduced by

J J

the author in the previous papers are also used. The one- and two-center one-range addition theorems for y° ’-NSO and noninteger

n x-NSTO orbitals are presented. The quantum SF relativistic nonperturbative theory for Vrfgm)‘ -RNSST potentials (V@) _RNSSTP)
J

and their derivatives is also suggested. To study the transportations of mass and momentum in nature the quantum SF relativistic

NSST gravitational photon (gph) with s = 1 is introduced.

1. Introduction

Construction of combined quantum approach for AMN and
CU systems of nature is the most important because the
classical aspect of field theories leads to contradictions (see
review papers [1, 2] and references therein). These contradic-
tions, as shown in Figures 1 and 2 for nonrelativistic and SF
relativistic NSST potentials and forces, arise for some values
of distance r (107'° < r < 107°, 107" < r < 107,107 <
r<10',107 <r <1078 and 107® < r < 107°) between
fields of nature. The quantities G, (N, and N,), E, NW, and
NUA in Figures 1 and 2 describe the gravitational, nuclear,
electromagnetic, nuclear weak, and Newtonian (Newtonian
universal attraction law) fields, respectively (see [3, 4] on
observation of gravitational (G) and nuclear (N, and N,)
fields). The difficulties arising for these values of r are not

explained by classical field theories. Taking into account all
values of distance from nucleus (for 0 < r < 00), such a prob-
lem can be solved only using quantum SF relativistic NSST
field theory of nature presented in this work. We note that
the G, N, E, NW, and NUA fields are obtained from the single
quantum SF relativistic NSST field when the SF properties are
disappearing from sight.

According to the theory introduced by Lorentz in classical
electrodynamics [5-7], the electrons move around the atomic
point-charge nuclei under total nuclear attraction forces F; =
F + (2¢/3¢%)7, where 7 is the time derivative of the accelera-
tion of the electron. We note that the inclusion of the third
derivative of displacement leads to the radiation and self-
force problems in classical electrodynamics. These problems
do not arise in the case of quantum SF relativistic NSST field
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FIGURE 1: Quantum scalar and SF relativistic NSST potentials for A = 0 as a function of distancer (forz =r,n=2,1=1,j=1/2,m ;= -1/2,

(=15a" =05 forQ=G10"¥ <r<10"),Q0=N, 10" <r<10™),Q=N,(10% <r<10),Q=E10" <r<107),
Q=NW (10°% <r <107%),and Q = NUA (107 < r < 10%).
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FIGURE 2: Quantum scalar and SF relativistic NSST attraction forces for A = 0 as a function of distance r (forz = r,n = 2,1 =1, j = 1/2,
m;=-1/2,{ =15a" =05 forQ=G (107 <r<107°),Q=N, (10" <r<10),Q=N, (10° <r<107?),Q=E (10" <r<
10°),Q=NW (10° <r <107°),and Q = NUA (10 < r < 10%).
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theory. The analytical formulas for the quantum attraction  the quantum cases, the SF particles move around the nucleus
forces suggested in the previous papers [8-10] are the exten- ~ under relativistic NSST attraction forces. These forces depend
sions of Lorentz theory to the quantum cases in standardand ~ on quantum numbers 7,1, " and scaling parameters { and
nonstandard conventions (see [11, 12] and references therein distance r from nucleus of SF-NSST AMN and CU systems.
to our works on standard and nonstandard conventions). In ~ We note that the new fields, which may be discovered in the
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future for 0 < r < 107'%, depended on the productive capacity
of science and technology. The presented quantum nonrela-
tivistic and SF relativistic NSST field theory of nature is the
generalization introduced by the author of AMN approach to
the CU systems.

The purpose of this work is to construct the combined
quantum nonrelativistic and relativistic NSST field theory of
nature in position space for arbitrary values of parameters.
This theory may open new avenues of approach to the
solution of problems related to the properties of AMN-CU
systems.

