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The present works deals with gravitational collapse of cylindrical viscous heat conducting anisotropic fluid following the work
of Misner and Sharp. Using Darmois matching conditions, the dynamical equations are derived and the effects of charge and
dissipative quantities over the cylindrical collapse are analyzed. Finally, using the Miller-Israel-Steward causal thermodynamic
theory, the transport equation for heat flux is derived and its influence on collapsing system has been studied.

1. Introduction

A challenging but curious issue in gravitational physics as
well as in relativistic astrophysics is to know the final fate of
a continual gravitational collapse.The stable configuration of
a massive star persists as long as the inward pull of gravity is
neutralized by the outward pressure of the nuclear fuel at the
core of the star. Subsequently, when the star has exhausted
its nuclear fuel there is no longer any thermonuclear burning
and there will be endless gravitational collapse. However,
depending on the mass of the collapsing star, the compact
objects such as white dwarfs, neutron stars, and black holes
are formed. White dwarf and neutron star gravity are coun-
terbalanced by electron and neutron degeneracy pressure,
respectively, while black hole is an example of the end state
of collapse.

The study of gravitational collapse was initiated long back
in 1939 by Oppenheimer and Snyder [1]. They have studied
the collapse of a homogeneous spherical dust cloud in the
frame work of general relativity. Then after a quarter century,
a more realistic investigation was done by Misner and Sharp
[2] with perfect fluid in the interior of a collapsing star. In
both the studies, the exterior of the collapsing star was chosen
as vacuum. Vaidya [3] formulated the nonvacuum exterior
of a star having radiating fluid in the interior. An inhomo-
geneous spherically symmetric dust cloud was analytically

studied by Joshi and Singh [4] and they have shown that
the final fate of the collapsing star depends crucially on the
initial density profile and the radius of the star. Debnath
et al. [5] investigated collapse dynamics of the nonadiabatic
fluid, considering quasi-spherical Szekeres space-time in the
interior and plane symmetric Vaidya solution in the exterior
region.

Although most of the works on collapse dynamics are
related to spherical objects, still there is interesting informa-
tion about self-gravitating fluids for collapsing object with
different symmetries. The natural choice for nonspherical
symmetry is axis-symmetric objects. The vacuum solution
for Einstein field equations in cylindrically symmetric space-
time was obtained first by Levi-Civita [6], but still it is a
challenging issue of interpreting two independent parameters
in the solution. Herrera and Santos [7] studied cylindrical
collapse of nondissipative fluid with exterior Einstein-Rosen
space-time and showed wrongly a nonvanishing radial pres-
sure on the boundary surface and subsequently in collabo-
ration with MacCallum [8] they corrected the result. Then
Herrera and collaborators investigated cylindrical collapse of
matter with [9] or without shear [10].

Further, the junction conditions due to Darmois [11] has
a very active role in dealing collapsing problems. Sharif et al.
[12–14] showed the effect of positive cosmological constant on
the collapsing process by using junction conditions between

Hindawi
Advances in High Energy Physics
Volume 2017, Article ID 8786791, 8 pages
https://doi.org/10.1155/2017/8786791

https://doi.org/10.1155/2017/8786791


2 Advances in High Energy Physics

static exterior and nonstatic interior with a cosmological
constant. Also Herrera et al. [15], using junction conditions,
were able to prove that any conformally flat cylindrically
symmetric static source cannot be matched to the Levi-
Civita space-time. Then Kurita and Nakao [16] formulated
naked singularity along the axis of symmetry, considering
cylindrical collapse with null dust.

Moreover, from realistic point of view, it is desirable
to consider dissipative matter in the context of collapse
dynamics [17–19]. Considering collapse of a radiating star
with dissipation in the form of radial heat flow and shear
viscosity, Chan [20] has showed that shear viscosity plays a
significant role in the collapsing process. Collapse dynamics
with dissipation of energy as heat flow and radiation have
been studied by Herrera and Santos [18]. Subsequently, by
considering of causal transport equations related to different
dissipative components (heat flow, radiation, shear, and bulk
viscosity), Herrera et al. [15, 21, 22] investigated the collapse
dynamics.The same collapsing process with plane symmetric
geometry or others has been examined by Sharif et al. [23, 24].

On the other hand, in the context of gravitational waves,
the sources must have nonspherical symmetry. Further,
cylindrical collapse of nondissipative fluid with exterior con-
taining gravitational waves shows nonvanishing pressure on
the boundary surface by usingDarmoismatching conditions.
Recently, it has been verified [25, 26] in studying cylindrical
collapse of anisotropic dissipative fluid with formation of
gravitational waves outside the collapsing matter.

