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By using the higher-order geodesic deviation equations for charged particles, we apply the method described by Kerner et.al. to
calculate the perihelion advance and trajectory of charged test particles in the Reissner-Nordstrom space-time.The effect of charge
on the perihelion advance is studied and we compared the results with those obtained earlier via the perturbation method. The
advantage of this approximation method is to provide a way to calculate the perihelion advance and orbit of planets in the vicinity
of massive and compact objects without considering Newtonian and post-Newtonian approximations.

1. Introduction

Theproblem of planetsmotion in general relativity is the sub-
ject of many studies in which the planet has been considered
as a test particle moving along its geodesic [1]. Einstein made
the first calculations in this regard for the planet Mercury in
the Schwarzschild space-time which resulted in the equation
for the perihelion advanceΔ𝜑 = 6𝜋𝐺𝑀𝑎 (1 − 𝑒2) , (1)

where 𝐺 is the gravitational constant, 𝑀 is the mass of
the central body, 𝑎 is the length of semi-major axis for
planet’s orbit, and 𝑒 is eccentricity. Derivation of perihelion
advance by using this method leads to a quasielliptic integral
whose calculation is very difficult, which is then evaluated
after expanding the integrand in a power series of the small
parameter 𝐺𝑀/𝑟𝑐2. For the low-eccentricity trajectories of
planets, one can obtain the following approximate formula for
the perihelion advance:Δ𝜑 = 6𝜋𝐺𝑀𝑎 (1 − 𝑒2) ≃ 6𝜋𝐺𝑀𝑎 (1 + 𝑒2 + 𝑒4 + 𝑒6 + ⋅ ⋅ ⋅) , (2)

even for the case of Mercury up to second-order of eccentric-
ity, the perihelion advance differs only by 0.18% error from
its actual value [2]. It should be noted again that Einstein’s
method is only valid for the small values of 𝐺𝑀/𝑟𝑐2.

In what follows, we show that one can obtain the same
results (without taking the complex integrals) only by consid-
ering the successive approximations around a circular orbit
in the equatorial plane as the initial geodesic with constant
angular velocity, which leads to an iterative process of the
solving the geodesic deviation equations of first, second, and
higher-orders [3–5]. Here, instead of the G𝑀/𝑟𝑐2 parameter
the eccentricity, 𝑒, plays the role of the small parameter which
is controlling the maximal deviation from the initial circular
orbit. In this method, we have no constraint on 𝐺𝑀/𝑟𝑐2
anymore. So, one can determine the value of perihelion
advance for largemass objects andwrite it in the higher-order
of 𝐺𝑀/𝑟𝑐2.

Theorbitalmotions of neutral test particles via the higher-
order geodesic deviation equations for Schwarzschild and
Kerr metrics are studied in [2] and [4], respectively. Also,
for massive charged particles in Reissner-Nordstrom metric,
geodesic deviations have been extracted up to first order [6].
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In this paper, by using the higher-order geodesic deviations
for charged particles [7], we are going to obtain the orbital
motion and trajectory of charged particles. We also expect
that our calculations reduce to similar one in Schwarzschild
metric [2] by elimination of charge. In fact, we generalize
the novel method used in [2] for neutral particles in the
Schwarzschildmetric to the charged particles in the Reissner-
Nordstrommetric. Recently, an analytical computation of the
perihelion advance in general relativity via the Homotopy
perturbationmethod has been proposed in [8]. Also, one can
study the perihelion advance of planets in general relativity
and modified theories of gravity by using different methods
in [8–21].

The structure of the paper is as follows. In Section 2, by
using the approximationmethod introduced in [7], we derive
the higher-order geodesic deviation for charged particles. By
using the first-order geodesic deviation equations, the orbital
motion of charged particles is found in Section 3. In Section 4,
we obtain the second-order geodesic deviations and derive
the semi-major axis, eccentricity, and trajectory using the
Taylor expansion around a central geodesic. The obtained
results are discussed in Section 5.

2. The Higher-Order Geodesic
Deviation Method

As is mentioned above, the higher-order geodesic deviation
equations for charged particles have been derived in [7] for
the first time. In this section, we are going to derive the
geometrical set-up used in our work. The geodesic deviation
equation for charged particles is [6]

𝐷2𝑛𝜇𝐷𝑠2 = 𝑅𝜇𝜆]𝜅𝑢𝜆𝑢]𝑛𝜅 + 𝑞𝑚𝐹𝜇]𝐷𝑛]𝐷𝑠 + 𝑞𝑚∇𝜆𝐹𝜇]𝑢]𝑛𝜆, (3)

where𝐷/𝐷𝑠 is the covariant derivative along the curve and 𝑛𝜇
is the separation vector between two particular neighboring
geodesics (see Figure 1). Here, 𝑢𝜇 is the tangent vector to the
geodesic, 𝑅𝜇𝜆]𝜅 is the curvature tensor of space-time, 𝑞 and𝑚 are charge and mass of particles (particles have the same
charge-to-mass ratio, 𝑞/𝑚), and 𝐹𝜇] is the electromagnetic
force acting on the charged particles. For neutral particles, the
above equation reduces to the following geodesic deviation
[22, 23]:

𝐷2𝑛𝜇𝐷𝑠2 = 𝑅𝜇𝜆]𝜅𝑢𝜆𝑢]𝑛𝜅, (4)

which is the well-known equation (Jacobi equation) in
general relativity. We introduce the four-velocity 𝑢𝛼(𝑠, 𝑝) =𝜕𝑥𝛼/𝜕𝑠 as the time-like tangent vector to the world-line and𝑛𝛼(𝑠, 𝑝) = 𝜕𝑥𝛼/𝜕𝑝 as the deviation four-vector as well.
Practically it is often convenient to work with the nontrivial
covariant form. It can be obtained by replacement of the
trivial expressions for the covariant derivatives, the Riemann

curvature tensor, and use of the equation of motion in the
left-hand side of (3) [6]