2. Gravitational Photon

To study the quantum SF relativistic NSST field theory
of nature, we use the Einstein classical relativistic relation
between mass and energy in the following form:

E (m) = mc?, ¢))
where m (for 0 < m < ©0) is the mass of fermion; mc* and
E(m) are the energies of fermion and gph boson with s = 1,
respectively. The gph boson moves with the velocity of light
(v = ¢) and carries the mass m = E(m)/c* and momentum
p. We note that, in the case of classical electrodynamics,
the SF properties of fermions and bosons disappear and the
radiation problems arise.

3. Quantum Nonrelativistic Field Theory in
Standard Convention

It is easy to show that the SF relativistic NSST functions
are expressed through the corresponding nonrelativistic basis
sets. Therefore, the SF relativistic NSST particles can be
described by the use of nonrelativistic functions. Now we
investigate at first the nonrelativistic cases.

In order to study the scalar quantum field theory of nature
in standard convention, we use the following formulas (see
[8-10]):

(1) The complete orthogonal sets are as follows:

Vnz 165e+ .
MOE oyt b (=0 Dlip
T(p; +1) m ! (2a)
+ 1 t)
353*) (t) _ y:l(l;*) Z a,fj;)ltn —(165*P;<+1) (zb)
n'=l+1
(‘S ) Pl * *
(t) = mg (t) ford” =p, (3a)
nl
2200 =L (1) for 6" = o (3b)
YO (@ H =)L ()8, (0,9) (4a)

Vi ()

a8 (2 (1 =185 ) Kooy, im (€ (4D)

= ynl
—l+1
7)
T €7 = 02 08, 0.6) = 657 00
(5a)
l//nlm, (C T‘)
1//537,,,)[ (a 7') 71nl )(t)
(5b)
Z a® )’\/n——l%p W18 eI €7,
n'=l+1
where
o QO
o, (6 F) = st Sy (6.¢) (6)
ﬁ(5 ) (t) = (- —( (+ 1))) tpl for §* = Pl* (7a)
5(5 ) (%)a for 6" = o (7b)
6" _ M for 8* = pl* (83)

YT g )

Y(a*) _ \] (g, +1)
"l en)* (n—>1+1))!

M 0=y By 0 =177

for 6" =" (8b)

for 8" = p, (%)

8" @)y L\[@) g+ 1)
O =1 B t«*\j (n-(+1)  (9b)

for 6" =a”

andt =20r,p/ =2l+2-a",q, =n+l+ l—oc*,andS/’S*)
are the NSST polynomials (L) -NSSTP), Xoim, (G, 7) are the
nonrelativistic Slater type orbitals, and the S;,,, is the complex
(for Sim, = Ylml) or real spherical harmonic (see [13]). We
note that our definition of phases for the complex spherical
harmonics (v, = Y;_,,) differs from the Condon-Shortley
phases [14] by the sign factor (-=1)™

The confluent hypergeometric function |F; [15] occur-
ring in ((2a) and (2b)) can be determined by

F, (— [n—(+ 1)];pl* + l;t)

~(8*)1 tn'—(l+1) (10)
! bl

=T(p +1)

n'=l+1
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where
G _ e
nn nn

_ (== T+ DDw_gsn (11)
L(p; +1)(pf + 1)y (0 = A+ D)

P, T € 7), £88),

and gnl (t) are expressed through the Pochhammer sym-
bols.
The orthogonality relations are defined as

Aswe see, all of the functions 1//

J. l//nl o (C 1") 1//,(,,61’) ! (z;) F) d3_) = 6nn'611’6m,ml’

jom (tP’ _2) o ( /3(6 )(t)) ( )<ﬁ(6 )(i’)>

2% wydt=s,, (12)
n+n)
J X € 7) Koy ) 7 = (e
(2n)! (2n")!
: 8ll'6mlml’ .

(2) The eigenvalues corresponding to the V’fd
functions are the same and determined by

8y =
" (¢, 7) scalar

S (13)
2

E®)=E-=

where { (0 < { < ©00) is the screening constant. We note
that the parameters { can be chosen properly according to the
nature of corresponding field under consideration.