In the present work, followingMisner and Sharp, collapse
dynamics of viscous, heat conducting charged anisotropic
fluid in cylindrically symmetric background will be studied.
The paper is organized as follows. Section 2 deals with basic
equations related to interior and exterior space-time. The
junction conditions are evaluated and discussed in Section 3.
Thedynamical equations are derived and studied in Section 4.
Finally, the process of mass, heat, and momentum transfer
through transport equation is discussed in Section 5.

2. Interior and Exterior Space-Time:
Basic Equations

Mathematically, the whole four-dimensional space-time
manifold having a cylindrical collapsing process can be
written as𝑀 = 𝑀+𝑈Σ𝑈𝑀− with𝑀− ∩𝑀+ = 𝜙. Here, Σ, the
collapsing cylindrical surface, is a time-like three-surface and
is the boundary of the two four-dimensional submanifolds𝑀− (interior) and𝑀+ (exterior).

In 𝑀− choosing comoving coordinates, the line element
can be written as follows [25, 26]:

𝑑𝑠2− = −𝐴2𝑑𝑡2 + 𝐵2𝑑𝑟2 + 𝐶2𝑑𝜙2 + 𝐷2𝑑𝑧2, (1)

where the metric coefficients are functions of 𝑡 and 𝑟, that is,𝐴 = 𝐴(𝑡, 𝑟) and so on. Also due to cylindrical symmetry, the
coordinates are restricted as follows:

−∞ ≤ 𝑡 ≤ +∞,
𝑟 ≥ 0,

−∞ < 𝑧 < +∞,
0 ≤ 𝜙 ≤ 2𝜋.

(2)

For compact notation, we write {𝑥−𝜇} ≡ [𝑡, 𝑟, 𝜙, 𝑧], (𝜇 =0, 1, 2, 3).
The anisotropic fluid having dissipation in the form of

shear viscosity and heat flow has the energy-momentum
tensor of the following form [7, 9]:

𝑇𝜇] = (𝜌 + 𝑝𝑡) V𝜇V] + 𝑝𝑡𝑔𝜇] + (𝑝𝑟 − 𝑝𝑡) 𝜒𝜇𝜒] − 2𝜂𝜎𝜇]
+ 2𝑞( 𝜇V]). (3)

Here 𝜌, 𝑝𝑟, 𝑝𝑡𝜂, and 𝑞𝜇 stand for energy density, the radial
pressure, the tangential pressure, coefficient of shear viscosity,
and radial heat flux vector, respectively. Also V𝜇 and 𝜒𝜇 are
unit time-like and space-like vectors satisfying the following
relations:

V𝜇V
𝜇 = −𝜒𝜇𝜒𝜇 = −1,

𝜒𝜇V𝜇 = 0,
𝑞𝜇V𝜇 = 0.

(4)

Moreover, the shear tensor 𝜎𝜇] has the following expression:
𝜎𝜇] = V(𝜇;]) + 𝑎( 𝜇V]) − 13Θ (𝑔𝜇] + V𝜇V]) , (5)

where 𝑎𝜇 = V𝜇;]V
] is the acceleration vector and Θ = V𝜇;𝜇 is

the expansion scalar.
For the above metric, one may choose the unit time-like

vector, space-like vector, and heat flux vector in a simple form
as

V𝜇 = 𝐴−1𝛿𝜇0 ,
𝜒𝜇 = 𝐵−1𝛿𝜇1 ,
𝑞𝜇 = 𝑞𝛿𝜇1 .

(6)

The shear tensor has only nonzero diagonal components as

𝜎11 = 𝐵23𝐴 [Σ1 − Σ3] ,
𝜎22 = 𝐶23𝐴 [Σ2 − Σ1] ,
𝜎33 = 𝐷23𝐴 [Σ3 − Σ2]

with 𝜎2 = 16𝐴2 [Σ21 + Σ22 + Σ23] ,

(7)

where Σ1 = 𝐵̇/𝐵 − 𝐶̇/𝐶, Σ2 = 𝐶̇/𝐶 − 𝐷̇/𝐷, Σ3 = 𝐷̇/𝐷 − 𝐵̇/𝐵.
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Also the acceleration vector and the expansion scalar have
the following explicit expressions:

𝑎1 = 𝐴󸀠𝐴 ,
Θ = 1𝐴 (𝐵̇𝐵 + 𝐶̇𝐶 + 𝐷̇𝐷) .

