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We apply Debbasch proposal to obtain mean metric of coarse graining (statistical ensemble) of quantum perturbed Reissner-
Nordstöm black hole (𝑅𝑁𝐵𝐻). Then we seek its thermodynamic phase transition behavior. Our calculations predict first-order
phase transition which can take Bose-Einstein’s condensation behavior.

1. Introduction

Every observation in any arbitrary system is necessarily finite
which deals with a finite number of measured quantities
with a finite precision. A given system is therefore gener-
ally susceptible of different, equally valid descriptions and
building the bridges between those different descriptions is
the task of statistical physics (see introduction in [1] for
more discussion). Nonlinearity property of Einstein’s metric
equations causes their averaging to be nontrivial. Various
possible ways of averaging the geometry of space time have
already been proposed by [2–8], but none of them seems
fully satisfactory (see section 7 in [1] for full discussion).
Debbasch used an alternative way to averaging Einstein’s
metric equation in [1]. To do so, he chose a general framework
where the mean metric still obeys the equations of general
theory of relativity. In his approach averaging and/or coarse
graining a gravitational field changes the matter content of
space time called “apparent matter” which in cosmologi-
cal context is related to the dark energy (see [9–12]). So
general relativity mean field theory can propose a physical
meaning for unknown cosmological dark energy/matter via
the “apparent matter”. In the Debbasch approach, statisti-
cal ensemble of metric is ensembles of histories and not
ensembles of states. This is different basically with ordinary
statistical mechanics of classical and/or quantum particles.
From the latter point of view, it has been known for a long
time that black holes in asymptotically flat space times do

not admit stable equilibrium states in the canonical ensemble
(see introduction in [13]). But from the former point of
view the Debbasch gives in [1] general proposal to obtain
a mean field theory for the general theory of relativity. In
his model members of the ensembles will be labeled by
the symbol 𝜔 ∈ Ω where Ω is an arbitrary probability
space [14]. To each 𝜔, there are corresponding metric tensor𝑔(𝜔), compatible connections Γ(𝜔), and the Einstein metric
equation (see [1] and section 2 in [10]). All members of
the ensemble correspond to the same macroscopic history
of the space time manifold, in particular to a given same
mean metric 𝑔𝜇](𝑥) = ⟨𝑔𝜇](𝑥, 𝜔)⟩ and corresponding mean
connection Γ𝜇]𝜂 = ⟨Γ𝜇]𝜂(𝑔, 𝜕𝑔, 𝜔)⟩. As application of his model
Debbasch and coworkers considered statistical ensemble of
Schwarzschild black holes as nonvacuum solutions of mean
Einstein metric equation by using Kerr-Schild coordinates𝑅 = 𝑟−𝜔.They calculated nonvanishing temperature ofmean
metric where single Schwarzschild black hole is well known
which has nonvanishing temperature as a vacuum solution
of the Einstein equation. They discussed their results with
special emphasis on their connections with the context of
astrophysical observations [12]. Extreme RNBH with 𝑚 =1 has vanishing temperature (see next section) and regular
Kerr-Schild coordinates 𝑅 = 𝑟 − 𝜔 are not applicable
to obtain mean metric similar to the Schwarzschild one
because the coarse graining space time turns out not to be a
black hole [9]. Hence Chevalier and Debbasch used analytic
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continuation of the Kerr-Schild coordinates as 𝑅 = 𝑟 −𝑖𝜔 to obtain mean metric of extreme classical black hole
in [11]. According to the Debbasch approach we are free
to choose types of coarse graining and/or ensemble space
to obtain mean metric of the space times ensemble under
consideration. We should point that topology of ensemble
space times must be similar to topology of their mean metric
(see [9]) which restrict us to choose an analytic continuation
of Kerr-Schild coordinates for extreme RNBH. In short, with
Debbasch proposal the averaging process does not change
topology between ensemble of the curved space times and
the corresponding mean space time. Precisely, the averaging
process modifies the horizon radius and changes the energy-
momentum tensor of space time but not total energy or mass
of the black holes ensemble. Really the averaging process
just redistributes without any change in the total mass which
means that the total energy of the black holes dose not change
by the coarse graining proposal.

Similar to study of thermodynamic behavior of single
RNBH [15], we seek thermodynamic aspect of mean metric
of nonextreme RNBHs ensemble in this work, by applying
the Debbasch approach to evaluate the mean and/or coarse
graining metric. Organization of the paper is as follows.

In Section 2, we calculate mean metric of ensemble of
RNBHs. In Section 3 we obtain locations of mean metric
horizons. In Section 4 we calculate interior and exterior
horizons entropy, temperature, heat capacity, Gibbs free
energy, and pressure of RNBHs mean metric. In Section 5
we calculate interior and exterior horizons luminosity and
corresponding mass loss equation of quantum perturbed
RN mean metric. Section 6 denotes concluding remark and
discussion.

2. RNBHs Ensemble and Mean Metric

Exterior metric tensor of a single charged, nonrotating,
spherically symmetric body is given by

𝑑𝑠2 = (1 − 2𝑀𝑟 + 𝑒2𝑟2)𝑑𝑡2 − 𝑑𝑟2(1 − 2𝑀/𝑟 + 𝑒2/𝑟2)
− 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑2) .

