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We investigate all possible nilpotent symmetries for a particle on torus. We explicitly construct four independent nilpotent BRST
symmetries for such systems and derive the algebra between the generators of such symmetries.We show that such a systemhas rich
mathematical properties and behaves as double Hodge theory.We further construct the finite field dependent BRST transformation
for such systems by integrating the infinitesimal BRST transformation systematically. Such a finite transformation is useful in
realizing the various theories with toric geometry.

1. Introduction

The formulation based on BRST symmetry [1–4] plays a
crucial role in the discussion of quantization, renormal-
ization, and unitarity and other aspects of gauge theories.
The nilpotency nature of BRST transformation is mainly
responsible for simplified treatment in all these discussions.
Thus it is extremely important to find more and more
nilpotent symmetry associated with any system to study, par-
ticularly the systems with constraints. Toric geometry which
is generalization of the projective identification that defines𝐶𝑃𝑛 corresponding to the most general linear sigma model
provides a scheme for constructingCalabi-Yaumanifolds and
their mirrors [5]. Recently, on the basis of boundary string
field theory [6], the brane-antibrane system was exploited
[7] in the toroidal background to investigate its thermody-
namic properties associated with the Hagedorn temperature
[8, 9]. The Nahm transform and moduli spaces of 𝐶𝑃𝑛
models were also studied on the toric geometry [10]. In a
four-dimensional, toroidally compactified heterotic string,
the electrically charged BPS-saturated states were shown to
become massless along the hyper surfaces of enhanced gauge
symmetry of a two-torus moduli subspace [11].

In the present work we investigate various possible nilpo-
tent symmetries for a particle on torus. Usual BRST symme-
try for a particle on torus has already been constructed [12].
In this work we construct four different nilpotent symmetries

associated with this system, namely, BRST symmetry, anti-
BRST symmetry, dual BRST (also known as co-BRST) sym-
metry, and anti-dual BRST (also known as anti-co-BRST)
symmetry [13–15].We further construct twodifferent bosonic
symmetries using these nilpotent BRST symmetries and
some discrete symmetries associated with ghost number are
also written for such systems. Complete algebra satisfied by
charges, which generate these symmetries, is derived. Deep
mathematical connections of such system with Hodge theory
[16–19] are established in this work.We found that the system
of particle on a torus is realized as Hodge theory with respect
to two different sets of operators. The generators for BRST,
dual BRST symmetries, and generator for corresponding
bosonic symmetries constructed out of BRST and dual BRST
symmetries are analogous to exterior derivative, coexterior
derivative, and Laplace operator in Hodge theory [20–28].
On the other hand the charges corresponding to anti-BRST
symmetry, anti-dual BRST symmetry, and bosonic symmetry
constructed out of these two BRST symmetries are also from
set of de Rham cohomological operators. This indicates that
the mathematical foundation of the theory of a particle on a
torus is extremely rich.

We further extend the BRST transformation for this
system by considering the BRST parameter as finite and
field dependent. More than two decades ago Joglekar and
Mandal introduced for the first time the concept of finite
field dependent BRST (FFBRST) transformation [29], which
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had similar structure and properties of usual BRST transfor-
mation. However the path integral measure is not invariant
due to finite nature of such transformation. It has been
shown that by constructing suitable finite parameter one
can calculate desirable Jacobian factor which under certain
condition is added to the effective action of the theory. Thus
FFBRST is capable of connecting generating functionals of
two different effective theories. Because of these remarkable
properties, FFBRST has become a useful tool of studying
various field theoretic systems with BRST symmetry and it
has found many applications [30–43]. We have constructed
FFBRST transformation for the system of particle on torus
to show the connection between two theories on torus with
different gauge fixing. Now we present the plan of this
manuscript.

We start with the brief introduction about the free particle
on the surface of torus in Section 2. Hamiltonian formulation
for this theory is presented in Section 3. In Section 4 the
BFV formulation for this model has been discussed and
BRST symmetry for such model has been constructed. In
Section 5 the other nilpotent symmetry transformations for
same system have been constructed. Co-BRST and anti-co-
BRST have been discussed in Section 6. Other symmetries
have been discussed in Section 7. The connection between
algebra satisfied by the nilpotent charges and de Rham
cohomological operators of differential geometry is shown in
Section 8. In Section 9 we introduce FFBRST transformation
and in the next section we connect theory in different gauges
using FFBRST transformations. We conclude our results in
Section 10.

2. Free Particle on Surface of Torus

BRST Symmetry for free particle system on toric geometry
has already been studied using BFV formalism in [12]. Here
we review some parts of the work in [12] relevant to our
calculation in later chapters. A particle moving freely on the
surface of a torus is described by Lagrangian [12]:

𝐿0 = 12𝑚 ̇𝑟2 + 12𝑚𝑟2 ̇𝜃2 + 12𝑚 (𝑏 + 𝑟 sin 𝜃)2 ̇𝜙2, (1)

where (𝑟, 𝜃, 𝜙) are toroidal coordinates related to Cartesian
coordinates as

𝑥 = (𝑏 + 𝑟 sin 𝜃) cos𝜙,
𝑦 = (𝑏 + 𝑟 sin 𝜃) sin𝜙,
𝑧 = 𝑟 cos 𝜃.

(2)

Here we have considered a torus with axial circle in the𝑥-𝑦 plane centered at the origin, of radius 𝑏, having a circular
cross section of radius 𝑟. The angle 𝜃 ranges from 0 to 2𝜋
and the angle 𝜙 from 0 to 2𝜋. Since the particle moves on the
surface of torus of radius 𝑟, it is constrained to satisfy

Ω1 = 𝑟 − 𝑎 ≈ 0. (3)

The canonical Hamiltonian corresponding to the Lagrangian
in (1) with the above constraint is then written as

𝐻0 = 𝑝2𝑟2𝑚 + 𝑝2𝜃2𝑚𝑟2 +
𝑝2𝜙

2𝑚 (𝑏 + 𝑟 sin 𝜃)2 + 𝜆 (𝑟 − 𝑎) , (4)

where 𝑝𝑟, 𝑝𝜃, and 𝑝𝜙 are the canonical momenta conjugate to
the coordinate 𝑟, 𝜃, and 𝜙, respectively, given by

𝑝𝑟 = 𝑚 ̇𝑟,
𝑝𝜃 = 𝑚𝑟2 ̇𝜃,
𝑝𝜙 = 𝑚 (𝑏 + 𝑟 sin 𝜃)2 ̇𝜙.