(8)

In the above, by notation, we have used ⋅ ≡ 𝜕/𝜕𝑡 and 󸀠 ≡ 𝜕/𝜕𝑟.
If, in addition, we assume the above fluid distribution

to be charged then the energy-momentum tensor for the
electromagnetic field has the following form:

𝐸𝛼𝛽 = 14𝜋 (𝐹𝛼𝜇𝐹]𝛼 − 14𝐹𝛼𝛽𝐹𝛼𝛽𝑔𝜇]) , (9)

where the Maxwell field tensor 𝐹𝛼𝛽 is related to the four
potential 𝜙𝛼 as

𝐹𝛼𝛽 = 𝜙𝛽,𝛼 − 𝜙𝛼,𝛽 (10)

and the evolution of the field tensor corresponds to Maxwell
equations

𝐹𝛼𝛽
;𝛽

= 4𝜋𝐽𝛼, (11)

where 𝐽𝛼 is the four-current vector.
As the charge per unit length of the cylinder is at rest

with respect to comoving coordinates so the magnetic field
will be zero in this local coordinate system [27, 28]. Hence
the four potentials and the four currents take the following
simple form:

𝜙𝛼 = 𝜙𝛿0𝛼,
𝐽𝛼 = 𝜖V𝛼, (12)

where 𝜙 = 𝜙(𝑡, 𝑟) is the scalar potential and 𝜖 = 𝜖(𝑡, 𝑟) is the
charge density.

From the law of conservation of charge, 𝐽𝛼;𝛼 = 0, one
obtains the total charge distribution interior to radius 𝑟 and
per unit length of the cylinder as

𝑠 (𝑟) = 2𝜋∫𝑟
0
𝜖𝐵𝐶𝐷𝑑𝑟. (13)

Now the explicit form of Maxwell’s equations (11) for the
interior space-time𝑀− is given by

𝜙󸀠󸀠 − (𝐴󸀠𝐴 + 𝐵󸀠𝐵 − 𝐶󸀠𝐶 − 𝐷󸀠𝐷 )𝜙󸀠 = 4𝜋𝜖𝐴𝐵2, (14)

̇𝜙󸀠 − (𝐴̇𝐴 + 𝐵̇𝐵 − 𝐶̇𝐶 − 𝐷̇𝐷)𝜙󸀠 = 0 (15)

A first integral of (14) gives

𝜙󸀠 = 2𝑠𝐴𝐵𝐶𝐷 , (16)

which satisfies identically the other Maxwell equation (15).
Hence one obtains the electric field intensity as 𝐸(𝑡, 𝑟) =𝑠(𝑟)/2𝜋𝐶.

Further, in the interior space-time𝑀−, the Einstein field
equations 𝐺𝛼𝛽 = 8𝜋(𝑇𝛼𝛽 + 𝐸𝛼𝛽) have the following explicit
form:

𝐴2𝐵2 (−𝐶
󸀠󸀠

𝐶 − 𝐷󸀠󸀠𝐷 + 𝐵󸀠𝐵 (𝐶󸀠𝐶 + 𝐷󸀠𝐷 ) − 𝐶󸀠𝐷󸀠𝐶𝐷 )
+ (𝐵̇𝐶̇𝐵𝐶 + 𝐵̇𝐷̇𝐵𝐷 + 𝐶̇𝐷̇𝐶𝐷) = 8𝜋 (𝜌𝐴2 − 2𝜂𝜎00)
+ 4 𝑠2𝐴2𝐶2𝐷2 .

(17)

− 𝐵2𝐴2 (𝐶̈𝐶 + 𝐷̈𝐷 + 𝐶̇𝐷̇𝐶𝐷 − 𝐴̇𝐶̇𝐴𝐶 − 𝐴̇𝐷̇𝐴𝐷)
+ (𝐶󸀠𝐷󸀠𝐶𝐷 + 𝐴󸀠𝐶󸀠𝐴𝐶 + 𝐴󸀠𝐷󸀠𝐴𝐷 ) = 8𝜋 (𝑝𝑟𝐵2 − 2𝜂𝜎11)
− 4 𝑠2𝐵2𝐶2𝐷2

(18)