(1)

This is metric solution of Einstein-Maxwell equation and is
called RNBH in which 𝑀 and 𝑒 are corresponding ADM
mass and electric charge defined in units where 𝑐 = 𝐺 = 1.
Equating 𝑔𝜇]𝜕𝜇𝑟𝜕]𝑟 = 0 for arbitrary spherically symmetric
hypersurface 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, one can obtain apparent (exterior)
horizon radius as 𝑟+ = 𝑀 + √𝑀2 − 𝑒2 and Cauchy (interior)
horizon radius as 𝑟− = 𝑀 − √𝑀2 − 𝑒2 which appear only for0 ≤ (𝑒/𝑀)2 ≤ 1. One can obtain mass independent relation
between 𝑟+ and 𝑟− as 𝑟− = 𝑒2/𝑟+.With particular choice 𝑒 =𝑀 (called extreme and/or Lukewarm RNBH) these horizons
coincide as 𝑟− = 𝑟+ = 𝑀. Clearly the RNBH metric solution
(1) leads to Schwarzschild one by setting 𝑒 = 0 for which we
will have 𝑟+ = 2𝑀 and 𝑟− = 0. Temperature of a single RNBH
can be obtained for interior and exterior horizons as 𝑇± =(1/8𝜋𝑟±)(𝜕𝑟±/𝜕𝑀)−1𝑒 = ±√𝑀2 − 𝑒2/8𝜋(𝑀 ± √𝑀2 − 𝑒2)2 [1]

which reduce to a zero value for extreme (Lukewarm) RNBH
because of𝑀 = 𝑒.They show positive (negative) temperature
for exterior (interior) horizons. Negative temperatures of
systems have physical meaning and happen under particu-
lar conditions. More authors studied conditions where the
physical systems are taken to have negative temperatures.
See [16] for temperatures of interior and exterior horizons
of Kerr-Newman black hole. One can see [17–19] for nega-
tive temperature of nongravitational systems. In the nature,
materials are obtained which have interesting properties like
negative refraction index and reversibility of the Doppler’s
effect, and so the phase and group velocity (velocity of
energy propagation) have opposite singes. In these systems
temperature will have negative values (see [17] and references
therein). Such systems are called dual system (left-handed)
of direct counterpart (right-handed conventional materials).
Absolute temperature is usually bounded to be positive but its
violation is shown in [18] by Braun et al. They showed, under
special conditions, however negative temperatures where
high energy states are more occupied than low energy states.
Such states have been demonstrated in localized systems
with finite, discrete spectra. They used the Bose-Hubbard
Hamiltonian and obtained attractively interacting ensemble
of ultra-cold bosons at negative temperature which are stable
against collapse for arbitrary atom number. Furman et al.
studied in [19] behavior of quantum discord of dipole-dipole
interacting spins in an external magnetic field in the whole
temperature range −∞ < 𝑇 < ∞. They obtained that
negative temperatures, which are introduced to describe
inversions in the population in a finite level system, provide
more favorable conditions for emergence of quantum corre-
lations including entanglement. At negative temperature the
correlations becomemore intense and discord exists between
remove spins being in separated states. According to the
documentation and looking to diagrams of the present work,
one can be convinced that a quantum perturbedmeanmetric
of coarse graining RNBHs will be exhibited finally with a
first-order phase transition and Bose-Einstein condensation
state microscopically. According to the Debbasch approach
[1] ensemble of the nonextremeRNBHs is collection of coarse
graining RNBHs indexed by a 3-dimensional real parameter󳨀→𝜔 ∈ 󳨀→Ω where 󳨀→Ω is the three balls of radius 󳨀→𝑎 as follows:󳨀→Ω = {󳨀→𝜔 ∈ R

3; 𝜔2 ≤ 𝑎2} . (2)

The metric solution (1) is convenient to be rewritten with
Kerr-Schild coordinates (𝜏, 𝑟, 𝜃, 𝜑) by transforming

𝑑𝑡 = 𝑑𝜏 + ℎ (𝑟) 𝑑𝑟1 − ℎ (𝑟) (3)

as follows (see [10–12]):

𝑑𝑠2 = 𝑑𝜏2 − 𝑑󳨀→𝑟 ⋅ 𝑑󳨀→𝑟 − ℎ (𝑟) (𝑑𝜏 − 󳨀→𝑟 ⋅ 𝑑󳨀→𝑟𝑟 )2 (4)

where

ℎ (𝑟) = 2𝑀𝑟 − 𝑒2𝑟2 (5)
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and 𝑟 = |󳨀→𝑟 | is the Euclidean norm of the vector 󳨀→𝑟 .
It should be pointed that all metric solutions of Einstein’s
field equation will have simple form by using Kerr-Schild
coordinates. They are decomposed into the well-known flat
Minkowski background metric 𝜂𝜇] and null vector fields𝐾𝜇 as 𝑔𝜇] = 𝜂𝜇] − 2ℎ(𝑥𝜇)𝐾𝜇𝐾] where 𝐾𝜇𝐾𝜇 = 0 =𝑔𝜇]𝐾𝜇𝐾] = 𝜂𝜇]𝐾𝜇𝐾] and ℎ(𝑥𝜇) is a scalar function (see [20]
and references therein). Now, we must choose a probability
measure. Hence we follow the assumption presented in [11]
and choose uniform probability measure 𝑑p𝜔 in which p is
probability density of this measure with respect to Lebesgue
measure 𝑑3𝜔 as p(𝜔) = 1/𝑉𝑎 with 𝑉𝑎 = (4/3)𝜋𝑎3. Applying
the Kerr-Schild radial coordinate (in case of extreme RNBH
where𝑀 = 𝑒 we must use analytic continuation of the Kerr-
Schild coordinates as 𝑅 = 𝑟 − 𝑖𝜔 (see discussion given in
the introduction)) 󳨀→𝑅(󳨀→𝑟 , 󳨀→𝜔) = 󳨀→𝑟 − 󳨀→𝜔 , we extend single
RNBH metric (4) to obtain metric of coarse graining and/or
statistical ensemble of RNBHs as follows:

