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Considering the possibility of ‘renormalization’ of the gravitational constant on the horizon, leading to a dependence on the level of
the associated Chern-Simons theory, a rescaled area spectrum is proposed for the nonrotating black hole horizon in loop quantum
gravity. The statistical mechanical calculation leading to the entropy provides a unique choice of the rescaling function for which the
Bekenstein-Hawking area law is yielded without the need to choose the Barbero-Immirzi parameter (y). yis determined, rather than
being chosen, by studying the limit in which the ‘renormalized’ gravitational constant on the horizon asymptotically approaches

the ‘bare’ value. The possible physical dynamics behind the ‘renormalization’ is discussed.

1. Introduction

Loop quantum gravity (LQG) provides a platform for the
calculation of entropy for nonrotating (assumed henceforth)
black holes from the first principles, albeit in the kinematic
framework [1]. The main criticism of this approach has been
the necessity to choose a particular value of the Barbero-
Immirzi parameter (y), which is a dimensionless constant
that characterizes the family of inequivalent kinematic quan-
tization sectors of LQG, to obtain the Bekenstein-Hawking
area law (BHAL) [2]. If the derivation is correct, then it is
expected that one should get the BHAL without having to
choose y. As it appears, the full knowledge of the dynamics of
LQG, the horizon degrees of freedom and the correct semi-
classical limit of the theory are required to achieve this goal
[2], which, unfortunately, does not seem to become available
in near future. Nonetheless, the kinematic framework holds
the potential to give us the hints towards the correct physical
elements that give rise to the black hole entropy, which in
turn may lead the path towards understanding the underlying
dynamics. Here, I shall point out that there is a possibility
of the involvement of a ‘renormalization’” of the gravitational
constant on the horizon and incorporation of this effect in
the entropy calculation leads us to the BHAL from LQG
without having to choose y. Since I shall base my arguments

on analogy, all the words associated with renormalization will
appear in quotes. I shall heuristically argue that the quantum
field theoretic structure that effectively describes the horizon
degrees of freedom suggests that there is a possibility for a
rescaled area spectrum to be used for the black hole horizon in
LQG due to the ‘renormalization’ of the gravitational constant
on the horizon. Further, the calculation of entropy with this
rescaled area spectrum provides us with the unique rescaling
function that leads to the BHAL without having to choose
y. The value of y is determined, irrespective of obtaining
the BHAL, by studying how the ‘renormalized’ gravitational
constant on the horizon should asymptotically approach its
‘bare’ value in a limit that can be viewed as the ‘fixed point’ of
the ‘renormalization group flow’ on the horizon. The novelty
of this, albeit heuristic, work lies in the fact that the value of
y is now determined by a physical consistency requirement
rather than being chosen just to match a desired result.
Further, it appears that a ‘screening’ effect possibly is the
physical cause that underlies the ‘renormalization’ procedure.

2. Motivation

The entire procedure of the entropy calculation for black
holes in LQG consists of the following steps:
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(1) Horizon field dynamics: the effective quantum field
dynamics on the horizon (of topology S* x R) is governed
by a quantum Chern-Simons (CS) theory on a punctured 2-
sphere and these punctures act as point-like sources coupled
to the CS field strength [1]. The Hilbert space of this theory
provides the state space of the horizon degrees of freedom
that give rise to the entropy [1, 3, 4].

(2) Spectrum of the source: consider any arbitrary geo-
metric 2-surface that is topologically S*. The quantum area
of such a surface, in LQG, is given by 87yG ¥ ", V7, + 1)
(setting i = ¢ = 1) and any j can take values like 0,1/2,
1,-++,00. ji, fp > jy are the quantum numbers carried
by the intersection points (punctures) of the spin network
edges with that 2-surface, N being the total number of
punctures [5]. This is the same area spectrum that is used
during the entropy calculation for black holes, with a crucial
modification due to the interplay between quantum geometry
and the CS theory on the horizon, that j can take values like
1/2,1,--- ,k/2, where k :== A_/4myG, A_ being the classical
area of the black hole [1]. Hence, the contribution from an
individual puncture (point-like source of the CS theory on
the horizon) is 8wyG+/j(j + 1) with j € {1/2,1,3/2,--- , k/2}.