− 𝐶2𝐴2 [𝐵̈𝐵 + 𝐷̈𝐷 − 𝐴̇𝐴 ( Ḃ𝐵 + 𝐷̇𝐷) + 𝐵̇𝐷̇𝐵𝐷]
+ 𝐶2𝐵2 [𝐴

󸀠󸀠

𝐴 + 𝐷󸀠󸀠𝐷 − 𝐴󸀠𝐴 (𝐵󸀠𝐵 − 𝐷󸀠𝐷 ) − 𝐷󸀠𝐷 𝐵󸀠𝐵 ]
= 8𝜋 (𝑝𝑡𝐶2 − 2𝜂𝜎22) + 4 𝑠2𝐷2

(19)

− 𝐷2𝐴2 [𝐵̈𝐵 + 𝐶̈𝐶 − 𝐴̇𝐴 (𝐵̇𝐵 + 𝐶̇𝐶) + 𝐵̇𝐶̇𝐵𝐶]
+ 𝐷2𝐵2 [𝐴

󸀠󸀠

𝐴 + 𝐶󸀠󸀠𝐶 − 𝐴󸀠𝐴 (𝐵󸀠𝐵 − 𝐶󸀠𝐶 ) − 𝐶󸀠𝐶 𝐵󸀠𝐵 ]
= 8𝜋 (𝑝𝑡𝐷2 − 2𝜂𝜎33) + 4 𝑠2𝐶2 ,

(20)

1𝐴𝐵 (𝐶̇󸀠𝐶 + 𝐷̇󸀠𝐷 − 𝐶󸀠𝐶 𝐵̇𝐵 − 𝐵̇𝐵 𝐷󸀠𝐷 − 𝐴󸀠𝐴 𝐶̇𝐶 − 𝐴󸀠𝐴 𝐷̇𝐷)
= 8𝜋𝑞

(21)

The gravitational energy per specific length in cylindri-
cally symmetric space-time is defined as follows [29–31]:

𝐸 = (1 − 𝑙−2∇𝑎𝑟∇𝑎𝑟)8 . (22)

In principle, 𝐸 is the charge associated with a general current
which combines the energy-momentum of the matter and
gravitational waves. It is usually referred to in the litera-
ture as 𝐶-energy for the cylindrical symmetric space-time.
For cylindrically symmetric model with killing vectors, the
circumference radius 𝜌 and specific length 𝑙 are defined as
follows [29–31]:
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𝜌2 = 𝜉(1)𝑎𝜉𝑎(1), 𝑙2 = 𝜉(2)𝑎𝜉𝑎(2), so that 𝑟 = 𝜌𝑙 is termed as
areal radius.

For the present model with the contribution of electro-
magnetic field in the interior region, the 𝐶-energy takes the
following form:

𝐸󸀠 = 𝑙8
+ 18𝐷 [ 1𝐴2 (𝐶𝐷̇ + 𝐶̇𝐷)2 − 1𝐵2 (𝐶𝐷󸀠 + 𝐶󸀠𝐷)2]
+ 𝑠22𝐶.

(23)

It should be noted that the above energy is also very
similar to Tabu’smass function in the plane symmetric space-
time [32].

The exterior space-time manifold (𝑀+) of the cylindrical
surface Σ is described by the metric in the retarded time
coordinate as [33, 34]

𝑑𝑠2+ = −(−2𝑀 (V)𝑅 + 𝑄2 (V)𝑅2 )𝑑V2 − 2𝑑𝑅𝑑V
+ 𝑅2 (𝑑𝜙2 + 𝜆2𝑑𝑧2) ,

(24)

where V is the usual retarded time, 𝑀(V) is the total mass
inside Σ, 𝑄(V) is the total charge bounded by Σ, and 𝜆 is
an arbitrary constant. Further, from the point of view of
the interior manifold (𝑀−), the bounding three-surface Σ
(comoving surface) is described as

𝑓− (𝑡, 𝑟) = 𝑟 − 𝑟Σ = 0, (25)

and hence the interior metric on Σ takes the following form:

𝑑𝑠2− Σ= −𝑑𝜏2 + 𝐶2𝑑𝑧2 + 𝐷2𝑑𝜙2, (26)

where

𝑑𝜏 Σ= 𝐴𝑑𝑡 (27)

defines the time coordinate on Σ and Σ= by notation implies
the equality of both sides on the surface Σ.