𝑑𝑠2 = 𝑑𝜏2 − 𝑑󳨀→𝑟 ⋅ 𝑑󳨀→𝑟 − ℎ (𝑅)(𝑑𝜏 − 󳨀→𝑅.𝑑󳨀→𝑟𝑅 )2 (6)

where ℎ(𝑅) = 2𝑀/𝑅 − 𝑒2/𝑅2 and 𝑅 = √󳨀→𝑅 ⋅ 󳨀→𝑅. Using
perturbation series expansion method and averaging the
metric (6) against 󳨀→𝜔 we obtain mean metric of (6) such that
(see [21] for details of calculations)

⟨𝑑𝑠2⟩
𝜔
= 𝑏1 (𝑟) 𝑑𝜏2 + 𝑏2 (𝑟) 𝑑󳨀→𝑟 ⋅ 𝑑󳨀→𝑟 + 𝑏3 (𝑟) 𝑑𝑟2
+ 𝑏4 (𝑟) 𝑑𝑟𝑑𝜏 (7)

where |𝑒| < 𝑀, 𝑑󳨀→𝑟 ⋅ 𝑑󳨀→𝑟 = 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2𝜃𝑑𝜑2),
𝑏1 (𝑟) = 1 − 2𝑀𝑟 + 𝑒2𝑟2 (1 + 𝑎25𝑟2) , (8)

𝑏2 (𝑟) = −1 − 2𝑎2𝑀5𝑟3 + 𝑎2𝑒25𝑟4 , (9)

𝑏3 (𝑟) = −2𝑀𝑟 (1 − 3𝑎25𝑟2 ) + 𝑒
2

𝑟2 (1 − 2𝑎
2

5𝑟2 ) , (10)

and

𝑏4 (𝑟) = 4𝑀𝑟 (1 − 𝑎25𝑟2) − 2𝑒
2

𝑟2 . (11)

It is simple to show that the mean metric (7) reduces to a
single RNBH metric (4) by setting 𝑎 = 0. We can rewrite
the mean metric (7) in the static frame by defining the
Schwarzschild coordinates. To do so, we first choose a suitable
local frame with coordinates (𝑡, 𝜌, 𝜃, 𝜑) as

𝜌 (𝑟) = 𝑟√−𝑏2 (𝑟) (12)

and

𝑑𝜏 = 𝑑𝑡 − 𝛼 (𝜌) 𝑑𝜌 (13)

where

𝛼 (𝜌) = 𝑏4 (𝑟)2𝑏1 (𝑟) (𝜕𝜌𝜕𝑟)
−1 . (14)

In the latter case the mean metric (7) reads

⟨𝑑𝑠2⟩ = 𝐹 (𝜌) 𝑑𝜏2 − 𝑓 (𝜌) 𝑑𝜌2
− 𝜌2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑2) (15)

where we defined

𝐹 (𝜌) = 1 − 2𝑀𝑟 (𝜌) + 𝑒2𝑟2 (𝜌) (1 + 𝑎25𝑟2 (𝜌)) (16)

and

𝑓 (𝜌) = 1𝐹 (𝜌) (1 − 𝑒2𝑎25𝑟4 (𝜌)) . (17)

We now seek location of mean metric horizons.

3. Horizons Location for Mean Metric

One can obtain event horizon location of themeanmetric (15)
by solving 𝐹(𝜌𝐸𝐻) = 0 and location of apparent (interior and
exterior) horizons by solving null condition 𝑔𝜇]𝜕𝜇𝜌𝜕]𝜌 = 0
which leads to the equation 𝐹(𝜌𝐴𝐻) = 0 such that

1 − 2𝑀𝑟𝐻 + 𝑒2𝑟2𝐻 + 𝑒
2𝑎25𝑟4𝐻 = 0. (18)

The above equation has not exactly analytic solution for 𝑎 ̸= 0
but for small 𝑎 we can use perturbation series expansion to
evaluate the event horizon location. To do so we first define𝜖 = 𝑎/𝑟𝐻 for which the horizon equation (18) can be written
as 𝑟2𝐻 − 2𝑀𝑟𝐻 + 𝑒2(1 + 𝜖2) = 0. The latter equation has
a real solution as 𝑟𝐻 = 𝑀{1 + √1 − (𝑒2/𝑀2)(1 + 𝜖2/5)}
for (𝑒2/𝑀2)(1 + 𝜖2/5) < 1. We know that for a single RN
black hole 𝑒/𝑀 < 1 and so the condition (𝑒2/𝑀2)(1 +𝜖2/5) < 1 reads 𝜖 < 1(𝑎 < 𝑟𝐻) for which horizon of the
ensemble of statistical RN black holes is not destructed by
raising 0 < 𝜖 < 1 if we want to apply perturbation series
expansion method to obtain asymptotically behavior of the
event horizon solution versus the parameters (𝑎, 𝑒,𝑀).Thus
we must obtain perturbation series expansion form of the
event horizon but for 𝑎 < 𝑟𝐻 as follows. Inserting