(5)

The time evolution of the constraint Ω1 yields the secondary
constraint as

Ω2 = 𝑝𝑟 ≈ 0. (6)

3. Wess-Zumino Term and
Hamiltonian Formulation

To construct a gauge invariant theory corresponding to the
gauge noninvariant model in (4), we introduce the Wess-
Zumino term [28] in the Lagrangian density L. For this
purpose we enlarge the Hilbert space of the theory by
introducing a newquantumfield 𝜂, calledWess-Zuminofield,
through the redefinition of fields 𝑟 and 𝜆 in the original
Lagrangian densityL as follows:

𝑟 󳨀→ 𝑟 − 𝜂;
𝜆 󳨀→ 𝜆 + ̇𝜂. (7)

With this redefinition of the fields, the modified Lagrangian
density becomes

L
J = 12𝑚 ( ̇𝑟 − ̇𝜂)2 + 12𝑚 (𝑟 − 𝜂)2 ̇𝜃2

+ 12𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2 ̇𝜙2
− (𝜆 + ̇𝜂) (𝑟 − 𝑎 − 𝜂) .

(8)

Canonical momenta corresponding to this modified Lagran-
gian density are then given by

𝑝𝑟 = 𝑚 ( ̇𝑟 − ̇𝜂) ,
𝑝𝜂 = − (𝑚 ( ̇𝑟 − ̇𝜂) + (𝑟 − 𝑎 − 𝜂)) ,
𝑝𝜆 = 0
𝑝𝜃 = 𝑚 (𝑟 − 𝜂)2 ̇𝜃,
𝑝𝜙 = 𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2 ̇𝜙.

(9)

The primary constraint for this extended theory is

𝜓1 ≡ 𝑝𝜆 ≈ 0. (10)
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The Hamiltonian density corresponding toLJ is written as

𝐻𝐼 = 𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 + 𝑝𝜆𝜆̇ −L
J. (11)

The total Hamiltonian density after the introduction of a
Lagrange multiplier field 𝑢 corresponding to the primary
constraint 𝜓1 is then obtained as

𝐻𝐼𝑇 = 𝑝2𝑟2𝑚 + 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2 +
𝑝2𝜙

2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2
+ 𝜆 (𝑝𝑟 + 𝑝𝜂) + 𝑢𝑝𝜆.

(12)

Following Dirac’s method of constraint analysis [44–47], we
obtain secondary constraint

𝜓2 ≡ (𝑝𝜂 + 𝑝𝑟) ≈ 0. (13)

In next two sections, we extend this constrained theory to
study the nilpotent symmetries associated with this theory.

4. BFV Formulation for Free Particle on
the Surface of Torus

To discuss all possible nilpotent symmetries we further
extend the theory using BFV formalism [48–53]. In the
BFV formulation associated with this system, we introduce
a pair of canonically conjugate ghost fields (𝑐, 𝑝) with ghost
numbers 1 and −1, respectively, for the primary constraint𝑝𝜆 ≈ 0 and another pair of ghost fields (𝑐, 𝑝) with ghost
numbers −1 and 1, respectively, for the secondary constraint,(𝑝𝜂 + 𝑝𝑟) ≈ 0. The effective action for a particle on surface of
the torus in extended phase space is then written as

𝑆eff = ∫𝑑4𝑥[𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 − 𝑝𝜆𝜆̇ − 𝑝2𝑟2𝑚
− 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2 −

𝑝2𝜙
2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2 + ̇𝑐𝑝 + ̇𝑐𝑝

− {𝑄𝑏, 𝜓}] ,

(14)

where𝑄𝑏 is the BRST charge and𝜓 is the gauge fixed fermion.
This effective action is invariant under BRST transformation
generated by 𝑄𝑏 which is constructed by using constraints in
the theory as

𝑄𝑏 = 𝑖𝑐 (𝑝𝑟 + 𝑝𝜂) − 𝑖𝑝𝑝𝜆. (15)

The canonical brackets for all dynamical variables are written
as

[𝑟, 𝑝𝑟] = [𝜃, 𝑝𝜃] = [𝜙, 𝑝𝜙] = [𝜂, 𝑝𝜂] = [𝜆, 𝑝𝜆] = {𝑐, ̇𝑐}
= 𝑖,

{𝑐, ̇𝑐} = −𝑖,
(16)

where rest of the brackets are zero. Now, the nilpotent BRST
transformation, using the relation 𝑠𝑏𝜙 = [𝜙, 𝑄𝑏]± (± sign
represents the fermionic and bosonic nature of the fields 𝜙),
is explicitly written as

𝑠𝑏𝑟 = −𝑐,
𝑠𝑏𝜆 = 𝑝,
𝑠𝑏𝑝 = 0,
𝑠𝑏𝜃 = −𝑐

𝑠𝑏𝑝𝜙 = 0,
𝑠𝑏𝑝𝜃 = 0,
𝑠𝑏𝑝 = (𝑝𝑟 + 𝑝𝜂)
𝑠𝑏𝑐 = 𝑝𝜆,

𝑠𝑏𝑝𝜆 = 0,
𝑠𝑏𝑐 = 0.