Similarly, from the perspective of the exterior manifold,
the boundary three-surface Σ is characterized by

𝑓+ (V, 𝑅) ≡ 𝑅 − 𝑅Σ (V) = 0 (28)

so that the exterior metric on Σ takes the form

𝑑𝑠2+ Σ= −(−2𝑀 (V)𝑅 + 𝑄2 (V)𝑅2 + 2𝑑𝑅Σ (V)𝑑V )𝑑V2
+ 𝑅2 (𝑑𝜙2 + 𝜆2𝑑𝑧2) .

(29)

Here, by notation, we write [𝑥+𝜇] = [V, 𝑅, 𝜙, 𝑧].

3. Junction Conditions

In order to have a smooth matching of the interior and
exterior manifolds over the bounding three surfaces (not a
surface layer), the following conditions due to Darmois [11]
are to be satisfied.

(i) The continuity of the first fundamental form is

(𝑑𝑠2)
Σ
= (𝑑𝑠2−)Σ = (𝑑𝑠2+)Σ . (30)

(ii) The continuity of the second fundamental form is𝐾𝑖𝑗𝑑𝜉𝑖𝑑𝜉𝑗. This implies that the continuity of the extrinsic
curvature𝐾𝑖𝑗 over the hypersurface [11] is

[𝐾𝑖𝑗] ≡ 𝐾+𝑖𝑗 − 𝐾−𝑖𝑗 = 0, (31)

where 𝐾±𝑖𝑗 is given by

𝐾±𝑖𝑗 = −𝑛±𝜎 [ 𝜕2𝑥𝜎±𝜕𝜉𝑖𝜕𝜉𝑗 + Γ𝜎𝜇] 𝜕𝑥
𝜇
±𝜕𝜉𝑖
𝜕𝑥]±𝜕𝜉𝑗 ] ,

(𝜎, 𝜇, ] = 0, 1, 2, 3) .
(32)

In the above expression for extrinsic curvature, 𝑛±𝜎 are the
components of the outward unit normal to the hypersurface
with respect to themanifolds𝑀± (i.e., in the coordinates 𝑥±𝜇)
and have explicit expressions.

𝑛−𝜎 Σ= (0, 𝐵, 0, 0) and 𝑛+𝜎 Σ= 𝜇(−𝑑𝑅/𝑑V, 1, 0, 0) with 𝜇 =[−2𝑀(V)/𝑅 + 𝑄2(V)/𝑅2 + 2(𝑑𝑅/𝑑V)]−1/2.
Also, in the above, the Christoffel symbols are evaluated

for the metric in𝑀− or𝑀+ accordingly and we choose 𝜉0 =𝜏, 𝜉2 = 𝑧, 𝜉3 = 𝜙 as the intrinsic coordinates on Σ for
convenience.

The continuity of the 1st fundamental form gives

𝐶 (𝑡, 𝑟Σ) Σ= 𝑅Σ (V) ,
𝐷 (𝑡, 𝑟Σ) Σ= 𝜆𝑅Σ (V)

𝑑𝑡𝑑𝜏 = 1𝐴
𝑑V𝑑𝜏 = 𝜇.

(33)

Now the nonvanishing components of extrinsic curvature𝐾±𝑖𝑗 are

𝐾−00 = −( 𝐴󸀠𝐴𝐵)
Σ

𝐾+00 = [(𝑑2V𝑑𝜏2)(𝑑V𝑑𝜏)
−1 − (𝑑V𝑑𝜏)(𝑀𝑅2 − 𝑄2𝑅3 )]

Σ
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𝐾−22 = (𝐶𝐶󸀠𝐵 )
Σ

𝐾−33 = (𝐷𝐷󸀠𝐵 )
Σ

𝐾+22 = [𝑅(𝑑𝑅𝑑𝜏 ) − (𝑑V)𝑑𝜏 (2𝑀 − 𝑄2𝑅 )]
Σ

= 𝜆−2𝐾+33.
(34)

Hence, continuity of the extrinsic curvature together with
(33) gives the following relations over Σ [34, 35]:

𝑀(V) Σ= 𝑅2 [( 𝑅̇𝐴)2 − (𝑅󸀠𝐵 )2] + 𝑄22𝑅 (35)

𝐸 Σ= 𝑙8 + 𝜆𝑀, (36)

𝑞 Σ= 𝑝𝑟 − 2𝜂𝜎11𝐵2 − 𝑠22𝜋𝑐4 ( 1𝜆2 − 14) . (37)

