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It has long been debated whether the hydrodynamics is suitable for the smaller colliding systems such as 𝑝 + 𝑝 collisions. In this
paper, by assuming the existence of longitudinal collective motion and long-range interactions in the hot and dense matter created
in 𝑝 + 𝑝 collisions, the relativistic hydrodynamics incorporating with the nonextensive statistics is used to analyze the transverse
momentum distributions of the particles. The investigations of the present paper show that the hybrid model can give a good
description of the currently available experimental data obtained in 𝑝 + 𝑝 collisions at RHIC and LHC energies, except for 𝑝 and𝑝 produced in the range of 𝑝𝑇 > 3.0 GeV/c at√𝑠 = 200 GeV.

1. Introduction

In the past decade, the experimental results of heavy ion
collisions at both RHIC and LHC energies have been exten-
sively studied. These studies have shown that the strongly
coupled quark-gluon plasma (sQGP) might be created in
these collisions [1–9], which exhibits a clear collective behav-
ior almost like a perfect fluid with very low viscosity [10–
28]. Therefore, the evolution of sQGP can be described in
the scope of relativistic hydrodynamics. However, unlike
heavy ion collisions, 𝑝 + 𝑝 collisions are a relatively smaller
system with lower multiplicity, larger viscosity, and larger
fluctuation [29]. The reasonableness of applying relativistic
hydrodynamics in depicting the evolution of sQGP created
in 𝑝 + 𝑝 collisions has undergone an endless debate.

In this paper, by supposing the existence of collective flow
in 𝑝 + 𝑝 colliding direction, the relativistic hydrodynamics
including phase transition is introduced to describe the
longitudinal expansion of sQGP. Besides the collective flow,
the thermal motion also exists in sQGP. The evolution of
sQGP is therefore the superposition of collective flow and
thermal motion. Known from the investigations of [30, 31],
the long-range interactions andmemory effects might appear
in sQGP.This guarantees the reasonableness of nonextensive

statistics in describing the thermodynamic aspects of sQGP.
Hence, in this paper, we will use the nonextensive statistics
instead of conventional statistics to characterize the thermal
motion of the matter created in 𝑝 + 𝑝 collisions.

The nonextensive statistics, i.e., Tsallis nonextensive
thermostatistics, is the generalization of conventional
Boltzmann-Gibbs statistics, which is proposed by C. Tsallis
in his pioneer work of [32]. This statistical theory overcomes
the inabilities of the conventional statistical mechanics by
assuming the existence of long-range interactions, long-
range microscopic memory, or fractal space-time constraints
in the thermodynamic system. It has a wide range of
applications in cosmology [33], phase shift analyses for the
pion-nucleus scattering [34], dynamical linear response
theory, and variational methods [35]. It has achieved a great
success in solving many physical problems, such as the
solar neutrino problems [36], many-body problems, the
problems in astrophysical self-gravitating systems [37], and
the transverse momentum spectra [38–40].

The article is organized as follows. In Section 2, a brief
description is given about the employed hydrodynamics,
presenting its analytical solutions. The solutions are then
used in Section 3 to formulate the transverse momentum
distributions of the particles produced in 𝑝 + 𝑝 collisions in
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the light of Cooper-Frye prescription. The last Section 4 is
about conclusions.

2. A Brief Introduction to
the Hydrodynamic Model

Themain content of the relativistic hydrodynamic model [15,
41] used in this paper is as follows.

The expansion of fluid obeys the continuity equation

𝜕𝜇𝑇𝜇] = 0, 𝜇, ] = 0, 1, (1)

where

𝑇𝜇] = (𝜀 + 𝑝) 𝑢𝜇𝑢] − 𝑝𝑔𝜇] (2)

is the energy-momentum tensor of fluid and 𝑔𝜇] =
diag(1, −1) is the metric tensor. The four-velocity of fluid𝑢𝜇 = (𝑢0, 𝑢1) = (cosh𝑦𝐹, sinh𝑦𝐹), where 𝑦𝐹 is the rapidity
of fluid. 𝜀 and 𝑝 in Equation (2) are the energy density and
pressure of fluid, respectively, which are related by the sound
speed 𝑐𝑠 of fluid via the equation of state

d𝑝
d𝜀 = 𝑠d𝑇𝑇d𝑠 = 𝑐2𝑠 , (3)

where 𝑇 and 𝑠 are the temperature and entropy density of
fluid, respectively.