𝑑2𝑛𝜇𝑑𝑠2 + (2Γ𝜇𝜅]𝑢𝜅 − 𝑞𝑚𝐹𝜇]) 𝑑𝑛]𝑑𝑠+ (𝑢𝜅𝑢𝜎𝜕]Γ𝜇𝜅𝜎 − 𝑞𝑚𝑢𝜅𝜕]𝐹𝜇𝜅) 𝑛] = 0. (5)

The geodesic deviation can be used to compose geodesics𝑥𝜇(𝑠) near a given reference geodesic 𝑥𝜇0 (𝑠), by an iterative
method as follows. Considering this, one can write Taylor
expansion of 𝑥𝜇(𝑠, 𝑝) around the central geodesic and obtain
the first-order and higher-order geodesic deviations for
charged particles

𝑥𝜇 (𝑠, 𝑝) = 𝑥𝜇 (𝑠, 𝑝0) + (𝑝 − 𝑝0) 𝜕𝑥𝜇𝜕𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑠,𝑝0)+ 12! (𝑝 − 𝑝0)2 𝜕2𝑥𝜇𝜕𝑝2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑠,𝑝0) + ⋅ ⋅ ⋅ ,
(6)

and our aim is to obtain an expression in terms of the
deviation vector. As shown in the above equation, the second
term, 𝜕𝑥𝜇/𝜕𝑝, is the definition of deviation vector and shows
the first-order geodesic deviation. But in the third term,𝜕2𝑥𝜇/𝜕𝑝2 is not vector anymore. Therefore, we define the
vector 𝑏𝜇 as follows:

𝑏𝜇 = 𝐷𝑛𝜇𝐷𝑝 = 𝜕𝑛𝜇𝜕𝑝 + Γ𝜇
𝜆]𝑛𝜆𝑛], (7)

to change 𝜕2𝑥𝜇/𝜕𝑝2 into the expression showing the second-
order geodesic deviation. By substituting (7) into (6), one can
obtain the expression in terms of the order of vector deviation

𝑥𝜇 (𝑠, 𝑝) = 𝑥𝜇 (𝑠, 𝑝0) + (𝑝 − 𝑝0) 𝑛𝜇+ 12! (𝑝 − 𝑝0)2 (𝑏𝜇 − Γ𝜇𝜆]𝑛𝜆𝑛]) + ⋅ ⋅ ⋅ (8)

In the above expression, one can make some changes for
simplification. We consider 𝛿𝑛𝑥𝜇(𝑠) as 𝑛-th order of geodesic
deviation and by assuming (𝑝 − 𝑝0) as a small quantity, 𝜖; we
rewrite (8) as follows:

𝑥𝜇 (𝑠, 𝑝) = 𝑥𝜇0 (𝑠) + 𝛿𝑥𝜇 (𝑠) + 12𝛿2𝑥𝜇 (𝑠) + ⋅ ⋅ ⋅ , (9)

where 𝛿𝑥𝜇(𝑠) = 𝜖𝑛𝜇(𝑠) is the first-order geodesic deviation
and 𝛿2𝑥𝜇(𝑠) = 𝜖2(𝑏𝜇 − Γ𝜇]𝜆𝑛]𝑛𝜆) is the second-order geodesic
deviation. In order to obtain the second-order geodesic
deviation equation, one can apply the definition of the
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covariant derivative on (7)(for more details see [7] and
appendix therein)𝐷2𝑏𝜇𝐷𝑠2 + 𝑅𝜇𝜌𝜆𝜎𝑢𝜌𝑢𝜆𝑛𝜎= (𝑅𝜇𝜌𝜆𝜎;] − 𝑅𝜇𝜎]𝜌;𝜆) 𝑢𝜆𝑢𝜎𝑛𝜌𝑛]+ 4𝑅𝜇𝜌𝜆𝜎𝑢𝜆𝐷𝑛𝜌𝐷𝑠 𝑛𝜎 + 𝑞𝑚𝑅𝜇𝜎𝜌]𝐹𝜌𝜆𝑛𝜎𝑢𝜆𝑛]

+ 𝑞𝑚𝐹𝜇𝜌;𝜆𝜎𝑛𝜆𝑢𝜌𝑛𝜎 + 𝑞𝑚𝐹𝜇𝜌𝐷2𝑢𝜌𝐷𝑝2 .
(10)

Similar to the first-order geodesic deviation (5), we can write
(10) in the nonmanifest covariant form𝑑2𝑏𝜇𝑑𝑠2 + (2Γ𝜇𝜅]𝑢𝜅 − 𝑞𝑚𝐹𝜇]) 𝑑𝑏]𝑑𝑠+ (𝑢𝜅𝑢𝜎𝜕]Γ𝜇𝜅𝜎 − 𝑞𝑚𝑢𝜅𝜕]𝐹𝜇𝜅) 𝑏] =+ (Γ𝜏𝜎]𝜕𝜏Γ𝜇𝜆𝜌 + 2Γ𝜇𝜆𝜏𝜕𝜌Γ𝜏𝜎] − 𝜕]𝜕𝜎Γ𝜇𝜆𝜌)⋅ (𝑢𝜆𝑢𝜌𝑛𝜎𝑛] − 𝑢𝜎𝑢]𝑛𝜆𝑛𝜌)

+ 4 (𝜕𝜆Γ𝜇𝜎𝜌 + Γ]𝜎𝜌Γ𝜇𝜆]) 𝑑𝑛𝜎𝑑𝑠 (𝑢𝜆𝑛𝜌 − 𝑢𝜌𝑛𝜆) + 𝑞𝑚⋅ 𝑢]𝑛𝛼𝑛𝛽 (𝜕𝛼𝜕𝛽𝐹𝜇] − 𝐹𝜇𝜌𝜕]Γ𝜌𝛼𝛽 − 𝜕𝜎𝐹𝜇]Γ𝜎𝛼𝛽) + 2 𝑞𝑚⋅ 𝑛𝜎 𝑑𝑛]𝑑𝑠 (𝜕𝜎𝐹𝜇] − 𝐹𝜇𝛽Γ𝛽𝜎]) .