Thus (35) gives the total mass inside the boundary surfaceΣ, while (36) shows the linear relationship between the𝐶 energy for the cylindrically symmetric space-time with
the bounding mass over Σ. Further, (37) shows a linear
relationship among the fluid parameters (𝑝𝑟, 𝜂, 𝑞) on the
bounding surface Σ. Hence radial pressure is in general
nonzero on the bounding surface due to dissipative nature of
the fluid and the charge on the bounding surface. But when
dissipative components of the fluid are switched off, then the
above result (uncharged) agrees with the results of Herrera et
al. [8]. Also it should be noted that the radial pressure on the
boundary does not depend on the charge bounded by Σ; it
depends only on the charge on the surface Σ.
4. Analysis of Dynamical Equations

From the conservation of energy-momentum, that is, (𝑇𝛼𝛽 +𝐸𝛼𝛽);𝛽 = 0, we can have two zero scalars, namely, (𝑇𝛼𝛽 +
𝐸𝛼𝛽);𝛽V𝛼 and (𝑇𝛼𝛽 + 𝐸𝛼𝛽);𝛽𝜒𝛼

Using (3) and (9), the explicit expressions for these two
scalars are

̇𝜌𝐴 + 𝐵̇𝐴 (𝜌𝐵 + 𝑝𝑟𝐵 − 2𝜂𝜎11) + 𝐶̇𝐴 (𝑝⊥𝐶 + 𝜌𝐶 − 2𝜂𝜎22)
+ 𝐷̇𝐴 ( 𝜌𝐷 + 𝑝⊥𝐷 − 2𝜂𝜎33) + 𝑞󸀠𝐵
+ 𝑞𝐵 (2𝐴󸀠𝐴 + 𝐶󸀠𝐶 + 𝐷󸀠𝐷 ) = 0,

(38)

(𝑝𝑟𝐵2 − 2𝜂𝜎11)󸀠 + ̇𝑞𝐴𝐵 + 𝑞𝐴𝐵 (𝐶̇𝐶 + 𝐷̇𝐷)
+ 𝐴󸀠𝐴 ( 𝜌𝐵2 + 𝑝𝑟𝐵2 − 2𝜂𝜎11) + 𝐵󸀠𝐵 (𝑝𝑟𝐵2 − 2𝜂𝜎11)

+ 𝐶󸀠𝐶 (𝑝𝑟𝐵2 − 𝑝⊥𝐵2 − 2𝜂𝜎11 − 2𝜂𝜎22𝐶2𝐵2 )
+ 𝐷󸀠𝐷 (𝑝𝑟𝐵2 − 𝑝⊥𝐵2 − 2𝜂𝜎11 + 2𝜂𝜎33𝐷2𝐵2 )
− 𝑠𝑠󸀠𝜋𝐶2𝐷2𝐵 = 0.

(39)

Now following the formulation of Misner and Sharp [2],
we introduce the proper time derivative and proper radial
derivative as

D𝑇 = 1𝐴 𝛿𝛿𝑡 ,
𝐷𝑅 = 1𝑅󸀠 𝛿𝛿𝑟 ,

(40)

so that the fluid velocity in the collapsing situation can be
defined as follows [36]:

𝑈 = 𝐷𝑇 (𝑅) = 𝐷𝑇 (𝐶) < 0,
𝑉 = 𝐷𝑇 (𝑅𝑟) = 𝐷𝑇 (𝐷) < 0. (41)

Using (18)–(23) and (41), we can obtain the acceleration of a
collapsing matter inside Σ as

𝐷𝑇 (𝑈) = −4𝜋𝑅(𝑝𝑟 − 4𝜂𝜎√3 ) + 𝐸 𝐴󸀠𝐴𝐵
+ 𝑠2𝑅3 (2 + 12𝜆) − 1𝑅2𝜆 (𝐸󸀠 − 𝑙8) .

(42)

Now combining (39) and (42), we obtain

(𝜌 + 𝑝𝑟 − 4𝜂𝜎√3 )𝐷𝑇 (𝑈) = (𝜌 + 𝑝𝑟 − 4𝜂𝜎√3 )
⋅ [ 1𝑅2𝜆 (𝐸󸀠 − 𝑙8) + 4𝜋𝑅(𝑝𝑟 − 4𝜂𝜎√3 )
− 𝑠2𝑅3 (2 + 12𝜆)] − 𝐸2 [𝐷𝑅 (𝑝𝑟 − 4𝜂𝜎√3 )
+ 2𝑅 (𝑝𝑟 − 𝑝⊥ − 2√3𝜂𝜎) − 𝑠𝜋𝑅4𝐷𝑅 (𝑠)]
− 2𝑞𝐸𝐴 (𝐵̇𝐵 + 𝐶̇𝐶) − ̇𝑞𝐸𝐴 .