(3) Statistical mechanics: having the estimate of the
microstate count from the first step and the area spectrum
of the black hole from LQG in the second step, the statistical
mechanics is applied to calculate the entropy.

Now, let me focus on the second step. It implies, in
principle, the quantum area of an arbitrary geometric 2-
surface of topology S” can be infinite, irrespective of the
classical area of the surface. So, it is expected on physical
grounds that this should not be the case when the concerned
2-surface is that of a physical object and the value of j should
acquire an upper cut-off provided by the underlying physics
associated with the surface of the physical object. This is
exactly what happens for the black hole horizon. The value
of j acquires an upper bound k/2, where the k is the level
of the CS theory associated with the horizon; i.e., the first
step plays a crucial role. Therefore, the theory governing the
physics associated with the horizon naturally provides this
upper bound. This is a result which is already manifested
from the LQG kinematics and the effective horizon theory.
However, the lack of knowledge about the full dynamics of
a quantum black hole in LQG leaves room for some physics,
associated with the horizon degrees of freedom contributing
to the entropy of a black hole, which may be missing in the
kinematics. As I shall argue, the information that is already
available from the kinematics (the first step), indeed, hints
towards such a possibility.

The field equations on a black hole horizon are that of a
CS theory coupled to sources:

where F is the curvature of the CS gauge fields on the horizon
and X are the sources from the bulk. In the quantum theory,
the source X is nonzero only at the punctures. Effectively,
the theory on the horizon is a quantum CS theory coupled
to point-like sources on a 2-sphere. The spectrum associated
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with a single source is calculated for an arbitrary 2-sphere
where there is no coupling with any field strength and it is

given by
a;= 8ryG[j (j + 1). (2)

So, these punctures on an arbitrary 2-sphere are like ‘free’
excitations and the spectrum in (2) can be regarded as ‘bare’
spectrum. However, these ‘free’ excitations get coupled to the
CS field strength in case the 2-sphere is a cross-section of a
black hole horizon.

Now, in quantum field theory (QFT), the physical param-
eters like mass, charge, etc. associated with free particles get
renormalized due to their coupling with fields, consequently
affecting the mode spectrum. Analogously, in the present
scenario, there is a possibility of yG in (2) (since y and
G always appear as a product in the kinematics of LQG,
one should consider the ‘renormalization’ of yG rather
than G alone [6]), which can be viewed as the “mode
spectrum” for the sources [7], getting ‘renormalized’ due to
the coupling with the CS field strength. This ‘renormalized’
G, say G, should depend on k, which is the cut-off for the
allowed values of 2j that appears naturally in the theory on
the horizon resulting from its gauge invariance [1]. Since
the physical process involved with this ‘renormalization’ is
associated with the quantum theory on the horizon, this G can
only affect the microscopic physics localized on the horizon.

Although this heuristic ‘renormalization’ argument is
only at the level of an analogy made from a QFT viewpoint,
the possibility of the scenario cannot be completely ruled out
unless one gets to know the full dynamics of the theory.

3. Rescaled Area Spectrum: An Ansatz

As 1 have just argued, G (the ‘renormalized’ yG), which
enters the area spectrum of the black hole horizon, can only
depend on k and on the value of y because there are no other
quantities intrinsic to the theory on the horizon. If 8G is the
change in the value of yG, then

G(k,y) = yG +6G (k,y) (3)

Since k and y are both dimensionless, simply on dimensional
grounds, 0G o< G. Further, as k — 00, G must tend to zero
because the sources get more weakly coupled to the CS field
strength and the ‘renormalized” spectrum should approach
towards the ‘bare’ spectrum (this argument will be discussed
more elaborately later).

Based on these arguments I propose that the area contri-
bution from a single puncture with quantum number j, for a
black hole horizon in LQG, is given by

a;=81G (k,y)\j(j+1) (4)

G(k,y) =0 (ky)yG (5)

is the ‘renormalized’ gravitational constant on the horizon
and o(k, y) has the following properties:

where
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(i) Since the ‘bare’ spectrum needs to be positive definite,
one has y > 0. It is required that 0 > 0 so that the
‘renormalized’ spectrum is positive definite too.