(17)

In BFV formulation the generating functional is independent
of gauge fixed fermion [48–53]; hence we have liberty to
choose it in the convenient form as

𝜓 = 𝑝𝜆 + 𝑐 (𝑟 + 𝜂 + 𝑝𝜆2 ) . (18)

Putting the value of 𝜓 in (14) and using (15) and (16), we
obtain

𝑆eff = ∫𝑑4𝑥[𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 − 𝑝𝜆𝜆̇ − 𝑝2𝑟2𝑚
− 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2 −

𝑝2𝜙
2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2 + ̇𝑐𝑝 + ̇𝑐𝑝

+ 𝜆 (𝑝𝑟 + 𝑝𝜂) + 2𝑐𝑐 − 𝑝𝑝 + 𝑝𝜆 (𝑟 + 𝜂 + 𝑝𝜆2 )]

(19)

and the generating functional for this effective theory is
represented as

𝑍𝜓 = ∫𝐷𝜙 exp [𝑖𝑆eff ] . (20)

Now integrating this generating functional over 𝑝 and 𝑝, we
get

𝑍𝜓 = ∫𝐷𝜙󸀠 exp[𝑖 ∫𝑑4𝑥[𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙

− 𝑝𝜆𝜆̇ − 𝑝2𝑟2𝑚 − 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2
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− 𝑝2𝜙
2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2 + ̇𝑐 ̇𝑐 + 𝜆 (𝑝𝑟 + 𝑝𝜂) + 2𝑐𝑐

+ 𝑝𝜆 (𝑟 + 𝜂 + 𝑝𝜆2 )]] ,
(21)

where 𝐷𝜙󸀠 is the path integral measure for effective theory
when integrations over fields 𝑝 and 𝑝 are carried out. Further
integrating over field 𝑝𝜆 we obtain an effective generating
functional as

𝑍𝜓
= ∫𝐷𝜙󸀠󸀠 exp[

[
𝑖∫𝑑4𝑥[

[
𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 − 𝑝2𝑟2𝑚 − 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2 −

𝑝2𝜙
2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2 + ̇𝑐 ̇𝑐 + 𝜆 (𝑝𝑟 + 𝑝𝜂) − 2𝑐𝑐 − (𝜆̇ − 𝑟 − 𝜂)2

2 ]
]
]
]
, (22)

where 𝐷𝜙󸀠󸀠 is the path integral measure corresponding to all
the dynamical variables involved in the effective action. The
BRST symmetry transformation for this effective theory is
written as

𝑠𝑏𝑟 = −𝑐,
𝑠𝑏𝜆 = ̇𝑐,
𝑠𝑏𝜂 = −𝑐
𝑠𝑏𝑝𝑟 = 0,
𝑠𝑏𝑝𝜂 = 0
𝑠𝑏𝑐 = − (𝜆̇ − 𝜂 − 𝑟) ,
𝑠𝑏𝑐 = 0.

(23)

These transformations are on shell nilpotent.

5. Nilpotent Symmetries

In this section we will study various other nilpotent sym-
metries of this model with particle on a torus [54]. For this
purpose it is convenient to work using Nakanishi-Lautrup
type auxiliary field 𝐵 which linearizes the gauge fixing part
of the effective action in (22). The first-order effective action
is then given by

𝑆eff = ∫𝑑4𝑥[𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 − 𝑝2𝑟2𝑚
− 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2 −

𝑝2𝜙
2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2 + ̇𝑐 ̇𝑐

+ 𝜆 (𝑝𝑟 + 𝑝𝜂) − 2𝑐𝑐 − 𝐵 (𝜆̇ − 𝑟 − 𝜂) + 𝐵22 ] .

(24)

We can easily show that this action is invariant under the
following off-shell nilpotent BRST transformation:

𝑠𝑏𝑟 = −𝑐,
𝑠𝑏𝜆 = ̇𝑐,

𝑠𝑏𝜂 = −𝑐
𝑠𝑏𝑝𝑟 = 0,
𝑠𝑏𝑝𝜂 = 0,
𝑠𝑏𝜃 = 0
𝑠𝑏𝑐 = 𝐵,
𝑠𝑏𝑐 = 0,

𝑠𝑏𝑝𝜙 = 0
𝑠𝑏𝜙 = 0,
𝑠𝑏𝑝𝜃 = 0.

(25)

Corresponding anti-BRST transformation for this theory is
thenwritten by interchanging the role of ghost and anti-ghost
field as

𝑠𝑎𝑏𝑟 = −𝑐,
𝑠𝑎𝑏𝜆 = ̇𝑐,
𝑠𝑎𝑏𝜂 = −𝑐
𝑠𝑎𝑏𝑝𝑟 = 0,
𝑠𝑎𝑏𝑝𝜂 = 0,
𝑠𝑎𝑏𝑝𝜙 = 0
𝑠𝑎𝑏𝑐 = −𝐵,
𝑠𝑎𝑏𝑐 = 0,
𝑠𝑎𝑏𝜃 = 0
𝑠𝑎𝑏𝜙 = 0,
𝑠𝑎𝑏𝑝𝜃 = 0.

(26)

The conserved BRST and anti-BRST charges 𝑄𝑏 and 𝑄𝑎𝑏
which generate above BRST and anti-BRST transformations
are written for this effective theory as

𝑄𝑏 = 𝑖𝑐 (𝑝𝑟 + 𝑝𝜂) − 𝑖𝑝𝜆 ̇𝑐,
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𝑄𝑎𝑏 = 𝑖𝑐 (𝑝𝑟 + 𝑝𝜂) − 𝑖𝑝𝜆 ̇𝑐.
(27)

Further by using the following equation of motion

𝐵 + 𝑝̇𝑟 = 0,
𝐵 + 𝑝̇𝜂 = 0

̇𝑟 − 𝑝𝑟 + 𝜆 = 0
𝐵̇ = 𝑝𝑟 + 𝑝𝜂,

̇𝑐 + 2𝑐 = 0,
̇𝑐 + 2𝑐 = 0,

𝐵 + 𝜆̇ − 𝑟 − 𝜂 = 0

(28)

it is shown that these charges are constants of motion, that is,𝑄̇𝑏 = 0, 𝑄̇𝑎𝑏 = 0, and satisfy following relations:

𝑄𝑏𝑄𝑎𝑏 + 𝑄𝑎𝑏𝑄𝑏 = 0. (29)

To arrive to these relations, the canonical brackets (16) of
the fields and the definition of canonical momenta have been
used

𝑝𝜆 = 𝐵,
𝑝𝑐 = ̇𝑐,
𝑝𝑐 = − ̇𝑐.

(30)

The physical states of theory are annihilated by the BRST and
anti-BRST charges, leading to

(𝑝𝑟 + 𝑝𝜂) 󵄨󵄨󵄨󵄨phys⟩ = 0,
𝑝𝜆 󵄨󵄨󵄨󵄨phys⟩ = 0. (31)

This implies that the operator form of the first class constraint𝑝𝜆 ≈ 0 and (𝑝𝑟 + 𝑝𝜂) ≈ 0 annihilates the physical state of the
theory.Thus the physicality criteria are consistentwithDirac’s
method of quantization.