(11)

As it clears, the left-hand side of the second-order geodesic
deviation equation (11) is same to the left-hand side of (5). As
in the case of the second-order geodesic deviation, the higher-
order geodesic deviation equations have the same left-hand
side and different right-hand side. A nonmanifest covariant
form of the third-order geodesic deviation equation is given
in Appendix A.

The successive approximations to the exact geodesic (b)
have been shown in Figure 1. Lines (c) and (d) represent
the first-order approximation, i.e., 𝑥𝜇(𝑠, 𝑝) = 𝑥𝜇(𝑠, 𝑝0) +(𝑝 − 𝑝0)(𝜕𝑥𝜇/𝜕𝑝)|𝑝0 , and the second-order approximation,
i.e., 𝑥𝜇(𝑠, 𝑝) = 𝑥𝜇(𝑠, 𝑝0) + (𝑝 − 𝑝0)(𝜕𝑥𝜇/𝜕𝑝)|𝑝0 + (1/2!)(𝑝 −𝑝0)2(𝜕2𝑥𝜇/𝜕𝑝2)|𝑝0 , respectively.

In the next section,we are going to obtain the components
of 𝑛𝜇 from the first-order geodesic deviation, (5), for a circular
orbit of charged particles.Then by substituting them into (11),
we can solve the second-order geodesic deviation equations,𝑏𝜇. Finally, by substituting 𝑛𝜇 and 𝑏𝜇 into (8), we will find
the relativistic trajectory of charged particles in Reissner-
Nordstrom space-time.

3. The First-Order Geodesic Deviation

3.1. Circular Orbits in Reissner-Nordstrom Metric. The
Reissner-Nordstrom metric is a static exact solution of the

u(s1)

n(s1)

x(s1, 0) x(s1, p0)

u(s0)

n(s0)

x(s0, 0)

x(s0, p0)

(a) (b) (c)(d)

N

N

Figure 1: Deviation of two nearby geodesics in a gravitational field.
Lines (a) and (b) represent the central geodesic 𝑝 = 0 and the
nearby geodesic 𝑝 = 𝑝0, respectively; lines (c) and (d) show the
corresponding first and second-order approximations to the nearby
geodesic (b). Also, 𝑢𝜇 is the unit tangent vector to the central world-
line, 𝑛𝜇 is the separation vector to the curve 𝑠 = 𝑐𝑜𝑛𝑠𝑡, and 𝑁𝜇 =𝑏𝜇 − Γ𝜇

𝜆𝜌
𝑛𝜆𝑛𝜌 is the second-order geodesic deviation [24].

Einstein-Maxwell equations which describes the space-time
around a spherically nonrotating charged source with mass𝑀 and charge 𝑄 (in the natural coordinate with 𝑐 = 1 and𝐺 = 1) 𝑑𝑠2 = −𝐵 (𝑟) 𝑑𝑡2 + 1𝐵 (𝑟)𝑑𝑟2+ 𝑟2 (𝑑𝜃2 + sin2 (𝜃) 𝑑𝜑2) , (12)

where

𝐵 (𝑟) = 1 − 2𝑀𝑟 + 𝑄2𝑟2 . (13)

Also, the vector potential and the electromagnetic field of
Maxwell’s equations are [6]

𝐴 = 𝐴𝜇𝑑𝑥𝜇 = − 𝑄4𝜋𝑟𝑑𝑡,𝐹 = 𝑑𝐴 = 𝑄4𝜋𝑟2 𝑑𝑟 ∧ 𝑑𝑡. (14)

By assuming that 𝑀2 > 𝑄2, we are going to obtain the
equation of motion for test particles which have mass 𝑚 and
charge 𝑞. Now, we consider a circular orbit with a constant
radius 𝑅. On the other hand, we know that the angular
momentum of particles which are bounded to the spherically
symmetric condition is limited to the equatorial plane. For
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this purpose and for simplicity, we limit the space to the plane
of 𝜃 = 𝜋/2 in which the angular momentum is in the 𝑧
direction. By using of the Euler-Lagrange equation, one can
lead to the following constants of motion:𝑑𝜑𝑑𝑠 = 𝑙𝑟2 , (15)𝑑𝑡𝑑𝑠 = 𝜀 − 𝑞𝑄/4𝜋𝑚𝑟1 − 2𝑀/𝑟 + 𝑄2/𝑟2 , (16)

where 𝑙 = 𝐽/𝑚 is the angularmomentumper unitmass, 𝜑̇ = 𝜔
is the angular velocity, and 𝜀 is the energy per unit mass.

Finally, from (12), (15), and (16) one obtains two con-
straints, namely, the conservation of the absolute four-
velocity and the radial acceleration. Now, due to the fact that
the radius of the circular orbit is constant (𝑟 = 𝑅), two
mentioned constraints vanish at all times and this creates two
relations between 𝑅, 𝑙, and 𝜀 as follows:

(𝜀 − 𝑞𝑄4𝜋𝑀𝑅)2 = (1 − 2𝑀𝑅 + 𝑄2𝑅2 )(1 + 𝑙2𝑅2) , (17)

[𝑙2𝑅 −𝑀(1 + 3𝑙2𝑅2 ) + 𝑄2𝑅 (1 + 2𝑙2𝑅2 )]2= ( 𝑞𝑄4𝜋𝑚)2 (1 + 𝑙2𝑅2)(1 − 2𝑀𝑅 + 𝑄2𝑅2 ) . (18)

As we expect by eliminating charge, all obtained equations
reduce to the similar equations in the Schwarzschild metric.