𝑟±𝐻 = 𝑟±0 + 𝑎𝑟±1 + 𝑎2𝑟±2 + 𝑂 (𝑎3) (19)

and solving (18) as order by order, we obtain

𝑟±0 = 𝑀 ± √𝑀2 − 𝑒2,
𝑟±1 = 0,
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𝑟±2 = ∓𝑒2
10√𝑀2 − 𝑒2 (𝑀 ± √𝑀2 − 𝑒2)2

(20)

where 𝑟+𝐻 and 𝑟−𝐻 denote apparent exterior and Cauchy (inte-
rior) horizon radiuses of the mean metric (7), respectively.
Inserting (9) and (19), one can obtain perturbation series
expansion of (12) which up to terms in order of 𝑂(𝑎3)
becomes

𝜌𝐻 = 𝜌±0 + 𝑎2𝜌±2 (21)
where we defined 𝜌±0 = 𝑟±0 ,

𝜌±2 = 𝑟±2 + 2𝑀𝑟±0 − 𝑒210𝑟±0 3 . (22)

Area equation of apparent horizon hypersurface of the
spherically symmetric static mean metric (15) is defined by𝐴 = 4𝜋𝜌2𝐻 which up to terms in order of 𝑂(𝑎3) reads

𝐴± = 𝐴±0 + 𝑎2𝐴±2 (23)
where we defined𝐴±0 = 4𝜋 (𝑟±0 )2 ,

𝐴±2 = 8𝜋[𝑟±0 𝑟±2 + 110𝑟±0 (2𝑀 − 𝑒2𝑟±0 )] .
(24)

According to Bekenstein-Hawking entropy theorem we have
the result that 𝐴+(𝐴−) given by (23) will be entropy function
of exterior (interior) horizon of the mean metric (15). Black
holes containing multiple horizons have several correspond-
ing temperatures. Such a black hole will be in-equilibrium
thermally throughout the space time where the temperature
has a gradient between the horizons. Thermal equilibrium is
possible only if horizon radiuses and so the corresponding
temperatures become equal (see, for instance, [22, 23]). The
latter situations happen for an extreme RNBH where𝑀 = 𝑒
and so 𝑟+𝐻 = 𝑟−𝐻. We now calculate thermodynamic charac-
teristics of interior and exterior horizons of the nonextreme
mean metric of RNBHs statistical ensemble.

4. Mean Metric Thermodynamics

In the next section we will consider massless, chargeless
quantum scalar field effects on luminosity of the quantum
perturbed coarse graining RNBHs where its electric charge
becomes invariant quantity. Hence it is useful to define
dimensionless black hole mass𝑚 = 𝑀/𝑒 and ensemble factor𝛿 = 𝑎/𝑒 in what follows. In the latter case exterior horizon
entropy of mean metric (15) can be obtained up to terms in
order of 𝑂(𝛿3) as follows:
𝑆+ (𝑚, 𝛿) = (𝑚 + √𝑚2 − 1)2

+ 𝛿25 [[
2 (𝑚2 − 1)3/2 + 𝑚(2𝑚2 − 3)
√𝑚2 − 1 (𝑚 + √𝑚2 − 1)2 ]]

(25)

and its interior horizon entropy becomes

𝑆− (𝑚, 𝛿) = (𝑚 − √𝑚2 − 1)2

+ 𝛿25 [[
2 (𝑚2 − 1)3/2 − 𝑚(2𝑚2 − 3)
√𝑚2 − 1 (𝑚 − √𝑚2 − 1)2 ]]

(26)

where 0 < 𝛿 < 1 and
𝑆± = 𝐴±4𝜋𝑒2 > 0. (27)

Diagrams of entropies (25) and (26) are plotted versus 𝑚 in
Figure 4. They show that 𝑆± > 0 for a single RNBH (𝛿 = 0)
in limits 𝑚 󳨀→ 1 but for an ensemble of RNBHs for which
we use 𝛿 = 0.9, they reach infinity 𝑆± 󳨀→ ∓∞. In fact for
physical systems the entropy itself must be positive function
but its variations may reach some negative values. Hence
we define difference between interior horizon entropy and
exterior horizon entropy as

Δ𝑆 = 𝑆+ − 𝑆− = 4𝑚√𝑚2 − 1
+ 2𝛿25 [𝑚 (2𝑚2 − 1) (2𝑚2 − 3)√𝑚2 − 1
− 4𝑚 (𝑚2 − 1)3/2]

(28)

and total entropy such as follows:

𝑆𝑡𝑜𝑡 = 𝑆+ + 𝑆− = 4𝑚2 − 2 + 4𝛿25 (4𝑚4 − 6𝑚2 + 1) . (29)