The projection of Equation (1) to the direction of 𝑢𝜇 leads
to the continuity equation for entropy conservation

𝜕] (𝑠𝑢]) = 0. (4)

The projection of Equation (1) to the direction perpendicular
to 𝑢𝜇 gives equation

𝜕 (𝑇 sinh𝑦𝐹)𝜕𝑡 + 𝜕 (𝑇 cosh𝑦𝐹)𝜕𝑧 = 0, (5)

which means the existence of a scalar function 𝜙 satisfying

𝜕𝜙𝜕𝑡 = 𝑇 cosh𝑦𝐹,
𝜕𝜙𝜕𝑧 = −𝑇 sinh𝑦𝐹.

(6)

By using 𝜙 and Legendre transformation, Khalatnikov poten-
tial 𝜒 can be introduced via relation

𝜒 = 𝜙 − 𝑡𝑇 cosh𝑦𝐹 + 𝑧𝑇 sinh𝑦𝐹, (7)

which changes the coordinate base of (𝑡, 𝑧) to that of (𝜔, 𝑦𝐹)
𝑡 = 𝑒𝜔𝑇0 (

𝜕𝜒
𝜕𝜔 cosh𝑦𝐹 + 𝜕𝜒

𝜕𝑦𝐹 sinh𝑦𝐹) , (8)

𝑧 = 𝑒𝜔𝑇0 (
𝜕𝜒
𝜕𝜔 sinh𝑦𝐹 + 𝜕𝜒

𝜕𝑦𝐹 cosh𝑦𝐹) , (9)

where 𝑇0 is the initial temperature of sQGP, and 𝜔 = − ln(𝑇 �𝑇0). In terms of 𝜒, Equation (4) can be rewritten as the so-
called equation of telegraphy

𝜕2𝜒
𝜕𝜔2 − 2𝛽

𝜕𝜒
𝜕𝜔 − 1𝑐2𝑠

𝜕2𝜒
𝜕𝑦2𝐹 = 0, 𝛽 = 1 − 𝑐2𝑠2𝑐2𝑠 . (10)

With the expansion of created matter, its temperature
becomes lower and lower. When the temperature drops from
the initial temperature𝑇0 to the critical temperature𝑇𝑐, phase
transition occurs. This will modify the value of sound speed
of fluid. In sQGP, 𝑐𝑠 = 𝑐0 = 1 � √3, which is the sound
speed of a massless perfect fluid, being the maximum of 𝑐𝑠.
In the hadronic state, 0 < 𝑐𝑠 = 𝑐ℎ ≤ 𝑐0. At the point of phase
transition, 𝑐𝑠 is discontinuous.

The solutions of Equation (10) for sQGP and hadronic
state are, respectively [15],

𝜒0 (𝜔, 𝑦𝐹) = 𝑄0𝑐02 𝑒𝛽0𝜔𝐼0 (𝛽0√𝜔2 − 𝑐20𝑦2𝐹) , (11)