6. Co-BRST and Anti Co-BRST Symmetries

In this section, we investigate two other nilpotent transfor-
mations, namely, co-BRST and anti-co-BRST transformation,
which are also the symmetry of the effective action in (24).
Further these transformations leave the gauge fixing term of
the action invariant independently and the kinetic energy
term (which remains invariant under BRST and anti-BRST
transformations) transforms under it to compensate for the
transformation of the ghost terms. These transformations
are also called dual and anti-dual BRST transformation
[13–15].

The nilpotent co-BRST transformation (𝑠2𝑑 = 0) and anti-
co-BRST transformation (𝑠2𝑎𝑑 = 0), which leave the effective

action [in (24)] for a particle on torus invariant, are given
by

𝑠𝑑𝑟 = −12 ̇𝑐,
𝑠𝑑𝜆 = −𝑐,
𝑠𝑑𝜂 = −12 ̇𝑐
𝑠𝑑𝑝𝑟 = 0,
𝑠𝑑𝑝𝜂 = 0,
𝑠𝑑𝑐 = 0
𝑠𝑑𝑐 = 12 (𝑝𝑟 + 𝑝𝜂) ,
𝑠𝑑𝐵 = 0,

(32)

𝑠𝑎𝑑𝑟 = −12 ̇𝑐,
𝑠𝑎𝑑𝜆 = −𝑐,
𝑠𝑎𝑑𝜂 = −12 ̇𝑐
𝑠𝑎𝑑𝑝𝑟 = 0,
𝑠𝑎𝑑𝑝𝜂 = 0,
𝑠𝑎𝑑𝑐 = 0
𝑠𝑎𝑑𝑐 = −12 (𝑝𝑟 + 𝑝𝜂) ,
𝑠𝑎𝑑𝐵 = 0.

(33)

These transformations are absolutely anticommuting as{𝑆𝑑, 𝑆𝑎𝑑} = 0. The conserved charges for above symmetries
are found using Noether’s theorem and are written as

𝑄𝑑 = 𝑖12 (𝑝𝑟 + 𝑝𝜂) ̇𝑐 + 𝑖𝑝𝜆𝑐,
𝑄𝑎𝑑 = 𝑖12 (𝑝𝑟 + 𝑝𝜂) ̇𝑐 + 𝑖𝑝𝜆𝑐

(34)

which generate the symmetry transformations in (32) and
(33), respectively. It is easy to verify the following relations:

𝑠𝑑𝑄𝑑 = − {𝑄𝑑, 𝑄𝑑} = 0
𝑠𝑎𝑑𝑄𝑎𝑑 = − {𝑄𝑎𝑑, 𝑄𝑎𝑑} = 0
𝑠𝑑𝑄𝑎𝑑 = − {𝑄𝑎𝑑, 𝑄𝑑} = 0
𝑠𝑎𝑑𝑄𝑑 = − {𝑄𝑑, 𝑄𝑎𝑑} = 0

(35)

which reflect the nilpotency and anti-commutativity property
of 𝑠𝑑 and 𝑠𝑎𝑑 (i.e., 𝑠2𝑑 = 0, 𝑠2𝑎𝑑 = 0 and 𝑠𝑑𝑠𝑎𝑑 + 𝑠𝑎𝑑𝑠𝑑 = 0).
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7. Other Symmetries

In this section, we construct other symmetries related to this
system. Two different bosonic symmetries are constructed
out of four nilpotent symmetries. Discrete symmetry related
to ghost number is also constructed.

7.1. Bosonic Symmetry. In this part we construct the bosonic
symmetry out of these nilpotent BRST symmetries of the
theory using [50–52]. The BRST (𝑠𝑏), anti-BRST (𝑠𝑎𝑏), co-
BRST (𝑠𝑑), and anti-co-BRST (𝑠𝑎𝑑) symmetry operators
satisfy the following algebra:

{𝑠𝑑, 𝑠𝑎𝑑} = 0,
{𝑠𝑏, 𝑠𝑎𝑏} = 0
{𝑠𝑏, 𝑠𝑎𝑑} = 0,
{𝑠𝑑, 𝑠𝑎𝑏} = 0

(36)

and we define bosonic symmetries 𝑠𝑤 and 𝑠𝑤 as
𝑠𝑤 ≡ {𝑠𝑏, 𝑠𝑑} ,
𝑠𝑤 ≡ {𝑠𝑎𝑏, 𝑠𝑎𝑑} . (37)

The fields variables transform under bosonic symmetry 𝑠𝑤 as
𝑠𝑤𝑟 = −12 (𝐵̇ + 𝑝𝑟 + 𝑝𝜂) ,
𝑠𝑤𝜆 = −12 (2𝐵 − 𝑝̇𝑟 − 𝑝̇𝜂)
𝑠𝑤𝜂 = −12 (𝐵̇ + 𝑝𝑟 + 𝑝𝜂) ,
𝑠𝑤𝑝𝑟 = 0,
𝑠𝑤𝑝𝜂 = 0
𝑠𝑤𝑐 = 0,
𝑠𝑤𝐵 = 0,
𝑠𝑤𝑐 = 0.

(38)

On the other hand transformation generated by 𝑠𝑤 is
𝑠𝑤𝑟 = −12 (𝐵̇ + 𝑝𝑟 + 𝑝𝜂) ,
𝑠𝑤𝜆 = 12 (2𝐵 − 𝑝̇𝑟 − 𝑝̇𝜂)
𝑠𝑤𝜂 = −12 (𝐵̇ + 𝑝𝑟 + 𝑝𝜂) ,
𝑠𝑤𝑝𝑟 = 0,
𝑠𝑤𝑝𝜂 = 0
𝑠𝑤𝑐 = 0,
𝑠𝑤𝐵 = 0,
𝑠𝑤𝑐 = 0.