In summary, we obtain the following four-velocity vector for
a circular orbit with radius 𝑅 in an equatorial plane:

𝑢𝑡 = 𝑑𝑡𝑑𝑠 = 𝜀 − 𝑞𝑄/4𝜋𝑚𝑅1 − 2𝑀/𝑅 + 𝑄2/𝑅2 ,𝑢𝑟 = 𝑑𝑟𝑑𝑠 = 0,
𝑢𝜃 = 𝑑𝜃𝑑𝑠 = 0,
𝑢𝜑 = 𝑑𝜑𝑑𝑠 = 𝜔0 = 𝑙𝑅2 .

(19)

In the next subsection, we obtain the orbital motion by using
the higher-order geodesic deviationmethod and compare the
results with the perturbation method.

3.2. First-Order Geodesic Deviation around the Circular
Orbits. Now let us calculate the first-order geodesic deviation
for the components 𝑛𝑡, 𝑛𝑟, 𝑛𝜃, and 𝑛𝜙, by using of (5) in a
matrix form

(𝑚11 𝑚12 𝑚13 𝑚14𝑚21 𝑚22 𝑚23 𝑚24𝑚31 𝑚32 𝑚33 𝑚34𝑚41 𝑚42 𝑚43 𝑚44)(𝑛𝑡𝑛𝑟𝑛𝜃𝑛𝜑) =(0000) , (20)

where the matrix elements are given by

𝑚11 = 𝑑2𝑑𝑠2 ,𝑚12 = 2𝑅𝜀 (𝑀/𝑅 − 𝑄2/𝑅2) − (𝑞𝑄/4𝜋𝑚) (1 − 𝑄2/𝑅2)𝑅2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)2 𝑑𝑑𝑠 ,𝑚13 = 𝑚14 = 0,
𝑚22 = 𝑑2𝑑𝑠2 − 𝑙2𝑅4 (1 − 𝑄2𝑅2 ) + (−2𝑀/𝑅 + 6𝑀2/𝑅2 + 3𝑄2/𝑅2 − 12𝑀𝑄2/𝑅3 + 5𝑄4/𝑅4) (𝜀 − 𝑞𝑄/4𝜋𝑚𝑅)2𝑅2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)2 − 𝑞𝑚𝐹𝑟𝑡,𝑟𝑢𝑡,
𝑚21 = 2𝑅 (𝑀𝑅 − 𝑄2𝑅2 )(𝜀 − 𝑞𝑄4𝜋𝑚𝑅) 𝑑𝑑𝑠 − 𝑞𝑚𝐹𝑟𝑡 𝑑𝑑𝑠 ,𝑚23 = 0,
𝑚24 = −2𝑙𝑅 (1 − 2𝑀𝑅 + 𝑄2𝑅2 ) 𝑑𝑑𝑠 ,𝑚31 = 𝑚32 = 𝑚34 = 0,
𝑚33 = 𝑑2𝑑𝑠2 + 𝑙2𝑅4 ,𝑚41 = 𝑚43 = 0,𝑚42 = 2𝑙𝑅3 𝑑𝑑𝑠 ,𝑚44 = 𝑑2𝑑𝑠2 .

(21)
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As can be seen, the geodesic deviation equation of 𝜃 com-
ponent represents a harmonic oscillator equation with the
angular frequency of 𝜔𝜃 = 𝜔0 = 𝑙/𝑅2. So we consider 𝑛𝜃 as
follows: 𝑛𝜃 (𝑠) = 𝑛𝜃0 cos (𝜔0𝑠) , (22)

which is similar to the Schwarzschild case. So in this case we
can neglect this solution (𝑛𝜃 = 0), because the new plane
of orbit is a new one inclined, or just a change of coordinate
system [4]. Now, by eliminating the derivatives of 𝑛𝑡 and 𝑛𝜙
in the differential equation of 𝑛𝑟, we obtain the following
oscillating equation: 𝑑2𝑛𝑟𝑑𝑠2 + 𝑤2𝑛𝑟 = 0, (23)

with the characteristic frequency

𝜔2 = 𝜔20 (1 − 6𝑀𝑅 + 𝑄2𝑀𝑅 + 3𝑄2𝑅2 + ⋅ ⋅ ⋅) . (24)

By considering 𝑛𝑟0 > 0, we choose the following solution for𝑛𝑟: 𝑛𝑟 = −𝑛𝑟0 cos (𝜔𝑠) . (25)

Also, from the 𝑛𝑡 and 𝑛𝜑 geodesic deviation equations, the
solutions for 𝑛𝑡 and 𝑛𝜑 are given by𝑛𝑡 = 𝑛𝑡0 sin (𝜔𝑠) , (26)𝑛𝜑 = 𝑛𝜑0 sin (𝜔𝑠) , (27)

where the amplitudes depend on 𝑛𝑟0𝑛𝑡0= 2√𝑀𝑅 − 𝑄2𝑅 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)√1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅𝑛𝑟0, (28)

𝑛𝜑0 = 2𝑅√1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅𝑛𝑟0. (29)

In this way, the trajectory and the law of motion are obtained
by 𝑟 = 𝑅 − 𝑛𝑟0 cos (𝜔𝑠) , (30)𝜑 = 𝜔0𝑠 + 𝑛𝜑0 sin (𝜔𝑠) , (31)

𝑡 = 𝜀 − 𝑞𝑄/4𝜋𝑚𝑅1 − 2𝑀/𝑅 + 𝑄2/𝑅2 𝑠 + 𝑛𝑡0 sin (𝜔𝑠) , (32)

where the argument phase of the cosine function is taken by𝑠 = 0 for perihelion and 𝑠 = 𝜋/𝜔 for aphelion. Now, (30) can
be written as

𝑟 = 𝑅 [1 − 𝑛𝑟0𝑅 cos (𝜔𝑠)] . (33)

By direct solution of the Euler-Lagrange equations, the
trajectory of motion for particles is obtained in terms of
centrifugal inertia [25]