Diagrams of Δ𝑆 and 𝑆𝑡𝑜𝑡 are plotted in Figure 3. Fortunately
these diagrams show that, for a single RNBH where 𝛿 =0, we will have Δ𝑆 > 0 by decreasing 𝑚 󳨀→ 1 and𝑆𝑡𝑜𝑡 > 0 but for ensemble of RNBHs with 𝛿 = 0.9 we
have Δ𝑆 < 0 while 𝑆𝑡𝑜𝑡 > 0. Hence Δ𝑆 and 𝑆𝑡𝑜𝑡 should be
considered as physical entropies of coarse graining RNBHs.
Decrease of entropy causes some negative temperatures (see
Figure 2) in thermodynamic systems containing bounded
energy levels. In the latter case there is a critical temperature
for which the system exhibits a phase transition reaching
Bose-Einstein condensation state microscopically. In ther-
modynamics, increase of entropy Δ𝑆 > 0 means an increase
of disorder or randomness in natural systems. It measures
heat transfer of the system for which heat flows naturally
from a warmer to a cooler substance. Decrease of entropyΔ𝑆 < 0 means an increase of orderliness or organization
of microstates of a system. To do so the substance of a
system must loose heat in the transfer process. Individual
systems can experience negative entropy, but overall, natural
processes in the universe trend toward positive entropy.
Negative entropy was first introduced for living things by
Ervin Schrödinger in 1944 as the reverse concept of entropy,
to describe the order that can emerge from chaos [24]. The
heat generated by computations in the information theory
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is other applications for negative entropy concept (see [25–
28] for more discussions). However we consider Δ𝑆 and𝑆𝑡𝑜𝑡 to be physical entropies of RNBHs statistical ensemble
containing two horizons which is in accord with positivity
condition of the Bekenstein-Hawking entropy theorem. Our
coarse graining RNBHs can be considered as a two-level
thermodynamical system with upper bound finite energy𝑀
because it has two dual (interior and exterior) horizons. We
now calculate exterior (interior) horizon temperature 𝑇+(𝑇−)
of the RNBHs mean metric (15) as follows:

𝑇∗± = (4𝜋𝑒) 𝑇± = 1(𝜕𝑆±/𝜕𝑚)𝛿 = ±
12 √𝑚2 − 1
(𝑚 ± √𝑚2 − 1)2

+ 𝛿260 [[
4𝑚 − 2𝑚3 − 2𝑚5 ∓ √𝑚2 − 1 (2𝑚4 + 3𝑚2 − 3)

(𝑚2 − 1)5/6 (𝑚 ± √𝑚2 − 1)6 ]]

(30)

Their diagrams are plotted against𝑚 in Figure 2 for 𝛿 = 0; 0.9.
For 𝑚 ≫ 1 we see that 𝑇∗− (𝑇∗+ ) has some negative (positive)

values and their sign is changed when 𝑚 󳨀→ 1. We also
plotted diagram for 𝑇∗± versus Δ𝑇∗ = 𝑇∗+ − 𝑇∗− in Figure 2.
They show that 𝑇∗− < 0 for Δ𝑇∗ > 0 reaching zero value
at Δ𝑇∗ = 0 for 𝛿 = 0, 0.9. While 𝑇∗+ > 0(𝑇∗+ < 0),Δ𝑇∗ 󳨀→ 0+ for 𝛿 = 0(0.9) after that to obtain a finite
positive maximum value. This maximum has smaller value
for 𝛿 = 0.9 with respect to situations where we choose𝛿 = 0. In ordinary statistical physics, negative temperatures
are taken into account when the system has upper bound
(maximum finite) energy for which entropy is continuously
increasing but the energy and temperature decrease and vice
versa. In the latter case the system reaches Bose-Einstein
condensation state microscopically. Energy upper bound of
our system is its total mass 𝑀 for which we have 𝑚 > 1.
Regarding quantum matter effects on mean metric we will
show in Section 5 that mass of mean metric decreases finally
as𝑚𝑓𝑖𝑛𝑎𝑙 = 1 (see Figure 1). Bose-Einstein condensation state
needs a phase transition which happens when sign of heat
capacity is changed. Hence we now calculate interior and
exterior horizon of mean metric heat capacity 𝐶∗± which up
to terms in order of 𝑂(𝛿3), at constant electric charge 𝑒 and
ensemble radius 𝑎, become

𝐶±∗ = 𝐶±𝛿4𝜋𝑒2 = (𝑇± 𝜕𝑆±𝜕𝑇±)𝛿 = (
𝜕𝑇∗±𝜕𝑚 )−1

𝛿

= −2√𝑚2 − 1 (𝑚 ± √𝑚2 − 1)22√𝑚2 − 1 ∓ 𝑚 + 2𝛿245 [[
2𝑚√𝑚2 − 1 (4𝑚4 + 12𝑚2 − 15) ± 8𝑚6 ± 20𝑚4 ∓ 49𝑚2 ± 21

(𝑚2 − 2 ± 𝑚√𝑚2 − 1)2 (𝑚2 − 1)5/6 ]] .
(31)

Their diagrams are plotted against 𝑚 in Figure 5. They show
that sign of 𝐶∗+ is changed at 𝑚𝑐 = 1.15(1.2) for 𝛿 = 0(0.9)
but sign of 𝐶∗− is changed at 𝑚 = 1 for 𝛿 = 0, 0.9. We plot
also diagrams of 𝐶∗± versus Δ𝑇∗ in Figure 5. They show a
changing of sign for 𝐶∗+ when Δ𝑇∗ 󳨀→ 0 and 𝛿 = 0, 0.9
but not for 𝐶∗−. In case 𝛿 = 0.9 we see 𝐶∗− < 0 for Δ𝑇∗ >0 but its absolute value exhibits a minimum value. WhenΔ𝑇∗ 󳨀→ 0 we see 𝐶∗− which decreases monotonically to
negative infinite value for 𝛿 = 0. Changing of sign of exterior
horizon heat capacity means that a phase transition happens
when the quantum perturbed RNBHs ensemble reaches its
stable state with minimum mass 𝑚𝑓𝑖𝑛𝑎𝑙 = 1. To determine
order kind of this phase transition we should study behavior
of the corresponding Gibbs free energy as follows.