(i) limy_, o (k,y) 1, i.e., as the sources get more
weakly coupled to the CS field strength, G asymptot-
ically approaches yG.

Hence, I consider a rescaled area spectrum for the black hole
horizon in LQG. As I shall show, the statistical mechanical
calculation provides a unique choice of the function o that
leads to the BHAL and satisfies property (i). Satisfaction of
property (ii) by o, which is a physical consistency require-
ment, will determine y. It is crucial to note that property (i)
and property (ii) are independent of each other.

4. Entropy

I shall consider here black holes with classical area A (>
0(G)). Quantum area of a cross-section of a black hole
horizon, with spin configuration {s ik

k/2
—871)/0GZ Aj(G+1) (6)
j=1/2

where k = A /47yG and s; = number of punctures with
quantum number j. Since j ranges from 1/2 to k/2, hence
k>1= y < A_/4nG. Also, since k is positive definite, the
definition of k suggests that y > 0. So, the quantum theory
of the horizon is valid for 0 < y < A_/4nG. Now, I shall
implement the method of most probable distribution [8, 9]
to calculate the microcanonical entropy of the black hole in
the area ensemble. One can find the calculation (but, with the
‘bare’ spectrum) in [10]. So, I shall provide the main steps and
results here to avoid an unnecessary repeat.

The microstate count for a spin configuration {sj} for
which Ag=A = 0(G):

affol) - w [ 20 o

j=1/2
where N = Z 21725 s.and {s } satisfies the following constraint

(considering A > 0(G)):

k/2

C: Y si\i(i+1)

j=1/2

SnyaG ®

Then one finds the most probable configuration (MPC) by
solving the following equation:

dlogQ[{s;}] -18C =0 ©)

where A is the Lagrange multiplier. This yields the distribution
for the MPC to be

s;=Ng(2j+1)e 7D (10)
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F1GURE 1: The blue curve shows the variation of A as a function of k
obtained from (12). The yellow curve shows the plot of the function
Ao exp(—ay/(k + ky)™) of k, with A, = 1.7220127, oy = 27, k, = 1,
v = 4.
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Now, a sum over j on both sides of (10) leads to the
following consistency condition:

* and the entropy comes out to be

k/2
Y (2j+1)e MUt =, (12)
j=1/2

Equation (12), in principle, should lead to a solution for A as
a function of k. To avoid the mathematical complication of
finding this solution analytically, I plot (using Mathematica)
the function

%
(ke+ ky)™” a3)

where A, &, k, and v, are some numbers. The plot (yellow
coloured in Figure 1) fits to the curve obtained by plotting A
versus k from (12), up to a ‘very good’ approximation, for

A=Ay exp—

Ao = 17220127,

oy =27,

(14)
ko =1,
vy = 4.

I do not provide here a mathematical estimate of how good’
a fit it is. This is just an ‘optical’ fit obtained by numerical
experiments.

It is manifested from the Figure 1 that the curves almost
merge together for k > 2. Further, for black holes with
A, » O(G) one has k > 1 as, one will see shortly that y
is a number of order unity. Henceforth, I shall consider (13)
as the functional dependence of A on k.



4.1. The BHAL. From (11), it follows that the entropy is given
by the BHAL, i.e.,

S=—5, 15)

if the rescaling occurs as follows:

oky)=2® Ao

21y - 21y (16)

%o
(k+ko)"
Recalling that k :== A _/47yG, one can check that for all values
of y within the range 0 < y < A_/4nG, 0 is positive definite
which is needed for the positive definiteness of the rescaled
area spectrum. This was property (i) enlisted at the end of
Section 3. Hence, I conclude that the statistical mechanical
calculation with the horizon degrees of freedom in LQG leads
to the BHAL without having to choose v, if the area spectrum
of the black hole horizon is rescaled by o(k, y) given by (16).
However, o needs to satisfy property (ii) as a require-
ment of physical consistency, as I shall explain in the next
subsection. Importantly, I mention again and emphasize that
property (ii) is independent of property (i).