𝜒ℎ (𝜔, 𝑦𝐹) = 𝑄0𝑐02 𝑆 (𝜔) 𝐼0 [𝜆 (𝜔, 𝑦𝐹)] , (12)

where 𝐼0 is the 0th order modified Bessel function, and

𝛽0 = (1 − 𝑐20 )2𝑐20 = 1,
𝑆 (𝜔) = 𝑒𝛽ℎ(𝜔−𝜔𝑐)+𝛽0𝜔𝑐 ,

𝜆 (𝜔, 𝑦𝐹) = 𝛽ℎ𝑐ℎ√𝑦2ℎ (𝜔) − 𝑦2𝐹,
(13)

where 𝛽ℎ = (1 − 𝑐2ℎ ) � 2𝑐2ℎ , 𝜔𝑐 = − ln(𝑇𝑐 � 𝑇0), and 𝑦ℎ(𝜔) =[(𝜔 − 𝜔𝑐) � 𝑐ℎ] + (𝜔𝑐 � 𝑐0). The𝑄0 in Equations (11) and (12) is
a free parameter determined by fitting the theoretical results
with experimental data.

3. The Transverse Momentum Distributions of
the Particles Produced in 𝑝+𝑝 Collisions

3.1. The Energy of Quantum of Produced Matter. The nonex-
tensive statistics is based on the following two postulations
[32, 36].

(a) The entropy of a statistical system possesses the form
of

𝑠𝑞 = 1𝑞 − 1 (1 −
Ω∑
𝑖=1

𝑝𝑞𝑖 ) , (14)

where 𝑝𝑖 is the probability of a given microstate among Ω
ones and 𝑞 is a fixed real parameter. The defined entropy
has the usual properties of positivity, equiprobability, and
irreversibility, and, in the limit of 𝑞 󳨀→ 1, it reduces to the
conventional Boltzmann-Gibbs entropy

𝑠 = −∑
𝑖

𝑝𝑖 ln𝑝𝑖. (15)
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(b) The mean value of an observable O is defined as

O𝑞 = Ω∑
𝑖=1

𝑝𝑞𝑖 O𝑖, (16)

where O𝑖 is the value of an observable O in the microstate 𝑖.
From the above two postulations, the average occupa-

tional number of quantum in the state with temperature 𝑇
can be written in a simple analytical form [42]

𝑛𝑞 = 1
[1 + (𝑞 − 1) (𝐸 − 𝜇𝐵) /𝑇]1� (𝑞−1) + 𝛿 . (17)

Here, as usual, 𝐸 is the energy of quantum, and 𝜇𝐵 is its
baryochemical potential. For baryons 𝛿 = 1 and for mesons𝛿 = −1. In the limit of 𝑞 󳨀→ 1, it reduces to the conventional
Fermi-Dirac or Bose-Einstein distributions. Hence, the value
of 𝑞 in the nonextensive statistics represents the degree
of deviation from the conventional statistics. Known from
Equation (17), the average energy of quantum in the state with
temperature 𝑇 reads

𝐸𝑞
= 𝑚𝑇 cosh (𝑦 − 𝑦𝐹)
{1 + [(𝑞 − 1) (𝑚𝑇 cosh (𝑦 − 𝑦𝐹) − 𝜇𝐵)] /𝑇}1/(𝑞−1) + 𝛿 ,

(18)

where 𝑦 is the rapidity of quantum and𝑚𝑇 = √𝑝2𝑇 + 𝑚2 is its
transverse mass with rest mass𝑚 and transverse momentum𝑝𝑇.
3.2. The Transverse Momentum Distributions of the Particles
Produced in 𝑝+𝑝 Collisions. With the expansion of hadronic
matter, its temperature becomes even lower. As the temper-
ature drops to the so-called kinetic freeze-out temperature𝑇𝑓, the inelastic collisions among hadronic matter stop. The
yields of produced particles remain unchanged, becoming the
measured results. According toCooper-Frye scheme [43], the
invariant multiplicity distributions of produced particles take
the form [15, 43]

𝑑2𝑁2𝜋𝑝𝑇𝑑𝑦𝑑𝑝𝑇 =
𝐴

(2𝜋)3
⋅ ∫𝑦ℎ(𝜔𝑓)
−𝑦ℎ(𝜔𝑓)

(cosh𝑦 𝑑𝑧𝑑𝑦𝐹 − sinh𝑦 𝑑𝑡𝑑𝑦𝐹)𝐸𝑞
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇=𝑇𝑓 𝑑𝑦𝐹,