Exterior and interior horizon Gibbs free energies are
defined by

𝐺± = 𝑀 − 𝑇±𝐴± − Φ± (32)

where entropy 𝐴± is given by (24) and electric potential Φ±
is defined by

Φ± = −𝑇± (𝜕𝐴±𝜕𝑒 )𝑎,𝑀 . (33)

Inserting𝑀 = 𝑒𝑚,𝐴± = 4𝜋𝑒2𝑆±, and (30), the above Gibbs
energy equation reads

𝐺∗± = 𝐺±𝑒 = 𝑚 − 𝑇∗±𝑆± − 8𝜋𝑆± − 4𝜋𝑒𝜕𝑆±𝜕𝑒 (34)

in which we have

𝑒𝜕𝑆±𝜕𝑒 = ∓2𝑚 (𝑚 ± √𝑚2 − 1)2√𝑚2 − 1
− 𝛿2
15 (𝑚2 − 1)11/6 (𝑚 ± √𝑚2 − 1)2 × [28𝑚7

− 75𝑚5 + 74𝑚3 − 27𝑚
± √𝑚2 − 1 (26𝑚6 − 61𝑚4 + 47𝑚2 − 12)] .

(35)

We plot diagrams of the above equations against 𝑚 in
Figure 6. They show that 𝐺∗− has minimum zero value at𝑚 = 1 but 𝐺∗+ raises to +∞ by decreasing 𝑚 󳨀→ 1 for𝛿 = 0.9. In case 𝛿 = 0, we see 𝐺∗± 󳨀→ ±∞ when 𝑚 󳨀→ 1.
Furthermore we plot diagrams of 𝐺∗± versus Δ𝑇∗ in Figure 6.
We see 𝐺∗− 󳨀→ −∞ when Δ𝑇∗ 󳨀→ 0 for 𝛿 = 0 but 𝐺∗− 󳨀→ 0+
for 𝛿 = 0. 𝐺∗+ decreases to a positive minimum value by
decreasingΔ𝑇∗ 󳨀→ 0 and then reaches positive infinite value.
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The latter behavior shows changing the sign of first derivative
of 𝐺∗+ when decreases 𝑚 and/or Δ𝑇∗ which means that the
phase transition is first order.

One of other suitable quantities which should be calcu-
lated is pressure of black hole microparticles which coincide
with the interior horizon as follows. If a quantum particle
is collapsed inside of the interior (exterior) horizon then its
de Broglie wave length must be at least 𝜆− ≈ 2𝜌−(𝜆+ ≈

2𝜌+).We use de Broglie quantization condition on quantum
particles as 𝑝± = ℎ/𝜆± where ℎ is Planck constant and 𝑝±
is momentum of in-falling quantum particles inside of the
horizons. In Plank units where 𝑐 = ℎ = 𝐺 = 1 we can write

Δ𝑝 = 𝑝− − 𝑝+ = 12 ( 1𝜌− − 1𝜌+) (36)
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Figure 2: Diagram of 𝑇∗± is plotted against𝑚 and Δ𝑇∗ for 𝛿 = 0 and 𝛿 = 0.9.

in whichΔ𝑝 is difference of momentum of quantum particles
which move from exterior horizon 𝜌+ to interior 𝜌− horizon.
For 𝑐 = 1 they move for durations Δ𝑡 = 𝜌+ − 𝜌−.We now use
the latter assumptions to rewrite Newton’s second law as

𝐹 = Δ𝑝Δ𝑡 = 12𝜌+𝜌− . (37)

𝐹 is dimensionless force which affects interior horizon sur-
face. When the system becomes stable mechanically, then 𝐹

must be balanced by the electric force of the systemdefined by𝐹𝐸 = 𝑒((Φ−−Φ+)/(𝜌+−𝜌−)). Spherically symmetric condition
of the system causes choosing some radial motions for
quantum particles located inside of the statistical ensemble of
RNBHs. However one can define pressure of moving charged
quantum particle on the interior horizon as

𝑃− = 𝐹4𝜋𝜌2− = 18𝜋𝜌+𝜌3− (38)
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Figure 3: Diagram of Δ𝑆 and 𝑆𝑡𝑜𝑡 is plotted against𝑚 and Δ𝑇∗ for 𝛿 = 0 and 𝛿 = 0.9.
which by inserting (22) and using some simple calculations
reads

𝑃∗− (𝑚) = 8𝜋𝑒4𝑃− = (𝑚 − √𝑚2 − 1)−2{{{1 +
𝛿25

× [[
24𝑚5 − 26𝑚3 + 2𝑚2 − 6𝑚 − 2

(𝑚 − √𝑚2 − 1)3

− (24𝑚6 − 38𝑚4 + 2𝑚3 + 16𝑚2 − 3𝑚 − 2)√𝑚2 − 1 (𝑚 − √𝑚2 − 1)3 ]]
}}} .