4.2. Determining y from the ‘Fixed Point’. All standard QFTs
are some effective field theories valid until some energy
scale. Only the renormalized quantities are calculable and
measurable. The bare values of those physical quantities
cannot be theoretically calculated. This is not unexpected
because one does not have access to the most fundamental
theory from which the corresponding QFT has come out to
be an effective one. Taking quantum electrodynamics (QED)
as an example, the bare electron charge is never measurable
because one cannot decouple the electron from its field.
However, if one would have known the most fundamental
theory from which QED emerges effectively in some limit,
then one could have expected to know, at least theoretically,
the bare charge value of the electron. Added to this, the
renormalized charge must have asymptotically approached
that bare value in the high energy limit.

In the present scenario, one has the ‘bare” area spectrum
of an arbitrary 2-sphere and the rescaled (‘renormalized’) one
on the black hole horizon. This is because one is now dealing
with LQG which is one of the candidates of the fundamental
theory of quantum gravity. Hence, the ‘bare’ quantities are
expected to be known in this theory. Therefore, it seems quite
logical to demand that lim;,_, o(k,y) = 1. To mention
again, the physics underlying this limit is the following. The
coupling strength 1/k of the point-like sources to the CS field
strength decreases i.e., 1/k — 0. Hence, the area spectrum
of the black hole should asymptotically approach the one
of an arbitrary 2-sphere (the ‘bare’ spectrum) in this limit.
In fact, one can view this limit as the ‘fixed point’ of the
corresponding ‘renormalization group flow’ on the horizon,
i.e., where the ‘beta function’ corresponding to the running
gravitational constant on the horizon vanishes, namely,

dG (k)

d(nk) a7
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From (17), one can conclude that the ‘fixed point’ is implied
by the limit k — oo.

One should be aware of the fact that this is an asymptotic
limit and o is never exactly unity since k is never exactly
infinity. Putting k = oo in (1) will give F = 0 as the field
equation on the horizon indicating that the sources have
completely decoupled, which does not hold any meaning.
This is analogous to the fact that if the bare charge of the
electron were known, the renormalized charge would have
only asymptotically approached that value in the high energy
limit. However, it would have never exactly matched the
bare value of the charge because that would have meant the
electron has decoupled from its own field.

Now, using (5) and (16) it is trivial to check that in this
limit, i.e., at the fixed point, G asymptotically approaches yG
only for a particular value of y:

yG

fixed point -

= Jim o (ky) =1 (18)
Ao

:}V:E.

It may be noted that this is the exact value of y that had to be
chosen to obtain the BHAL in the usual practice [11]. However,
the difference is that, as one can see, now y is determined
by a physical consistency requirement associated with the
running gravitational constant on the horizon rather than
being merely chosen to match a result.

Few comments: 1 shall make a digression here to offer
some comments in relation to the available literature. It is
very important to note that the present scenario is completely
different from the one that was proposed in [2]. The renor-
malization of gravitational constant proposed in [2] is related
to the renormalization of the fundamental degrees of freedom
of LQG theory resulting in the general relativity emerging
in the effective field theory limit. In this scenario there is a
possibility that the gravitational constant can depend on the
area of the black hole which creates the following problem
(thanks to Daniel Sudarsky for pointing out this issue): what
is the gravitational constant for a spacetime with more than
one black hole? On the contrary, in the present scenario, I
have proposed a ‘renormalization’ effect taking place only on
the horizon due to the associated quantum theory. Since this
effect is localized on the horizon, no problem arises in the
presence of more than one black hole.