(39)

However the transformation generated by 𝑠𝑤 and 𝑠𝑤 is not
independent as it is easy to see from (38) and (39) that the
operators 𝑠𝑤 and 𝑠𝑤 satisfy the relation 𝑠𝑤 + 𝑠𝑤 = 0. This
implies from (37) that

{𝑠𝑏, 𝑠𝑑} = 𝑠𝑤 = − {𝑠𝑎𝑏, 𝑠𝑎𝑑} . (40)

It is clear from above algebra that the operator 𝑠𝑤 analogous
of the Laplacian operator in the language of differential
geometry and the conserved charge for the above symmetry
transformation is calculated as

𝑄𝑤 = −𝑖 [𝐵2 + 12 (𝑝𝑟 + 𝑝𝜂)2] (41)

which generates the transformation in (38).
Using equation of motion, it can readily be checked that

𝑑𝑄𝑤𝑑𝑡 = −𝑖 ∫ 𝑑𝑥 [2𝐵𝐵̇ + (𝑝𝑟 + 𝑝𝜂) (𝑝̇𝑟 + 𝑝̇𝜂)] = 0. (42)

Hence 𝑄𝑤 is the constant of motion for this theory.

7.2. Ghost Symmetry and Discrete Symmetry. Now we con-
sider yet another kind of symmetry of this system called
ghost symmetry discussed in [50]. The ghost numbers of the
ghost and anti-ghost fields are 1 and −1, respectively. Rest of
the variables in the action of this theory have ghost number
zero. Keeping this fact in mind we can introduce a scale
transformation of the ghost field, under which the effective
action is invariant, as

𝑐 󳨀→ 𝑒Λ𝑐
𝑐 󳨀→ 𝑒−Λ𝑐
𝜒 󳨀→ 𝜒,

(43)

where 𝜒 = {𝑟, 𝜂, 𝜃, 𝜙, 𝑢, 𝜆, 𝑝𝑟, 𝑝𝜂, 𝑝𝜃, 𝑝𝜙, 𝑝𝑢, 𝐵} and Λ is a
global scale parameter. The infinitesimal version of the ghost
scale transformation can be written as

𝑠𝑔𝜒 = 0
𝑠𝑔𝑐 = 𝑐
𝑠𝑔𝑐 = −𝑐.

(44)

Noether’s conserved charge for above symmetry transforma-
tion is calculated as

𝑄𝑔 = 𝑖 [ ̇𝑐𝑐 + ̇𝑐𝑐] . (45)

In addition to above continuous symmetry transformation,
the ghost sector respects the following discrete symmetry
transformations:

𝑐 󳨀→ ±𝑖𝑐,
𝑐 󳨀→ ±𝑖𝑐. (46)
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8. Geometric Cohomology and Double
Hodge Theory

In this section we study the de Rham cohomological oper-
ators [17–19] and their realization in terms of conserved
charges which generate the nilpotent symmetries for the
theory of a particle on the surface of torus. In particular we
point out the similarities between the algebra obeyed by de
Rham cohomological operators and that by different BRST
conserved charges.

Before we proceed to discuss the analogy, we briefly
review the essential features of Hodge theory [50–52].The de
Rham cohomological operators in differential geometry obey
the following algebra:

𝑑2 = 𝛿2 = 0,
Δ = (𝑑 + 𝛿)2 = 𝑑𝛿 + 𝛿𝑑 ≡ {𝑑, 𝛿}

[Δ, 𝛿] = 0,
[Δ, 𝑑] = 0,

(47)

where 𝑑, 𝛿, and Δ are exterior, coexterior, and Laplace-
Beltrami operator, respectively. The operators 𝑑 and 𝛿 are
adjoint or dual to each other and Δ is self-adjoint operator.
It is well known that the exterior derivative raises the degree
of form by one when it operates on forms (i.e. 𝑑𝑓𝑛 ∼ 𝑓𝑛+1),
whereas the dual-exterior derivative lowers the degree of a
form by one when it operates on forms (i.e. 𝛿𝑓𝑛 ∼ 𝑓𝑛−1).
However Δ does not change the degree of form (i.e. Δ𝑓𝑛 ∼𝑓𝑛). 𝑓𝑛 denotes an arbitrary 𝑛-form object.

The Hodge-de Rham decomposition theorem can be
stated as follows.

A regular differential formof degree 𝑛(𝛼)maybe uniquely
decomposed into a sum of the harmonic form (𝛼)𝐻, exact
form (𝛼𝑑), and coexact form (𝛼𝛿); that is,

𝛼 = 𝛼𝐻 + 𝛼𝑑 + 𝛼𝛿, (48)

where 𝛼 ∈ 𝐻𝑛, 𝛼𝑠 ∈ Λ𝑛𝛿 and 𝛼𝑑 ∈ Λ𝑛𝑑
The generators of all the nilpotent symmetry transforma-

tions satisfy the following algebra [50–52]:

𝑄2𝑏 = 0,
𝑄2𝑎𝑏 = 0,
𝑄2𝑑 = 0,
𝑄2𝑎𝑑 = 0

{𝑄𝑏, 𝑄𝑎𝑏} = 0,
{𝑄𝑑, 𝑄𝑎𝑑} = 0,
{𝑄𝑏, 𝑄𝑎𝑑} = 0
{𝑄𝑑, 𝑄𝑎𝑏} = 0,
[𝑄𝑔, 𝑄𝑏] = 𝑄𝑏,

[𝑄𝑔, 𝑄𝑎𝑑] = 𝑄𝑎𝑑
[𝑄𝑔, 𝑄𝑑] = −𝑄𝑑,
[𝑄𝑔, 𝑄𝑎𝑏] = −𝑄𝑎𝑏,
[𝑄𝑤, 𝑄𝑟] = 0
{𝑄𝑏, 𝑄𝑑} = − {𝑄𝑎𝑑, 𝑄𝑎𝑏} = 𝑄𝑤.