𝑟 (𝑡) = 𝑎 (1 − 𝑒2)1 + 𝑒 cos (𝜔0𝑡) ≃ 𝑎 [1 − 𝑒 cos (𝜔0𝑡)] . (34)

Obviously, (33) and (34) show that we have the same results.
It means that if we bring up the eccentricity 𝑒 to 𝑛𝑟0/𝑅 and
the semimajor axis 𝑎 to 𝑅, the same results are extracted,
but there is also a difference that the circular frequency, 𝜔, is
lower than the circular frequency of the unperturbed circular
motion,𝜔0. So, if the circular frequency decreases, the period
increases. Then we obtain an expression for the periastron
shift per one revolution as

△𝜑 = 2𝜋(𝜔0𝜔 − 1) = 2𝜋(3𝑀𝑅 + 272 𝑀2𝑅2 + 1352 𝑀3𝑅3
− 𝑄22𝑀𝑅 − 6𝑄2𝑅2 + ⋅ ⋅ ⋅) . (35)

It can be seen from the above equation that the charge param-
eter,𝑄, decreases the perihelion advance. In the perturbation
method (Einstein’s method), the orbital motion for charged
particles moving in the equatorial plane of the Reissner-
Nordstrom source is given by [20]

△𝜑 = 6𝜋𝑀𝑅 − 𝜋𝑄2𝑀𝑅 , (36)

and comparing (35) with (36) shows that the presented
method can be used in the vicinity of very massive and
compact objects which is having a nonnegligible ratio of𝑀/𝑅.

When the source is neutral and for the small values of𝑀/𝑅, (35) reduces to the standard formula for Perihelion
advance of planets [23]. If we also compare (35) to (2), it
is clear that, in the first-order deviation, we hold only the
terms up to 𝑒2. In order to obtain△𝜑 for the higher values of
the eccentricity, we must go beyond the first-order deviation
equations.Therefore in the next section, we solve the second-
order geodesic deviation equations in Reissner-Nordstrom
space-time.

4. The Second-Order Geodesic Deviation

In this section, by using the first-order geodesic deviation
equation and inserting (25), (26), and (27) into (10) and also
doing a set of hard calculations, a linear equations system for
the second-order geodesic deviation vector 𝑏𝜇 is obtained
(𝑚11 𝑚12 𝑚14𝑚21 𝑚22 𝑚24𝑚41 𝑚42 𝑚44 )(𝑏𝑡𝑏𝑟𝑏𝜑) = (𝑛𝑟0)2(𝐶𝑡 + 𝐶𝑡𝑞𝐶𝑟 + 𝐶𝑟𝑞𝐶𝜑 + 𝐶𝜑𝑞), (37)
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where the constants 𝐶𝑡, 𝐶𝑡𝑞, 𝐶𝑟, 𝐶𝑟q, 𝐶𝜑, and 𝐶𝜑𝑞 contain
quantities depending on𝑀, 𝑅, 𝜔, 𝜔0, 𝑞, and 𝑄
𝐶𝑡 = −6𝑀√𝑀𝑅 − 𝑄2 (2 − 7𝑀/𝑅 + 31𝑄2/3𝑅2 − 5𝑄2/3𝑀𝑅 − 4𝑄4/3𝑀𝑅3 − 𝑄4/𝑀2𝑅2)𝑅5 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2)√1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅 sin (2𝑤𝑠) , (38)

𝐶𝑟 = −3𝑀[6 − 27𝑀/𝑅 + 6𝑀2/𝑅2 + 158𝑄2/3𝑅2 − 22𝑄2/3𝑀𝑅 − 14𝑀𝑄2/𝑅3 − 16𝑄4/3𝑅4 − 4𝑄4/𝑀2𝑅2]2𝑅4 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) cos (2𝜔𝑠)
+ 3𝑀[2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 + 6𝑄2/𝑅2 − 10𝑄2/3𝑀𝑅 − 34𝑀𝑄2/𝑅3 + 4𝑄4/𝑀2𝑅2]2𝑅4 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) , (39)

𝐶𝜑 = −6𝑀𝜔0 [1 − 3𝑀/𝑅 + 2𝑀2/𝑅2 + 5𝑄2/𝑅2 − 4𝑄2/3𝑀𝑅 − 8𝑀𝑄2/3𝑅3 − 𝑄4/𝑅4 − 𝑄4/𝑀𝑅3]𝜔𝑅5 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) sin (2𝜔𝑠) , (40)

𝐶𝑡𝑞 = 𝑞𝑄√𝑀/𝑅 − 𝑄2/𝑅2√1 − 6𝑀/𝑅 + 𝑄2/𝑅2 [3𝑀/𝑅 − 31𝑀2/2𝑅2 + 15𝑀3/𝑅3 + 𝑄2/𝑅2 + 3𝑀𝑄2/𝑅3 − 7𝑀2𝑄2/𝑅4]4𝜋𝑚𝑀𝑅3√1 − 3𝑀/𝑅 + 2𝑄2/𝑅2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) sin (2𝜔𝑠) , (41)

𝐶𝑟𝑞
= 𝑞𝑄√1 − 3𝑀/𝑅 + 2𝑄2/𝑅2 [7𝑀/𝑅 − 61𝑀2/𝑅2 + 169𝑀3/𝑅3 − 150𝑀4/𝑅4 + 3𝑄2/𝑅2 + 11𝑀𝑄2/𝑅3 − 130𝑀2𝑄2/𝑅4 + 198𝑀3𝑄2/𝑅5]4𝜋𝑚𝑀𝑅3 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)⋅ cos (2𝜔𝑠)
− 𝑞𝑄√1 − 3𝑀/𝑅 + 2𝑄2/𝑅2 [𝑀/𝑅 + 5𝑀2/𝑅2 − 45𝑀3/𝑅3 + 54𝑀4/𝑅4 − 3𝑄2/𝑅2 + 21𝑀𝑄2/𝑅3 − 2𝑀2𝑄2/𝑅4 − 54𝑀3𝑄2/𝑅5]4𝜋𝑚𝑀𝑅3 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) ,