(3) The scalar potentials are as follows:

Advances in High Energy Physics

(o™ +1) (t)
2n(n—-(1+ 1))"l+)
tZ,, () (15b)

5
U ) =1+

for 8" =a”.
(4) The scalar forces are as follows:
() =~ & D) (16)
(p; +1)
o o1 L LI (1)
G wm=1+2"g (;l
n 1 (t)
SO RN ) 7
+t4, e (4, - SE
(t) T
for 8" = p,

G w=1-% l(n—(l+1))><{1

S0 J 2n
L S 2t
g(a)(t) (Pl )

(a"+1)
—(2n)L()”> for 8" = a”.
nl (t)

(17b)

(5) The one- and two-center one-range addition theorems

for nonrelativistic W(S*)—NSO and noninteger n y-NSTO
functions in standard convention are determined by the
following relations.

w(‘s*)-NSO Functions. For I_éab #0

n =
v () = ( RN (14) Yo (0.72)
0 - 19
U((lg =1+ o Z, Z Z Z fwnlm (C’C’;Rah)wuw (C )
! n ! (Pl v+1 v=0 0=-v !
(t) (15a) p
for 8" = p, where
A QEINEE Y @) 13
A v i, (0.¢5Ry) = Z Z Qi1 Ty "Sor 185 2 (! +185+ e~ 190 (685 Rap) (19)
n'=1+1 p'=v+1
! *
ey _ - TR v-at)el) (208)
Tyv,y'v - % 2(u - 1 or =D
. o r(2(W -at)+1
T(5 );V — (2”)0‘ ( (‘M ) ) fOI' 6* — OC* (zob)
)
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=) 8*) ~(8")!1
Qs =Vt (2 (1 =185 )1, (1)
S;lm,,n"w ((’ (’; Rab) = J X;lml ((’ ?a) Xn*vo (cl’ ?b) dS? (22)
ForR, =0 where
1 . * *
Yo (7 = Z At i (G WS (C7) (23) = \/r 2 +1-a*)+1) ford" =p (32a)
u=l+1
lf,,i’m,ml (¢.¢")=0,, for({={ (24a) L6 _ \J(zu)“ r(q;+l)r(2(#'_a*)+l)
- pp! -(I+D) (32b)
A(Slw):ll,n*lm, ({’ C,) ( )
. for 8" =
= Z Z 66 )’10(5 ) (6 )’lSn' 185w+ Iyt +1Sgw o —ct* Im, (C’ (24b)
n'=l+1 p'=l+ bl o Sr*t*lml,n’*l’ml' (C) (l)
cl) for {#¢' F(n* +n'* +1) .
[(n+n*+1) - (14" (32¢)
nlm n*vo (C ( ) - vl omy o (1+ t)nﬂ/z (1 \/r (271* + 1) F(Zn’* + 1)
" \V(@2n)!IT (2n* +1) (25)
B t)n*+l/2’ (- t)n’*+1/2 )
. I (26) We note that the (27) and (30) are obtained by the use of
g+ complete orthogonal functions y® '-NSO.

See [16] for the calculation of overlap integrals.

Noninteger n y-NSTO Functions. For Ry #0
Xn*lmy (C’ ?a)

i
1 u=r+

(27)

lMg
ﬁML

z u,vo,n*lmy (C (7 Rub) Xu— 85+ ((,> ?b)>
il o

where
(zc)n* +1/2

X im, (0, 7) = m?’
" s s =
H;du 1)/1(/7 n lm (( ( Rab) QI(,W li‘:A(‘m/;vn lml (C: C’; Rab) . (29)

5 )y 3
RO G5 Ry)

s, 09)  @9)

See (19) for definition of quantities
occurring in (29).
For Ral’l =0

Xn*lm, ((> F)

S = ) , o (30)
- Z Z L —— (&¢ )Xu—l(?a*?l*lml (¢.7).
u=l+1u=I+1
Here
=(8")1 ! SOOI '
Hyu,lml,n*lml ((’C ) Qul ulAI,;lmln “Imy ({s{ ) (313.)