(49)

Here the relations between the conserved charges 𝑄𝑏 and𝑄𝑎𝑑 as well as 𝑄𝑎𝑏 and 𝑄𝑎𝑑 can be found using equation of
motions only. This algebra is similar to the algebra satisfied
by de Rham cohomological operators of differential geometry
given in (50). Comparing (50) and (55) we obtain following
analogies

(𝑄𝑏, 𝑄𝑎𝑑) 󳨀→ 𝑑,
(𝑄𝑑, 𝑄𝑎𝑏) 󳨀→ 𝛿,

𝑄𝑤 󳨀→ Δ.
(50)

Let 𝑛 be the ghost number associated with a given state |𝜓⟩𝑛
defined in the total Hilbert space of states; that is,

𝑖𝑄𝑔 󵄨󵄨󵄨󵄨𝜓⟩𝑛 = 𝑛 󵄨󵄨󵄨󵄨𝜓⟩𝑛 . (51)

Then it is easy to verify the following relations:

𝑄𝑔𝑄𝑏 󵄨󵄨󵄨󵄨𝜓⟩𝑛 = (𝑛 + 1)𝑄𝑏 󵄨󵄨󵄨󵄨𝜓⟩𝑛
𝑄𝑔𝑄𝑎𝑑 󵄨󵄨󵄨󵄨𝜓⟩𝑛 = (𝑛 + 1)𝑄𝑎𝑑 󵄨󵄨󵄨󵄨𝜓⟩𝑛
𝑄𝑔𝑄𝑑 󵄨󵄨󵄨󵄨𝜓⟩𝑛 = (𝑛 − 1)𝑄𝑏 󵄨󵄨󵄨󵄨𝜓⟩𝑛
𝑄𝑔𝑄𝑎𝑏 󵄨󵄨󵄨󵄨𝜓⟩𝑛 = (𝑛 − 1)𝑄𝑎𝑑 󵄨󵄨󵄨󵄨𝜓⟩𝑛
𝑄𝑔𝑄𝑤 󵄨󵄨󵄨󵄨𝜓⟩𝑛 = 𝑛𝑄𝑤 󵄨󵄨󵄨󵄨𝜓⟩𝑛

(52)

which imply that the ghost numbers of the states𝑄𝑏|𝜓⟩𝑛, 𝑄𝑑|𝜓⟩𝑛 and 𝑄𝑤|𝜓⟩𝑛 are (𝑛 + 1), (𝑛 − 1) and 𝑛,
respectively. The states 𝑄𝑎𝑏|𝜓⟩𝑛 and 𝑄𝑎𝑑|𝜓⟩𝑛 have ghost
numbers (𝑛 − 1) and (𝑛 + 1), respectively. The properties
of sets (𝑄𝑏, 𝑄𝑎𝑑) and (𝑄𝑑, 𝑄𝑎𝑏) are same as of operators 𝑑
and 𝛿. It is evident from (55) that the set 𝑄𝑏, 𝑄𝑎𝑑 raises the
ghost number of a state by one and the set 𝑄𝑑, 𝑄𝑎𝑏 lowers
the ghost number of the same state by one. Keeping the
analogy between charges of different nilpotent symmetries
and Hodge-de Rham differential operators, we express any
arbitrary state |𝜓⟩𝑛 in terms of the sets (𝑄𝑏, 𝑄𝑑, 𝑄𝑤) and(𝑄𝑎𝑑, 𝑄𝑎𝑏, 𝑄𝑤) as

󵄨󵄨󵄨󵄨𝜓⟩𝑛 = |𝑤⟩𝑛 + 𝑄𝑏 󵄨󵄨󵄨󵄨𝜒⟩(𝑛−1) + 𝑄𝑑 󵄨󵄨󵄨󵄨𝜙⟩(𝑛+1)󵄨󵄨󵄨󵄨𝜓⟩𝑛 = |𝑤⟩𝑛 + 𝑄𝑎𝑑 󵄨󵄨󵄨󵄨𝜒⟩(𝑛−1) + 𝑄𝑎𝑏 󵄨󵄨󵄨󵄨𝜙⟩(𝑛+1) , (53)
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where the most symmetric state is the harmonic state |𝑤⟩𝑛
that satisfies

𝑄𝑤 |𝑤⟩𝑛 = 0,
𝑄𝑏 |𝑤⟩𝑛 = 0,
𝑄𝑑 |𝑤⟩𝑛 = 0
𝑄𝑎𝑏 |𝑤⟩𝑛 = 0,
𝑄𝑎𝑑 |𝑤⟩𝑛 = 0

(54)

analogous to (50). Therefore the BRST charges for a particle
on a torus form two separate sets of de Rham cohomological
operator, namely, {𝑄𝑏, 𝑄𝑎𝑏, 𝑄𝑤} and {𝑄𝑑, 𝑄𝑎𝑑, 𝑄𝑤}. Thus we
call the theory of a particle on torus as double Hodge theory.
Fermionic charges 𝑄𝑏, 𝑄𝑎𝑏, 𝑄𝑑 and 𝑄𝑎𝑑 follow the following
physicality criteria:

𝑄𝑏 󵄨󵄨󵄨󵄨phys⟩ = 0,
𝑄𝑎𝑏 󵄨󵄨󵄨󵄨phys⟩ = 0
𝑄𝑑 󵄨󵄨󵄨󵄨phys⟩ = 0,
𝑄𝑎𝑑 󵄨󵄨󵄨󵄨phys⟩ = 0

(55)

which lead to
𝑝𝜆 󵄨󵄨󵄨󵄨phys⟩ = 0

(𝑃𝑟 + 𝑃𝜂) 󵄨󵄨󵄨󵄨phys⟩ = 0. (56)

This is the operator form of the first class constraint which
annihilates the physical state as a consequence of physical
criteria, which further is consistent with Dirac’s method of
quantization of a system with first class constraints.

9. Finite Field BRST Transformations

In this section we show that these nilpotent symmetries
can be generalized by making the parameter finite and field
dependent following the work of Joglekar and Mandal [29].
The BRST transformations can be generated from BRST
charge using relation 𝛿𝜙 = [𝜙, 𝑄]𝛿Λwhere 𝛿Λ is infinitesimal
anticommutingBRSTparameter underwhich effective action
remains invariant. Joglekar and Mandal generalized the anti-
commuting BRST parameter 𝛿Λ to be finite field dependent
but space-time independent parameter Θ[𝜙]. Under this
generalization the path integral measure varies nontrivially.
The Jacobian for these transformations for certain Θ[𝜙] can
be calculated by the following way:

𝐷𝜙 = 𝐽 (𝑘)𝐷𝜙󸀠 (𝑘) = 𝐽 (𝑘 + 𝑑𝑘)𝐷𝜙󸀠 (𝑘 + 𝑑𝑘) , (57)

where 𝑘 is a numerical parameter whose value lies between
0 and 1 (0 < 𝑘 < 1). Here all the fields are taken to be 𝑘
dependent. For a field 𝜙(𝑥, 𝑘), 𝜙(𝑥, 0) = 𝜙(𝑥) and 𝜙(𝑥, 𝑘 =1) = 𝜙󸀠(𝑥).