(39)

We plot diagram of the above pressure in Figure 8. They
show that 𝑃∗− > 0(< 0) in case 𝛿 = 0(0.9) for all values
of Δ𝑇∗ > 0. Diagrams show that 𝑃∗− is vanishing whenΔ𝑇∗ 󳨀→ 0. Also we plot diagram for 𝑃∗− versus 𝑚. It shows
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Figure 4: Diagram of 𝑆± is plotted against𝑚 and Δ𝑇∗ for 𝛿 = 0 and 𝛿 = 0.9.
𝑃∗− 󳨀→ 0+ for 𝛿 = 0. In case where 𝛿 = 0.9 one can
see 𝑃∗− < 0 when 𝑚 󳨀→ 1 for 𝑚 > 1 but 𝑃∗− 󳨀→ +∞.
The latter results predict dark matter behavior of the interior
horizon matter counterpart where for positive mass 𝑚 > 1
there is some “negative” pressure. How can mass of mean
metric RNBHs decrease? Dynamically this is possible if we
consider corrections of quantummatter field interacting with
the mean metric of RNBHs as follows. This makes the mean
metric of RNBHs unstable quantummechanically. In the next
section we assume interaction of the mean metric of RNBHs

statistical ensemble with massless, chargeless quantum scalar
field for which 𝑒 will be invariant of the system and so there
is not any electromagnetic radiation. In other words there
will be only mass interaction between quantum scalar field
and ensemble of the RNBHs.They reduce usually to the well-
knownHawking thermal radiation of the quantumperturbed
mean metric which is causing mass loss of the mean RNBHs.
For such a quantum mechanically unstable mean metric we
now calculate its luminosity, mass loss process, and switching
off effect.
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5. Mean Quantum RNBH Mass Loss

We applied massless, chargeless quantum scalar field Hawk-
ing thermal radiation effects on single quantum unstable
RNBH and calculated time dependence mass loss function
in [15]. We obtained that the evaporating quantum perturbed
RNBH exhibits switching off effect before its mass disappears
completely. It should be pointed that electric charge of the
black hole is invariant of the system because there is no

electromagnetic interaction between its electric charge and
chargeless quantum matter scalar field. Thus mass of the
RNBH decreases to reach nonvanishing remnant stable mini
Lukewarm black hole with 𝑚𝑓𝑖𝑛𝑎𝑙 = 1. In other words its
luminosity is eliminatedwhile itsmass is not eliminated com-
pletely (see figures 9, 10, and 11 given in [15]). Here we study
mass loss and switching off effect of quantumperturbedmean
metric (15).This is a dynamical approach to describe that how
mean metric of RNBHs statistical ensemble exhibits a phase



Advances in High Energy Physics 11

=0 =0.9

 = 0  = 0.9

 = 0  = 0.9
G

∗

-G
∗

-

G
∗

-

G
∗

+G
∗

+

G
∗

+ G
∗

- G
∗

+

Δ４
∗Δ４

∗

Δ４
∗

Δ４
∗

−40

−20

0

20

40

60

80

20 30 4010 50 150100 200

20 30 4010

50 150100 200

200

1000

800

600

400

2000

1500

1000

500

200

1000

800

600

400

−300

−200

−100

0

100

200

300

400

500

−30

−25

−20

−15

−5

−10

2 3 4 51
m

1.2 1.4 1.6 1.8 2.0 2.2 2.41.0

m

Figure 6: Diagram of interior and exterior horizons Gibbs free energies 𝐺∗± is plotted against𝑚 and Δ𝑇∗ for 𝛿 = 0 and 𝛿 = 0.9.
transition leading to a possible Bose-Einstein condensation
state microscopically. Line element of the evaporating mean
metric (15) can be written near the exterior horizon as Vaida
form (see, for instance, [29]):

𝑑𝑠2 ≃ (1 − 𝑟+ (V)𝑟 ) 𝑑V2 − 2𝑑V𝑑𝑟
− 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜑2) (40)

with the associated stress energy tensor

⟨𝑇̂𝑞𝑢𝑎𝑛𝑡𝜇] ⟩
𝑟𝑒𝑛
= 14𝜋𝑟2 𝑑𝑟+ (V)𝑑V 𝛿𝜇V𝛿]V (41)

where (V, 𝑟) is advance Eddington-Finkelstein coordinates
system. Subscript 𝑟𝑒𝑛 denotes the word 𝑅𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛,
and ⟨⟩ denotes expectation value of quantum matter scalar
field stress tensor operator evaluated in its vacuum state. The
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Figure 7: Diagram of exterior and interior horizons luminosity 𝐿∗± is plotted against𝑚 and Δ𝑇∗ for 𝛿 = 0 and 0.9.

black hole luminosity is defined by the following equation
from point of view of distant observer located in 𝑟.