(42)

𝐶𝜑𝑞 = 0. (43)

Here we have not used any approximation in 𝐶𝑖, (𝑖 =𝑟, 𝜃, 𝜙) but in what follows we neglect terms of higher order
of the small parameters 𝑀/𝑅, 𝑄/𝑀, and 𝑞/𝑚. Solving the
matrix equation (10) for 𝑏𝜇 is similar to the approach used
in the previous section (for the first-order geodesic deviation
vector 𝑛𝜇) which contains the terms with characteristic
frequency 𝜔. Here we are only interested in a particular
solution because of the oscillating general solution with the
angular frequency𝜔 already taken into account for 𝑛𝜇(𝑠).The
particular solution of the above equation which is containing

the oscillating termswith the angular frequency 2𝜔, the linear
terms in the proper time 𝑠, and constants. To obtain the
trajectory𝑥𝜇 according to (9), we need to calculate (1/2)𝛿2𝑥𝜇.
Also for 𝑥𝜇, the perihelion is extracted by 𝜔𝑠 = 2𝑘𝜋 and the
aphelion is derived by 𝜔𝑠 = (1 + 2𝑘)𝜋, where 𝑘 ∈ 𝑍.

In Appendix B, we have put the particular solution of
the above equation, 𝑏𝜇, the second-order geodesic deviation𝛿2𝑥𝜇, and the semimajor axis 𝑎 and eccentricity 𝑒, respec-
tively.

Finally, successive approximation brings us to trajectory
by substituting 𝑠(𝜑) to 𝜑(𝑠)

𝑟𝑅 = 1 − (𝑛𝑟0𝑅 ) cos( 𝜔𝜔0𝜑) + (𝑛𝑟0𝑅 )2 [ (3 − 5𝑀/𝑅 − 30𝑀2/𝑅2 + 72𝑀3/𝑅3 + 7𝑄2/𝑅2 − 7𝑄2/𝑀𝑅)2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2
+ (1 − 7𝑀/𝑅 + 10𝑀2/𝑅2 + 61𝑄2/2𝑅2 − 8𝑄2/3𝑀𝑅)2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) cos(2𝜔𝜔0 𝜑)+ (3/2)𝑄𝑞32𝜋𝑀𝑚(1 − 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2
+ (19/2)𝑄𝑞32𝜋𝑀𝑚(1 − 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2 cos(2𝜔𝜔0 𝜑)] + ⋅ ⋅ ⋅

(44)
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In the Schwarzschild limit, we have an elliptical orbit with [2]

𝑎 = 𝑅 + (𝑛𝑟0)2𝑅 [(2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3)(1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2 ] , (45)

𝑒 = 𝑛𝑟0 (1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2𝑅 (1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2 + ((𝑛𝑟0)2 /𝑅) (2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3) = 𝑛𝑟0𝑅 + O((𝑛𝑟0)3𝑅3 ) . (46)

Also, for the Schwarzschild case the shape of the orbit is
described up to second-order of (𝑛𝑟0/𝑅) as𝑟 (𝜑)𝑅 = 1 − (𝑛𝑟0𝑅 ) cos( 𝜔𝜔0𝜑) + (𝑛𝑟0𝑅 )2

⋅ [3 − 5𝑀/𝑅 − 30𝑀2/𝑅2 + 72𝑀3/𝑅32 (1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2
+ (1 − 5𝑀/𝑅)2 (1 − 6𝑀/𝑅)cos(2𝜔𝜔0 𝜑)] + ⋅ ⋅ ⋅ .

(47)

which is in agreement with equation (62) of reference [2].

5. Third-Order Geodesic Deviation and
Poincaré-Lindstedt’s Method

In the previous section, we have calculated the trajectory
of charged particles up to second-order. To find a more
accurate trajectory, we need to obtain the higher-order terms
of expansion (9). Using the first and second-order solutions
and third-order equation (A.2) for 𝛿3𝑥𝜇, we have

(𝑚11 𝑚12 𝑚14𝑚21 𝑚22 𝑚24𝑚41 𝑚42 𝑚44)(𝛿3𝑡𝛿3𝑟𝛿3𝜑) = 𝜖3(𝐷𝑡𝐷𝑟𝐷𝜑), (48)

where𝑚𝑖𝑗 are defined in (20) and the coefficients𝐷𝑖0,𝐷𝑖0𝑞,𝐷𝑖1,𝐷𝑖1𝑞,𝐷𝑖3, and𝐷𝑖3𝑞, (𝑖 = 𝑡, 𝑟, 𝜑) are functions of𝑀, 𝑅, 𝑞, and 𝑄𝐷𝑡 = (𝐷𝑡1 + 𝐷𝑡1𝑞) cos (𝜔𝑠) + (𝐷𝑡3 + 𝐷𝑡3𝑞) cos (3𝜔𝑠)+ 𝐷𝑡0 + 𝐷𝑡0𝑞,𝐷𝑟 = (𝐷𝑟1 + 𝐷𝑟1𝑞) cos (𝜔𝑠) + (𝐷𝑟3 + 𝐷𝑟3𝑞) cos (3𝜔𝑠)+ 𝐷𝑟0 + 𝐷𝑟0𝑞,𝐷𝜑 = (𝐷𝜑1 + 𝐷𝜑1𝑞) cos (𝜔𝑠) + (𝐷𝜑3 + 𝐷𝜑3𝑞) cos (3𝜔𝑠)+ 𝐷𝜑0 + 𝐷𝜑0𝑞.
(49)