R, (50)
(31b)

14
— ~(5 o’ (5 ]
- ,Zl‘,l uy! Sn*lm,p. +Ssx ;o *lmy (Ca( )>
w=it

4. Quantum Nonrelativistic Field Theory in
Nonstandard Convention

Now we investigate the properties of nonrelativistic functions
for a* = 1and { = Z/n. In this case, these functions are
determined by the following.

4.1. The Scalar Energies

2
B _p- -2 (33)
2n?
4.2. 'The Scalar Potentials
. z
VOl =vr) = -=. (34)
4.3. The Scalar Forces
* Z
F () =F(@r) = -5 (35)

4.4. The Scalar Eigenfunctions
Z
nlm, (C r) W”lml <;’r>

" (36)
_ (Z ) e ( 2Z
n

) Sim, (6.6



where LP 1((2Z[n)r) are the associated Laguerre polynomials
(? —ALP) defined by

- 2Z
CRIOR A (;r)

(n+1)!

TR Fy(=[n—(+1)];p + 15t)

(37)

* Z
fora™ =1, { = —.
n

Here ¢,V (r), F(r), and Wnlm,(z/”> 7) are the Schrodinger’s
eigenvalue, potential, force, and eigenfunction for the
hydrogen-like atoms in nonstandard convention. As we see
from (37), the L”-ALP polynomials are the special cases of
PO NSSTP for a* = 1 and { = Z/n. The similar calcula-
tions can be also performed in the case of nonrelativistic
standard convention. It should be noted that the eigenfunc-
tions wle’ml(Z/n, 7) and Laguerre polynomials LZ ((2Z[n)r)
obtained in nonrelativistic standard conventions are not
complete basis sets. Therefore these functions cannot be used
especially in the series expansion studies (see [17-20]).

5. Quantum SF Relativistic NSST Field Theory

In order to construct the complete orthogonal basis sets of
SF relativistic ¥ *-RNSSTO and X*-RSNSSTO orbitals, we
use the properties of eigenfunctions of operators j°, 7,, %, and

§* which are determined by the following column-matrices
[21, 22]:

Is

a]mj (0) Ylm,(
Is

ajmj (1) Ylml(l)

0 (0.9)

(6, ¢)
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I-s|<j<l+s,
—jsm;<j.
(39)

It is easy to show that the 'y" RNSSTH and >y"*-MRNSSTH
harmonics for s = 0 are transformed into the scalar spherical
harmonics:

IYi'Smj (0,¢) _ 2Y;5mj (9,¢) _ [ lml( ¢):|

Slml (0’ ¢)

fors=0, j=1 my=my, -l <m; <l

(40)

It should be noted that (see [21, 22, 24, 25]) the fermions
(fors =0,1/2,3/2,...) and bosons (for s = 1,2, 3,...) are the
special cases of SF particles when the SF properties disappear
from the sight.

5.1. Study of Properties of Quantum SF Relativistic NSST Func-

tions. The 'y"-RNSSTH and 2y -MRNSSTH harmonics for
fixed s satisty the following orthonormality relations [21, 22]:

Y, (6.9) 'y (6,9) Sin0d0 dep

Jn’ J~27'r1 Is
0 Jo

=6ll’8] (Smm

o2
0 Jo

= 8ll’8jj'6mjm;'

(41)
Ylfm (6, ¢) ZY;,Sm,_ (6,¢) Sin 0 dO d¢b
J

Using (38)-(41), we obtain for Clebsch-Gordan coefhi-
cients the following properties:

2s

Is
> [dh, ™)
A=0

a I / (A) 6ml(A ym! (,\):I 6111 = 6”/6”,8,” m]’ (42)

Is
lemj (6’ (/)) =

as

jm;

(25 - 1) Ylml(Zs—l) (6’ ¢)

where I <my(A) <l and 0 < A < 2s.
The SF relativistic NSST functions for arbitrary spin are