The invariance of the 𝑆eff under 𝜙(𝑥, 0) → 𝜙(𝑥, 𝑘) is a
BRST transformation given by

𝜙 (0) = 𝜙 (𝑘) − 𝛿𝑏𝜙 (𝑘)Θ [𝜙, 𝑘] . (58)

𝐽(𝑘) can be replaced by 𝑒𝑖𝑆1[𝜙(𝑘);𝑘] for a certain functional𝑆1 which can be determined in each individual case using
following condition

∫𝐷𝜙 (𝑘) [ 1𝐽 (𝑘) 𝑑𝐽 (𝑘)𝑑𝑘 − 𝑖𝑑𝑆1𝑑𝑘 ] 𝑒𝑖(𝑆1+𝑆eff ) = 0, (59)

where 𝑑𝑆1/𝑑𝑘 is a total derivative of 𝑆1 with respect to 𝑘
in which dependence on 𝜙(𝑘) is also differentiated and the
Jacobian can be expressed as 𝑒𝑖𝑆1 where 𝑆1 is local functional
of fields which satisfies (60) where change in Jacobian is
calculated as

𝐽 (𝑘)𝐽 (𝑘 + 𝑑𝑘) = ∑
𝜙

±𝛿𝜙 (𝑥, 𝑘 + 𝑑𝑘)𝛿𝜙 (𝑥, 𝑘) = 1𝐽 (𝑘) 𝑑𝐽 (𝑘)𝑑𝑘 𝑑𝑘. (60)

± is sign for bosonic and fermionic fields (𝜙), respectively.
10. FFBRST for Free Particle on

Surface of Torus

The effective action for the free particle on surface of torus
using BFV formulation is written in (19) and its BRST
transformation is given by (23). In BRST transformation
given by (23), 𝛿Λ is global, infinitesimal, and anticommuting
parameter. FFBRST transformation corresponding to this
BRST transformation is written as

𝑠𝑏𝑟 = 𝑐Θ,
𝑠𝑏𝜆 = − ̇𝑐Θ,
𝑠𝑏𝜂 = 𝑐Θ
𝑠𝑏𝑝𝑟 = 0,
𝑠𝑏𝑝𝜂 = 0,
𝑠𝑏𝑐 = 0
𝑠𝑏𝑐 = (𝜆̇ − 𝜂 − 𝑟)Θ,

(61)

whereΘ is finite field dependent, global, and anticommuting
parameter. Under this transformation too, effective action is
invariant.

Generating functional for this effective theory can be
written as

𝑍𝜓 = ∫𝐷Φ exp[𝑖 ∫ 𝑑4𝑥[𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 − 𝑝𝜆𝜆̇ − 𝑝2𝑟2𝑚
− 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2 −

𝑝2𝜙
2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2

+ ̇𝑐𝑝 + ̇𝑐𝑝 + 𝜆 (𝑝𝑟 − 𝑝𝜂)
+ 2𝑐𝑐 − 𝑝𝑝 + 𝑝𝜆 (𝑟 + 𝜂 + 𝑝𝜆2 ) ]] ,

(62)

where

𝐷Φ = 𝑑𝑟𝑑𝑝𝑟𝑑𝜃𝑑𝑝𝜃𝑑𝜙𝑑𝑝𝜙𝑑𝜂𝑑𝑝𝜂𝑑𝜆𝑑𝑝𝜆𝑑𝑝𝑑𝑝𝑑𝑐𝑑𝑐, (63)
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where 𝐷Φ is the path integral measure integrated over
total phase space. The finite BRST transformation given
above leaves the effective action invariant but path integral

measure in generating functional is not invariant under this
transformation. It gives rise to a Jacobian in the extended
phase space which can be calculated as

𝐷Φ = 𝑑𝑟𝑑𝑝𝑟𝑑𝜃𝑑𝑝𝜃𝑑𝜙𝑑𝑝𝜙𝑑𝜂𝑑𝑝𝜂𝑑𝜆𝑑𝑝𝜆𝑑𝑝𝑑𝑝𝑑𝑐𝑑𝑐
= 𝐽 (𝑘) 𝑑𝑟 (𝑘) 𝑑𝑝𝑟 (𝑘) 𝑑𝜃 (𝑘) 𝑑𝑝𝜃 (𝑘) 𝑑𝜙 (𝑘) 𝑑𝑝𝜙 (𝑘) 𝑑𝜂 (𝑘) 𝑑𝑝𝜂 (𝑘) 𝑑𝜆 (𝑘)
⋅ 𝑑𝑝𝜆 (𝑘) 𝑑𝑢 (𝑘) 𝑑𝑝𝑢 (𝑘) 𝑑𝑝 (𝑘) 𝑑𝑝 (𝑘) 𝑑𝑐 (𝑘) 𝑑𝑐 (𝑘)
= 𝐽 (𝑘 + 𝑑𝑘) 𝑑𝑟 (𝑘 + 𝑑𝑘) 𝑑𝑝𝑟 (𝑘 + 𝑑𝑘) 𝑑𝜃 (𝑘 + 𝑑𝑘) 𝑑𝑝𝜃 (𝑘 + 𝑑𝑘) 𝑑𝜙 (𝑘 + 𝑑𝑘) 𝑑𝑝𝜙 (𝑘 + 𝑑𝑘) 𝑑𝜂
⋅ (𝑘 + 𝑑𝑘) 𝑑𝑝𝜂 (𝑘 + 𝑑𝑘) 𝑑𝜆 (𝑘 + 𝑑𝑘) 𝑑𝑝𝜆 (𝑘 + 𝑑𝑘) 𝑑𝑝 (𝑘 + 𝑑𝑘) 𝑑𝑝 (𝑘 + 𝑑𝑘) 𝑑𝑐 (𝑘 + 𝑑𝑘) 𝑑𝑐 (𝑘 + 𝑑𝑘) .