As one can see the right-hand side of (48) has a frequency that
is the same as the eigenvalues of the differential matrix in the
left-hand side (resonant terms). This makes a new problem,

i.e., infinite solution for 𝛿3𝑟 which is called the secular term
(growing without bound). For avoiding these unbounded
deviations we use the Poincaré’s method. In this method by
replacing 𝜔 by infinite series in power of the infinitesimal
parameter 𝜖 = 𝑛𝑟0/𝑅 as𝜔 󳨀→ 𝜔𝑝 = 𝜔 + 𝜖𝜔1 + 𝜖2𝜔2 + 𝜖3𝜔3 + ⋅ ⋅ ⋅ , (50)

the correction frequencies 𝜔1, 𝜔2, 𝜔3, ⋅ ⋅ ⋅ can be chosen such
that Poincaré’s resonances vanish, by considering a differen-
tial equation for 𝑥𝜇 as𝑑2𝑑𝑠2 (𝛿𝑟 + 12𝛿2𝑟 + 16𝛿3𝑟) + 𝜔2 (𝛿𝑟 + 12𝛿2𝑟 + 16𝛿3𝑟)= 𝐶𝑟0 + 𝐶𝑟0𝑞 + (𝐶𝑟 + 𝐶𝑟𝑞) cos (2𝜔𝑝𝑠)+ (𝐷𝑟1 + 𝐷𝑟1𝑞) cos (𝜔𝑝𝑠)+ (𝐷𝑟3 + 𝐷𝑟3𝑞) cos (3𝜔𝑝𝑠) + 𝐷𝑟0 + 𝐷𝑟0𝑞.

(51)

Now, by developing both of the sides in terms of a series of
the parameter 𝜖, for avoiding the secular terms, we find some
algebraic relations on 𝜔1, 𝜔2, 𝜔3, ⋅ ⋅ ⋅ . In the Schwarzschild
limit, we have [4]

𝜔𝑝 = 𝑀1/2√1 − 6𝑀/𝑅𝑅3/2√1 − 3𝑀/𝑅
− 𝜖2 3𝑀3/2 (6 − 37𝑀/𝑅)4𝑅5/2√1 − 3𝑀/𝑅 (1 − 6𝑀/𝑅)3/2 ,

(52)

where 𝜖2 = (𝑛𝑟0)2/𝑅2. The resonant terms will also
appear at the fifth-order approximation; by terms
cos5(𝑤𝑠), sin3(𝑤𝑠) cos2(𝑤𝑠), etc., this problem can be
solved in a similar way.

Finally, we note that the electric charge of any celestial
body is practically close to zero anyway. Therefore, it is
worth investigating the geodesic deviation and higher-order
geodesic deviations in a more realistic background such as
the Schwarzschild metric in a strong magnetic dipole field or
magnetized black holes [26–28].The study of themwill be the
subject of the future investigations.

6. Conclusion and Discussion

Many of significant successes in general relativity are
obtained by approximation methods. One of the most
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important approximation scheme in general relativity is the
post-Newtonian approximation, an expansion with a small
parameter which is the ratio of the velocity of matter to
the speed of light. A novel approximation method was also
proposed by Kerner et al. which is based on the world-line
deviations [2].

The calculation of the perihelion advance bymeans of the
higher-order geodesic deviation method for neutral particles
in different gravitational fields such as Schwarzschild and
Kerr metric was first studied in several papers [2, 4]. In
the present paper by using of the higher-order geodesic
deviation method for charged particles [7], we applied this
approximation method to charged particles in the Reissner-
Nordstrom space-time.

We first started with an orbital motion which is close
to a circular orbit with constant angular velocity which is
considered as zeroth-approximation (unperturbed circular
orbitalmotion)with the orbital frequency𝜔0. In the next step,
we solved the first- and second-order deviation equations
which reduced to a system of the second-order linear dif-
ferential equations with constant coefficients. The solutions
are harmonic oscillators with characteristic frequency. From
(37), the first- and second-order corrections are oscillating
terms with angular frequency 𝜔 and 2𝜔, respectively.

Finally, we have obtained the new trajectory by adding the
higher-order geodesic deviations (nonlinear effects) to the
circular one (44).The advantage of this approach is to get the
relativistic trajectories of planets without using Newtonian
and post-Newtonian approximations for arbitrary values of
quantity𝑀/𝑅.
Appendix

A.

For solving the third-order geodesic deviation equation, we
should invoke to Poincare’s method. For this purpose, it is
better to write the third-order geodesic deviation as 𝛿3𝑥𝜇.The

third-order geodesic deviation equation 𝛿3𝑥𝜇 is related to the
third-order geodesic deviation vector ℎ𝜇𝛿3𝑥𝜇= 𝜖3 [ℎ𝜇 − 3Γ𝜇

𝜆𝜌
𝑛𝜆𝑏] + (𝜕𝜅Γ𝜇𝜆] − 2Γ𝜇𝜆𝜎Γ𝜎𝜅]) 𝑛𝜅𝑛𝜆𝑛]] , (A.1)