. (25) Vi) (6,9)

a;inj (25) Ylm,(Zs) (6’ ¢)

: = 1) Yy 05-1) (0:9)

D, (2s

¥, (0.6) =
(6.4)
(6.4)

I

ajsmj (1) Yy 1)
Is

a]mj (0) Ylm;(O)

(lsml(A)ms(A)/lsjmj) are the Clebsch-Gor-
dan coeflicients [23], where

Is _
Here a]mj( ) =

-l<m (L) <1,
-s<m(A) <s,
0<A<2s,

my(A) = m; -5+ A,

defined by the following column-matrices:

[
,S,ﬂf (&)

RO (€l (0) Y (6:9) ]
RO (G ), (1) Vi) (6,9)
1 RESJ (€.r) a;fmj (28) Yy, 25) (6,9)
== 43
\/E migj ((’ 7‘) a;inj (25) Ylml(Zs) (6’ ¢) ( a)

nl /j

nl /j

RO () aﬁsm (1) Y1) (6, 9)
RO Q) dp, (0) Vi) (6:9) |

fors=-,1,

N | W

1
2’

325
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W0 €. )

nl]m
()]
1 anl] @) “ﬁ'smj (0) Yy, (0) (6, 9)

= ) (43b)
\/_ migj ((’ 7’) a;mj (0) YlmI(O) (6’ (/))
tors=0, j=1, mj=ml(0), -l<m;(0) <l
T (©7) = 857 (0¥ C.7)
1 3 (44a)
fors=-,1,-,2,...
2772
(6 )s
P, (G7) = B (WG €. F) (ab)
fors=0, j=1, m;=m(0), - <m(0)<I
Xftljmj (C’ ?)
Rfﬁ] (D) aj.jnj (0) Ym0y (6:9)
RS @) aly, (1) Vi (6:9)
1| Ry @n a§; (29) Vi 29 (6:9)
\/E mig] (c T’ 25 Ylml(Zs) (6 ¢) (453)
13] * (C r) a'l;in (1) Ylml(l) (9 ¢)
RO (), (0) Vi (6:9) |
for s = 1 1,5,2,...
2’72
Xitljmj (C’ ?)
1 [ RS @ndl, (0) Y (6.9)
= ! (45b)

V2 [ RED: (¢ d, (0) Vi) (6:9)

fors=0, j=1 m;=m(0), - <m(0) <],

wheren > 1, s<j<s+n-1, j—s <l <min(j+s,n-
1), 1 =n+2|j—I|. See (53) and [21, 22, 24-32] for the exact
definition of functions occurring in ((43a) and (43b))-((45a)
and (45b)).

The relativistic orbitals of arbitrary spin (s = 0,1/2, 1,

3/2,2,...) and nonrelativistic functions are determined by
the following relations:
17
1
‘11(6 s ! 4
nl]m (c ) nl]m C f') 1 ( 63)
1
L1

7
\Fr(f]m C’ ?) = 1/’:,?,;)1(0) (Ca ?)
(46Db)
for j=1, m;=m;(0), -l <m(0) <!
—(8%)s N s
Yotjm, (67) = By’ ‘I’,ﬁzw’, (99 (472)
\Pr(lgm (( }" nlm,(o) (c ?)
(47b)
for j=1, m; =my(0), -1 <my(0) <!
1
1
s S N
anjmj (C’ T) = anjmj (C) r) 1 (483)
1
[ 1]
anjmj (C’ ?) = anml(o) (C, 7)
(48b)
for j=1, m;=m(0), -l <m(0) <L

Using ((46a) and (46b))-((48a) and (48b)) it is easy to
show that the SF relativistic NSST functions for spin s = 0 and
j = I simple are reduced to the corresponding nonrelativistic
scalar basis sets:

we (7 = [ oo ¢ r)] (49a)
1000 ({ )
¥ioo (. 7) = yiog (¢, 7) (49b)
)
o €)= _;g°§ “ ”] (500)
Y1000 €. 7
Wﬁ;é €7 = ‘/’100) (€.7) (50b)
0 L [%1000 ({>?)]
Kiono (:7) = [Xmoo &7 Gla)
X1000 (6 7) = X100 (€, 7). (51b)