(43)

Using (23) and the junction condition 𝐷 Σ= 𝜆𝐶, we write
[24]

𝐸 = 𝐶󸀠𝐵 = [𝑈2 + 𝑠2𝜆𝑐2 − 2𝜆𝑐 (𝐸󸀠 − 𝑙8)]
1/2 . (44)
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Hence, using the field equations for the interiormanifold,
we obtain the time rate of change of 𝐶-energy as

𝐷𝑇𝐸󸀠 = −4𝜋𝑅2𝜆 [(𝑝𝑟 − 4𝜂𝜎√3 )𝑈 + 𝑞𝐸]
+ 𝑠2𝐶̇𝑅2𝐴 (2𝜆 − 12) .

(45)

Also the above equation can be interpreted as the variation
of the total energy inside the collapsing cylinder. Note that,
due to negativity of the fluid velocity V, the first term
on the r.h.s will contribute to the energy of the system,
provided that the radial pressure is restricted as 𝑝𝑟 >4𝜂𝜎/√3. Due to negativity, the second term indicates an
outflow of energy in the form of radiation during the
collapsing process. The third term is Coulomb-like force
term and it will increase the energy of the system provided𝜆 > 1/4.

Further, using the Einstein field equations (17), (21), and
the expression for 𝐶- energy in (23), the radial derivative of
the 𝐶 energy takes the following form:

𝐷𝑅𝐸󸀠 = 4𝜋𝜌𝑅2𝜆 + 𝑠2𝑅2 (2𝜆 − 12) + 𝑠𝑅𝐷𝑅 (𝑠)
+ 4𝜋𝑞𝐵𝑅2𝜆𝑅󸀠 𝐷𝑇 (𝐶) + 18𝜌𝑅󸀠 .

(46)

This radial derivative can be interpreted as the energy
variation between the adjacent cylindrical surfaces within the
matter distribution. The first term on the r.h.s. is the usual
energy density of the fluid element, while the second termand
third term are the conditions due to the electromagnetic field.
The fourth term represents contribution due to the dissipative
heat flux and the last termwill increase or decrease the energy
of the system during the collapse of the cylinder provided𝑅󸀠 > or < 0.

Finally, the collapse dynamics is completely characterized
by the equation ofmotion in (43).Normally, for collapsing sit-
uation,𝐷𝑇𝑈 should be negative, that is, indicating an inward
radial flow of the system. Consequently, terms on the r.h.s (of
(43)) contributing negatively favour the collapse and positive
terms oppose the collapsing process. In an extreme situation,
the system will be in hydrostatic equilibrium if terms of
both signs balance each other. Further, from dimensional
analysis, the factor (𝜌 + 𝑝𝑟 − 4𝜂𝜎/√3) can be considered
as an inertial mass density, independent of heat flux contri-
bution. The first term on the r.h.s. of (43) can be identified
as the gravitational force, indicating the effects of specific
length and electric charge in the gravitational contribution.
The second term has three contributing components: the
pressure gradient (which is negative), local anisotropy of the
fluid, and electromagnetic field term. The remaining terms
represent the heat flux contribution and due to negativity
they seem to leave the system along the radial outward
streamlines.

5. Causal Thermodynamics:
The Transport Equation

In causal thermodynamics, due to Miller-Israel-Stewart, the
transport equation for heat flow is given by [21]

𝜏ℎ𝑎𝑏𝑉𝑐𝑞𝑏;𝑐 + 𝑞𝑎 = −𝜅ℎ𝑎𝑏 (𝑇,𝑏 + 𝑎𝑏𝑇)
− 12𝜅𝑇2 (𝜏𝑉𝑏𝜅𝑇2)

;𝑏

𝑞𝑎, (47)

where ℎ𝑎𝑏 = 𝑔𝑎𝑏 + 𝑉𝑎𝑉𝑏 is the projection tensor of
the 3-surface orthogonal to the unit time-like vector 𝑉𝑎, 𝜅
represents the thermal conductivity, 𝑇 is the temperature,𝜏 denotes the relaxation time, and 𝑎𝑏𝑇 is the inertial term
due to Tolman. Now, due to cylindrical symmetry, the above
transport equation (47) simplifies to