𝐿 (𝑟, V) = 4𝜋𝑟2 ⟨𝑇̂𝑟V⟩𝑞𝑢𝑎𝑛𝑡𝑟𝑒𝑛 . (42)

Applying (40) and (41), (42) becomes

𝐿 = −12 𝑑𝑟+ (V)𝑑V (43)
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where negative sign describes inward flux of negative energy
across the horizon. This causes the mean metric horizon
of RNBHs statistical ensemble to shrink. In the latter case
quantum particles of matter content of the black hole are in
high energy state and so one can assume that the quantum
black hole behaves as a black body radiation of which
luminosity is defined by well-known Stefan-Boltzman law as
follows:

𝐿 = 𝜎𝑆𝐵𝐴𝑇4 (44)
where 𝐴 is surface area of the black body and 𝑇 is its
temperature. 𝜎𝑆𝐵 = 5.67 × 10−8(𝐽/(𝑚2 × ∘𝐾4 × 𝑆𝑒𝑐)) is Stefan-
Boltzman coupling constant of which dimensions become as(𝑙𝑒𝑛𝑔𝑡ℎ)2 in units 𝐺 = 𝑐 = 1. If (44) satisfies (43), then we
can obtain mass loss equation of the mean metric of RNBHs
statistical ensemble such that𝑑𝑟+ (V)𝑑V = −2𝜎𝑆𝐵𝜉𝐴+ (V) 𝑇4+ (V) (45)

where the normalization constant 𝜉 depends linearity on the
number of massless, chargeless quantum matter fields and
will control the rate of evaporation. Inserting (27) one can
show that the luminosity (44) for RNBHs mean metric (15)
becomes

𝐿∗+ (𝑚) = (4𝜋)3 𝑒2𝜎𝑆𝐵 𝐿 = 𝑆+ (𝑚) 𝑇∗4+ (𝑚) (46)

where 𝑆+(𝑚) and 𝑇∗+ (𝑚) should be inserted from (25) and
(30), respectively. Applying (19), (20), (21), (22), (27), and
some simple calculations, we can show that the mean mass
loss equation (45) for RNBHs mean metric (15) reads

ΔV∗ = V∗ (𝑚) − V∗∞ = −12 ∫
1

𝑚
(𝑑𝑟+𝑑𝜌+) 𝑑𝑚𝑆3/2+ 𝑇∗+ 5 (47)
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where we used (19), (20), (21), (22), (27), 𝛿 = 𝑎/𝑒, 𝑚 = 𝑀/𝑒,
and 𝜌+ = 𝑒√𝑆+ to calculate 𝑑𝑟+/𝑑𝜌+ which up to terms in
order of 𝑂(𝛿3) become

𝑑𝑟+𝑑𝜌+
= 1
+ 𝛿25 ( 2

(𝑚 + √𝑚2 − 1)3 −
3

(𝑚 + √𝑚2 − 1)4) .
(48)

V∗∞ = V∗(1) given in (47) is integral constant for which evap-
orating mean mass of RNBHs statistical ensemble reaches
its final value as 𝑚𝑓𝑖𝑛𝑎𝑙 = 1. Also we defined dimensionless
advance Eddington-Finkelstein time coordinate V∗ as follows:

V∗

V
= 2𝜉𝜎𝑆𝐵(4𝜋𝑒)3 . (49)

When exterior horizon of quantum evaporating RNBHs
mean metric reduces to scale of its interior horizon as𝑟+(V) 󳨀→ 𝑟− then one can use similar equations for
luminosity and mass loss equations (46) and (47) for interior
horizon as follows:

𝐿∗− (𝑚) = (4𝜋)3 𝑒2𝜎𝑆𝐵 𝐿 = 𝑆− (𝑚) 𝑇∗4− (𝑚) (50)

ΔV∗ = V∗ (𝑚) − V∗∞

= −12 ∫
1

𝑚
(𝑑𝑟−𝑑𝜌−)(𝑑𝑆−𝑑𝑚) 𝑑𝑚𝑆3/2− 𝑇∗− 4

(51)

where

𝑑𝑟−𝑑𝜌−
= 1
+ 𝛿25 ( 2

(𝑚 − √𝑚2 − 1)3 −
3

(𝑚 − √𝑚2 − 1)4) .
(52)

Diagrams of the luminosities (46) and (50) and the evapo-
rating mean RNBHs mass loss equations (47) and (51) are
plotted versus mass parameter𝑚 in Figure 7. They show that
evaporating quantum unstable mean mass of RNBHs final
state reaches remnant stable cold mini Lukewarm RNBH
with final mass 𝑚𝑓𝑖𝑛𝑎𝑙 = 1 where its causal singularity
is still covered by its shrunken horizon and its luminosity
reaches zero value. We see that invariant conditions on
the black hole electric charge 𝑒 causes the Penrose cosmic
censorship hypothesis to be valid while the black hole metric
is evaporated where the casual singularity of mean metric
(15) defined by 𝜌 = 0 is still covered by their smallest scale
horizons hypersurface with no naked singularity.

6. Summary and Discussion

According to the Debbasch approach we calculated mean
metric of RNBHs statistical ensemble to obtain locations of
interior and exterior horizons. We calculated corresponding
entropy, temperature, heat capacity, Gibbs free energy, and
pressure. At last section of the paper we considered interac-
tion of massless, chargeless quantum scalar matter field on
quantum perturbed mean metric of coarse graining RNBHs.
Our mathematical calculations predict evaporation of the
mean metric which reduces to a remnant stable mini black
hole metric with nonvanishing mass. Before the evaporation
reaches its final state, the mean metric exhibits a first-
order phase transition and Bose-Einstein condensation state
happens microscopically. Our results approve outputs of the
published work [15] qualitatively in which the author studied
thermodynamic behavior of a single RN black hole.
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