where ℎ𝜇 = 𝐷𝑏𝜇/𝐷𝑝. We derive the third-order geodesic
deviation equation as

𝑑2𝛿3𝑥𝜇𝑑𝑠2 + (2Γ𝜇
𝜆]𝑢𝜆 − 𝑞𝑚𝐹𝜇]) 𝑑𝛿3𝑥]𝑑𝑠 + (𝜕𝜎Γ𝜇𝜆𝜌𝑢𝜆𝑢𝜌− 𝑞𝑚𝑢]𝜕𝜎𝐹𝜇]) 𝛿3𝑥𝜎 =

− 6Γ𝜇
𝜆𝜌

𝑑𝛿𝑥𝜆𝑑𝑠 𝑑𝛿2𝑥𝜌𝑑𝑠 − 3𝛿𝑥𝜎 (𝜕𝜏𝜕𝜎Γ𝜇𝜆𝜌) 𝑢𝜆 (𝛿2𝑥𝜏𝑢𝜌
+ 2𝛿𝑥𝜏 𝑑𝛿𝑥𝜌𝑑𝑠 ) − 6 (𝜕𝜎Γ𝜇𝜆𝜌)(𝛿𝑥𝜎𝑢𝜆 𝑑𝛿2𝑥𝜌𝑑𝑠
+ 𝛿𝑥𝜎 𝑑𝛿𝑥𝜆𝑑𝑠 𝑑𝛿𝑥𝜌𝑑𝑠 + 𝛿2𝑥𝜎𝑢𝜆 𝑑𝛿𝑥𝜌𝑑𝑠 )
− 𝛿𝑥𝜎𝛿𝑥𝜏𝛿𝑥] (𝜕𝜏𝜕𝜎𝜕]Γ𝜇𝜆𝜌) 𝑢𝜆𝑢𝜌 + 𝑞𝑚⋅ 𝑑𝑛]𝑑𝑠 [(𝜕𝜎𝐹𝜇]) 𝛿2𝑥𝜎 + (𝜕𝜎𝜕𝜏𝐹𝜇]) 𝑛𝜎𝑛𝜏] + 𝑞𝑚⋅ 𝑛𝜎 [𝑑𝛿2𝑥]𝑑𝑠 (𝜕𝜎𝐹𝜇]) + (𝜕𝜎𝜕𝜏𝐹𝜇]) 𝛿2𝑥𝜏𝑢]] ,

(A.2)

and by substituting 𝛿3𝑥𝜇 in term of ℎ𝜇 into above equation,
we obtain (72) for case 𝑞 = 0 [2].
B.

The second-order geodesic deviation vector 𝑏𝜇 is
𝑏𝑡 = (𝑛𝑟0)2𝑀(𝜀 − 𝑞𝑄/4𝜋𝑚𝑅)𝑅3 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅)2 [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − (10/3) (𝑄2/𝑀𝑅))(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠

+ (2 − 13𝑀/𝑅 + (79/6) (𝑄2/𝑀𝑅)) sin (2𝜔𝑠)𝜔 − 6𝑞𝑄𝑤𝑠 + 19𝑞𝑄 sin (2𝜔𝑠)32𝜋𝑚𝑀𝜔 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2] ,
(B.1)

𝑏𝑟 = (𝑛𝑟0)2𝑀2𝑅2 (𝑀/𝑅 − 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − (10/3) (𝑄2/𝑀𝑅))(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)
+ (2 + 5𝑀𝑅 − 283 𝑄2𝑀𝑅) cos (2𝜔𝑠) + 3𝑞𝑄 + 19𝑞𝑄 cos (2𝜔𝑠)16𝜋𝑚𝑀(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2] ,

(B.2)

𝑏𝜑 = (𝑛𝑟0)2 𝜔0𝑀𝑅3 (𝑀/𝑅 − 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − (10/3) (𝑄2/𝑀𝑅))(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠
+ (1 − 8𝑀/𝑅) sin (2𝜔𝑠)2𝜔 − 6𝑞𝑄𝑠 + 𝑞𝑄 (31 − 196𝑀/𝑅) sin (2𝜔𝑠)32𝜋𝑚𝑀(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2] .

(B.3)
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As explained in Section 2 the second-order geodesic
deviation, (𝛿2𝑥 = 𝑏𝜇 − Γ𝜇]𝜆𝑛]𝑛𝜆), is given by

𝛿2𝑡 = (𝑛𝑟0)2𝑀(𝜀 − 𝑞𝑄/4𝜋𝑚𝑅)𝑅3 [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − 10𝑄2/3𝑀𝑅)(1 − 2𝑀/𝑅)2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠
+ (2 − 15𝑀/𝑅 + 14𝑀2/𝑅2 − 79𝑄2/6𝑀𝑅) sin (2𝜔𝑠)𝜔 (1 − 2𝑀/𝑅)3 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)
− 6𝑞𝑄𝜔 + 19𝑞𝑄 sin (2𝜔𝑠)32𝜋𝑚𝑀𝜔 (1 − 2𝑀/𝑅)3 (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀R)2] ,

(B.4)

𝛿2𝑟 = (𝑛𝑟0)2𝑀𝑅2 (𝑀/𝑅 − 𝑄2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [(5 − 33𝑀/𝑅 + 90𝑀2/𝑅2 − 72𝑀3/𝑅3 + 5𝑄2/𝑅2 − 5𝑄2/𝑀𝑅)(1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)
+ (−1 + 9𝑀/𝑅 + 33𝑄2/2𝑅2 − 19𝑀2/𝑅2 − (23/2) (𝑀𝑄2/𝑅3) − 8𝑄2/3𝑀𝑅) cos (2𝜔𝑠)(1 − 2𝑀/𝑅 + 𝑄2/𝑅2)
+ 3𝑞𝑄 + 19𝑄𝑞 cos (2𝜔𝑠)32𝜋𝑚𝑀(1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)] ,

(B.5)

𝛿2𝜑 = (𝑛𝑟0)2𝑀𝜔0𝑅3 (𝑀/𝑅 − 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − 10𝑄2/3𝑀𝑅)(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠
+ (5 − 32𝑀/𝑅) sin (2𝜔𝑠)2𝜔 − 6𝑞𝑄𝑠 + 𝑞𝑄 (31 − 196𝑀/𝑅) sin (2𝜔𝑠)32𝜋𝑚𝑀(1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 +Q2/𝑀𝑅)] ,

(B.6)

and, also, the semimajor axis 𝑎 and eccentricity 𝑒 are
𝑎 = 𝑅 + (𝑛𝑟0)2𝑅 [(2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3 + 15𝑄2/𝑅2 − 13𝑄2/3𝑀𝑅 − 235𝑀𝑄2/4𝑅3)(1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2 ] , (B.7)

𝑒
= 𝑛𝑟0 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀R)2𝑅 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2 + ((𝑛𝑟0)2 /𝑅) (2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3 + 15𝑄2/𝑅2 − 13𝑄2/3𝑀𝑅 − 235𝑀𝑄2/4𝑅3) , (B.8)

in which for massive central objects we have neglected all
terms of order 𝑞𝑄/4𝜋𝑚𝑀.
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