𝜏 ̇𝑞 = − 12𝐴𝜅𝑞𝑇2𝜏 ( 𝜏𝜅𝑇2 ) − 𝑞 [3𝑈2𝑅 + 𝐺 + 1𝜏]
− 𝜅𝐸𝐷𝑅𝑇𝜏 − 𝜅𝑇𝐷𝑇𝑈𝜏𝐸 − 𝜅𝑇

𝜏𝐸𝑅2 [
1𝜆 (𝐸󸀠 − 𝑙8)

+ 4𝜋𝑅3 (𝑝𝑟 − 4𝜂𝜎√3 ) − 𝑆2𝑅 (2 + 12𝜆)]
(48)

with 𝐺 = (1/𝐴)(𝐵̇/𝐵 − 𝐶̇/𝐶).
Note that although heat dissipation is described above

through a physically reasonable transport equation (47) or
(48), the shear viscosity is described according to the standard
(noncausal) irreversible thermodynamics. Thus, there is no
such relaxation time for shear viscosity and as such no
causal evolution equation for it. Further, the thermodynamic
viscous/heat coupling coefficients are not taken into consid-
eration in the present work; that is, the present approach is
only partially causal. However, a full causal approach of the
dissipative collapse has been considered byHerrera et al. [22].

Now considering proper derivatives in (40) of the above
equation and using the field velocity (in (41)) and equation
of motion (i.e., (43)), one obtains the effects of heat flux or
dissipation in the collapsing process as

(1 − 𝛼) (𝜌 + 𝑝𝑟 − 4𝜂𝜎√3 )𝐷𝑇𝑈 = (1 − 𝛼) 𝐹grav + 𝐹hyd
+ 𝛼𝐸2 [𝐷𝑅𝑝𝑟 + 2 (𝑝𝑟 − 𝑝⊥ − 2√3𝜂𝜎) 1𝑅
− 𝑆𝐷𝑅 (𝑆)𝜋𝑅4𝜆2 ] − 𝐸 [𝐷𝑇𝑞 + 2𝑞𝐺 + 4𝑞𝑈𝑅 ] + 𝛼𝐸 [𝐷𝑇𝑞
+ 4𝑞𝑈𝑅 + 2𝑞𝐺]

(49)

with

𝛼 = 𝜅𝑇𝜏 (𝜌 + 𝑝𝑟 − 4𝜂𝜎√3 )−1

𝐹grav = −(𝜌 + 𝑝𝑟 − 4𝜂𝜎√3 )[(𝐸󸀠 − 𝑙8) 1𝜆 + 4𝜋𝑝𝑟𝑅3
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− (2 + 12𝜆) 𝑆2𝑅 ]( 1𝑅2 )
𝐹hyd = 𝐸2 [𝐷𝑅 (𝑝𝑟 − 4𝜂𝜎√3 ) + 2𝑅 (𝑝𝑟 − 𝑝⊥ − 2√3𝜂𝜎)

− 𝑆𝜋𝑅4𝐷𝑅 (𝑆)] .
(50)

The l.h.s. of (49) can be interpreted as Newtonian force𝐹 with (𝜌 + 𝑝𝑟)(1 − 𝛼) as the inertial mass density. So as𝛼 → 1, 𝐹 → 0; that is, there is no inertial force and collapse
will be inevitable due to gravitational attraction. Further,
the inertial mass density decreases as long as 0 < 𝛼 < 1
and it increases for 𝛼 > 1. Moreover, due to equivalence
principle, the gravitational mass also decreases or increases
according to 𝛼 < or > 1 and gives a clear distinction between
the expanding and collapsing process due to dynamics of
dissipative system. Note that although the gravitational force
is affected by the same factor (1 − 𝛼), the hydrodynamical
force is free from it. Further, combination of all these terms
on the r.h.s of (49) results in the l.h.s, that is, (1 − 𝛼)(𝜌 + 𝑝𝑟 −4𝜋𝜎/√3)𝐷𝑇𝑈 < 0; there will be gravitational collapse, while
there will be expansion if the l.h.s is to be positive. It should
bementioned that such effects were first discussed byHerrera
et al. [37] in context of thermal conduction in hydrostatic
equilibrium. Interestingly, if 𝛼 continuously decreases from a
value larger than unity to one less than unity, then there will
be a phase transition (collapse to expansion) and bounce will
occur.As a result, therewill be loss of energy of the systemand
collapsing cylinder with nonadiabatic source causes emission
of gravitational radiation. Therefore, there will be radiation
outside the collapsing cylinder and hence the choice of the
exterior metric (in (24)) is justified.
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