4.3. Physical Dynamics of the ‘Renormalization’. Taking into
account (5), (16), and (18), I get

_ o
G(k,y) = yGexp ———-

(ky) = yGexp k) (19)
with y = A,/2m and the values of A, «, ky, and v, are
given in (14). Now, the obvious missing part to delve for is a
reasonable explanation of the physical dynamics underlying
the ‘renormalization’ procedure. The nature of dependence of

G on k, as given by (19), along with the kinematic structure of
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the problem provides the stage for such an explanation which
can be given as follows. One may note that for any finite k,
G < yG. Therefore, the quantum gravitational flux carried
by a single puncture with quantum number j for a black
hole horizon of finite classical area (since k = A_/4myG)
is less than the same for an arbitrary geometric surface with
equal classical area. Hence, there is a ‘screening’ effect that
comes into play in the microscopic physics on the black hole
horizon. However, one can ask the following question: what
is special about a black hole horizon that makes it different
from any arbitrary geometric surface? The answer goes as
follows. A black hole horizon is characterized by a CS theory
coupled to point-like sources and the Hilbert space of this
theory provides the description of the microstates of the
horizon, whereas an arbitrary geometric surface is devoid
of such field dynamics. This is why a black hole horizon is
a special surface. Given this feature of the horizon, there
is an interesting consequence. As opposed to an arbitrary
geometric surface, the quantum geometric excitations on
the horizon are correlated in a specific way so that the
microstates of the horizon satisfy the quantum CS equations
[1]. While the kinematic aspect of this correlation leads to the
microstate counting, there can also be a possible dynamical
effect which can give rise to the ‘renormalization’ procedure
under discussion. A possibilty can be the following. The
correlation of the quantum geometric excitations ‘all over’ the
horizon causes an effective decrement of the gravitational flux
carried by any individual puncture. This phenomenon can be
viewed as a self-inflicted effective ‘screening), caused by the
mutual correlation of the punctures, on their own individual
strengths, owing to their coupling with the CS gauge fields.
Now, this effect should depend on the scale over which the
correlation occurs, i.e., ‘all over’ the horizon. The scale which
signifies ‘all over’ the horizon is the CSlevel k as it is a measure
of the classical area of the horizon. This correlation, hence its
dynamical effect - the ‘screening, weakens with increasing k
and decreasing coupling strength of the punctures with the
CS gauge fields. Thus, the involved physics nicely falls into
place with the fact that G approaches yG as k — co.

While the above explanation can be a possibility of the
real physical dynamics behind the ‘renormalization, one can
pose the question that why the correlation causes ‘screening’
and not ‘antiscreening’. The answer to this question can only
come from the study of the true dynamics which is hitherto
unknown. Hence, the above discussed possibility cannot be
ruled out yet.

5. Conclusion

Whatever I have discussed here is purely based on heuris-
tic arguments that rely on some observations of the field
theoretic structure that effectively describes the black hole
horizon degrees of freedom in LQG and some analogies. This
by no means is anything mathematically rigorous. However,
having the knowledge of the full dynamics of quantum
black holes in LQG yet out of reach, such a possibility
of a ‘renormalized’ gravitational constant governing the
microscopic physics on the horizon and giving rise to the

BHAL irrespective of the value of y, cannot be ruled out
completely. Also, I emphasize that the value of y reported
here has been determined by studying the asymptotic limit, of
the ‘renormalized” gravitational constant on the horizon, in
which it approaches the ‘bare’ value. The limit can be viewed
as the fixed point for the ‘renormalization group flow’ on the
horizon, i.e., the beta function corresponding to the running
gravitational constant on the horizon vanishes in this limit.
Unlike the usual practice this is not a choice of y to match the
entropy with the BHAL. Added to this, the variation of the
gravitational constant with the CS level on the horizon, which
comes from the statistical mechanical calculation leading
to the BHAL, indicates towards a ‘screening’ effect as an
underlying physical cause behind the ‘renormalization.

I hope this work may give a possible hint towards a more
fundamental calculation of black hole entropy from LQG
involving the underlying dynamics of quantum black hole
horizons leading to the BHAL irrespective of the choice of

Note that there is a belief in a part of the community
that the BHAL has been derived from the LQG framework
for arbitrary values of y in [12]. However, in truth, there is
a lower positive bound on y in that derivation. The issue
has been discussed with rigorous arguments in [13], which,
unfortunately, has remained unnoticed.
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