(64)

Write it in compact form as

= ∫𝑑4𝑥∑
𝜓

[𝛿Ψ (𝑥, 𝑘 + 𝑑𝑘)𝛿Ψ (𝑥, 𝑘) ] , (65)

whereΨ = (𝑟, 𝑝𝑟, 𝜃, 𝑝𝜃, 𝜙, 𝑝𝜙, 𝜂, 𝑝𝜂, 𝜆, 𝑝𝜆, 𝑝, 𝑝, 𝑐, 𝑐), which can
be written as

= 1 + 𝑑𝑘∫ 𝑐𝛿Θ󸀠 (𝑥, 𝑘 + 𝑑𝑘)𝛿𝑟 (𝑥, 𝑘) − ̇𝑐𝛿Θ (𝑥, 𝑘 + 𝑑𝑘)𝛿𝜆 (𝑥, 𝑘)
+ 𝑐𝛿Θ (𝑥, 𝑘 + 𝑑𝑘)𝛿𝜂 (𝑥, 𝑘) + (𝜆̇ − 𝜂 − 𝑟) 𝛿Θ (𝑥, 𝑘 + 𝑑𝑘)𝛿𝑐 (𝑥, 𝑘)

= 𝐽 (𝑘)𝐽 (𝑘 + 𝑑𝑘) = 1 − 1𝐽 (𝑘) 𝑑𝐽 (𝑘)𝑑𝑘 𝑑𝑘.
(66)

Nowwe consider an example to illustrate the FFBRST formu-
lation. For that purpose we construct finite BRST parameterΘ obtained

Θ󸀠 = 𝑖𝛾∫𝑑4 𝑦𝑐 (𝑦, 𝑘) 𝑝𝜆 (𝑦, 𝑘) (67)

through

Θ = ∫Θ󸀠 (𝑘) 𝑑𝑘. (68)

The Jacobian change is calculated

1𝐽 (𝑘) 𝑑𝐽 (𝑘)𝑑𝑘 = 𝑖𝛾∫𝑑4𝑦𝑝𝜆2. (69)

We make an ansatz for 𝑆1 as
𝑆1 = 𝑖 ∫ 𝑑4𝑥 𝜉1 (𝑘) 𝑝𝜆2, (70)

where 𝜉1(𝑘) is a 𝑘 dependent arbitrary parameter. Now,

𝑑𝑆1𝑑𝑘 = 𝑖 ∫ 𝑑4𝑥 𝜉󸀠1 (𝑘) 𝑝𝜆2. (71)

Using condition in (62), we will get 𝜉1(𝑘) = 𝛾𝑘. Now the
modified generating functional can be written as

𝑍 = ∫𝐷𝜒󸀠 (𝑘) 𝑒𝑖(𝑆1+𝑆eff )

= ∫𝐷𝜙󸀠 exp[𝑖 ∫ 𝑑4𝑥[𝑝𝑟 ̇𝑟 + 𝑝𝜂 ̇𝜂 + 𝑝𝜃 ̇𝜃 + 𝑝𝜙 ̇𝜙 − 𝑝𝜆𝜆̇

− 𝑝2𝑟2𝑚 − 𝑝2𝜃2𝑚 (𝑟 − 𝜂)2 −
𝑝2𝜙

2𝑚 (𝑏 + (𝑟 − 𝜂) sin 𝜃)2
+ ̇𝑐𝑝 + ̇𝑐𝑝 + 𝜆 (𝑝𝑟 + 𝑝𝜂) + 2𝑐𝑐 − 𝑝𝑝

+𝑝𝜆 (𝑟 + 𝜂) + (𝜆󸀠2 + 𝛾𝑘)𝑝𝜆2]] .

(72)

Here generating functional at 𝑘 = 0 is the theory for a free
particle on a surface of torus with a gauge parameter 𝜆󸀠 and
at 𝑘 = 1 the generating functional for same theory with a
different gauge parameter 𝜆󸀠󸀠 = 𝜆󸀠 + 2𝛾. These two effective
theories with two different gauge parameters on the surface
of a torus are related through the FFBRST transformation
with finite parameter given in (70). FFBRST transformation
is thus helpful in showing the gauge independence of physical
quantities.

11. Conclusions

BFVsystem: We have used this technique to study all the
symmetries of a free particle on the surface of torus. We
have constructed nilpotent BRST, dual BRST, anti-BRST, and
anti-dual BRST transformations for this system. Dual BRST
transformations are also the symmetry of effective action
and leave gauge fixing part of the effective action invariant.
Interchanging the role of ghost and anti-ghost fields the
anti-BRST and anti-dual BRST symmetry transformations
is constructed. We have shown that the nilpotent BRST
and anti-dual BRST charges are analogous to the exterior
derivative operators as the ghost number of the state |𝜓⟩𝑛
on the total Hilbert space is increased by one when these
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charges operate on this state and algebra followed by these
operators is the same as the algebra obeyed by the de Rham
cohomological operators. Similarly the dual BRST and anti-
BRST charges are analogous to coexterior derivative. The
anticommutators of BRST and dual BRST and anti-BRST
and anti-dual BRST charges lead to bosonic symmetry. The
corresponding charges are analogous to Laplacian operator.
Further, this theory has another nilpotent symmetry called
ghost symmetry under which the ghost term of the effective
action is invariant. We further have shown that this theory
behaves as double Hodge theory as the charges for BRST(𝑄𝑏) and dual BRST (𝑄𝑑) and the charges for the bosonic
symmetry generated out of these two symmetries (𝑄𝑤) form
the algebra for Hodge theory. On the other hand charges
for anti-BRST (𝑄𝑎𝑏), anti-dual BRST (𝑄𝑎𝑑), and 𝑄𝑤, charge
for bosonic symmetry generalized out of these nilpotent
symmetries, also satisfy the Hodge algebra.Thus a particle on
the surface of the torus has very rich mathematical structure.

We further constructed the FFBRST transformation for
this system. By constructing appropriate field dependent
parameter we have explicitly shown that such generalized
BRST transformations are capable of connecting different
theories on torus. It will be interesting to construct finite ver-
sion dual BRST transformations and study its consequences
in studying system with constraints.
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