The orthogonality relations for SF relativistic NSST functions
are determined by

s (8%)s N
J/\Pr(lzrzl (C )\Pn’l” ’(C T')d3 = ’81178” 6mm

(52)
st o s o N
JX”ljmj () X“'l'j'm} (N7 = 8y O 6m >



wheren > 1, s<j<s+n-1, —-j<m; <j j—s<I<
min(j +s,n — 1) and

RO*@n =R @),

RO () =REV (7,

nilj

)s —(8*
Ry (Gr)= Ri,l (R
(53)
—(8")s )
Ry (r) =Ry (Gr)
R:;lj (C’ T‘) = Rnl (C) T) >
ﬁfﬁl] (C) 7’) = Rh‘l ((’ 7') >
where RS)(Cr), REICr), RS ¢, RS () and

R, r) = R, 1), nl((, r) = Ry((,7) functlons are the

radial parts of nonrelativistic scalar orbitals w,(l‘lsm)(c, 7),

W"lmz(c 7), and Xnlm, (¢, 7), respectively.

5.2. The SF Relativistic NSST and Nonrelativistic Energies

Estim, (©) = Eygj, () PO (54a)
(2
Enljm C - nl (C (54b)

5.3. The SF Relativistic NSTT and Nonrelativistic Potentials
and Their Derivatives

Véim ¢ = ,fg,,: G r) P& (55a)
dk
dr gk nl]m (C )_ kvigm (C )IZ(ZSH) (SSb)
dk ")
dr Tk nl]m (( r) = dr kan ((a r), (55¢)

where 1 < k < co.

The (55a), (55b), and (55¢) describe the features of quan-
tum SF relativistic NSST nonperturbative theory. In the case
of non-self-frictional (NSF) relativistic field, the nonpertur-
bative approach is reduced to the perturbation series which
are divergent in Quantum Electrodynamics (see [33-35]).

In the literature (see [33-37] and references therein), the
NSEF relativistic nonperturbative theory has been considered.
We notice that the radiation and self-force problems arise in
the NSF nonperturbative theory presented in [33-37].

As an application of quantum SF relativistic NSST non-
perturbative theory, the comparative values of scalar and SF
relativistic NSST potentials V(y)(C ,r) and forces F (6*)(( 7)) =
—(d/dr)V(a*)((, r)for8* = a* and 107" < r < 10* are shown
in Figures 1 and 2.
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6. Conclusion

The construction of quantum self-frictional relativistic nucle-
oseed spinor-type tensor field theory of nature is based on the
generalization of AMN approach to the CU systems intro-
duced by the author in the previous papers. It has been shown
that the gravitational, nuclear (N, and N,), electromagnetic,
nuclear weak, and Newtonian fields are the special cases of
quantum SF relativistic NSST field presented in this work. We
note that the fermions and bosons are obtained from the SF
particles of arbitrary spin (s = 0,1/2,1,3/2,2,...) when their
SF properties disappear.

The one- and two-center one-range addition theorems for
nonrelativistic noninteger n x-NSTO orbitals have been sug-
gested. The SF relativistic NSST field through the nonrela-
tivistic field, and vice versa, has been presented. The quantum
self-frictional relativistic nonperturbative theory has been
also suggested.

The anomaly in [3, 4] could lead to a fundamental revision
of the Quantum Electrodynamics theory known as the best-
tested and best-understood theory in all of science until now.
We believe that the presented quantum SF relativistic NSST
field approach will be of interest in the quantum mechanics
of cosmic sciences and combined open shell Hartree-Fock
theory suggested by the author (see [38] and references
therein to our papers).

The application of presented theory is in progress in our
group for the study of SF-NSST atomic-molecular-nuclear
and cosmic-universe systems.
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