(19)

where 𝐴 is the area of overlap region of collisions, 𝜔𝑓 =− ln(𝑇𝑓 � 𝑇0), and the integrand takes values at themoment of𝑇 = 𝑇𝑓. The meaning of Equation (19) is evident. The part of
integrand in the round brackets is proportional to the rapidity
density of fluid [43]. Hence, Equation (19) is the convolution

of rapidity of fluid with the energy of the particles in the state
with temperature 𝑇. From Equations (8) and (9)

cosh𝑦 𝑑𝑧𝑑𝑦𝐹 − sinh𝑦 𝑑𝑡𝑑𝑦𝐹
= 1𝑇𝑐2𝑠 𝜕𝜕𝜔 (𝜒 + 𝜕𝜒

𝜕𝜔) cosh (𝑦 − 𝑦𝐹)
− 1𝑇 𝜕𝜕𝑦𝐹 (𝜒 +

𝜕𝜒
𝜕𝜔) sinh (𝑦 − 𝑦𝐹) .

(20)

Substituting𝜒 in Equation (20) by the 𝜒ℎ of Equation (12) and
taking the values at the moment of 𝑇 = 𝑇𝑓, it becomes

(cosh𝑦 𝑑𝑧𝑑𝑦𝐹 − sinh𝑦 𝑑𝑡𝑑𝑦𝐹)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑇=𝑇𝑓 =

𝑄0𝑐0𝑇𝑓 (𝛽ℎ𝑐ℎ)2

⋅ 𝑆 (𝜔𝑓) [𝐵 (𝜔𝑓, 𝑦𝐹) sinh (𝑦 − 𝑦𝐹)
+ 𝐶 (𝜔𝑓, 𝑦𝐹) cosh (𝑦 − 𝑦𝐹)] ,

(21)

where

𝐵 (𝜔𝑓, 𝑦𝐹)
= 𝛽ℎ𝑦𝐹𝜆 (𝜔𝑓, 𝑦𝐹) {

𝛽ℎ𝑐ℎ𝑦ℎ (𝜔𝑓)
𝜆 (𝜔𝑓, 𝑦𝐹) 𝐼0 [𝜆 (𝜔𝑓, 𝑦𝐹)]

+ [𝛽ℎ + 1𝛽ℎ − 2𝛽ℎ𝑐ℎ𝑦ℎ (𝜔𝑓)
𝜆2 (𝜔𝑓, 𝑦𝐹) ] 𝐼1 [𝜆 (𝜔𝑓, 𝑦𝐹)]} ,

(22)

𝐶 (𝜔𝑓, 𝑦𝐹) = {{{
𝛽ℎ + 1𝛽ℎ + [𝛽ℎ𝑐ℎ𝑦ℎ (𝜔𝑓)]2

𝜆2 (𝜔𝑓, 𝑦𝐹)
}}}

⋅ 𝐼0 [𝜆 (𝜔𝑓, 𝑦𝐹)] + 1
𝜆 (𝜔𝑓, 𝑦𝐹)

{{{
𝑦ℎ (𝜔𝑓)𝑐ℎ + 1

− 2 [𝛽ℎ𝑐ℎ𝑦ℎ (𝜔𝑓)]2
𝜆2 (𝜔𝑓, 𝑦𝐹)

}}}
𝐼1 [𝜆 (𝜔𝑓, 𝑦𝐹)] ,

(23)

where 𝜆(𝜔𝑓, 𝑦𝐹) = 𝛽ℎ𝑐ℎ√𝑦2ℎ(𝜔𝑓) − 𝑦2𝐹, 𝐼1 is the 1st order
modified Bessel function.

By using Equations (19) and (21)-(23), we can obtain the
transverse momentum distributions of produced particles as
shown in Figures 1, 2, 3, and 4.

Figure 1 shows the transverse momentum spectra of 𝐾0S ,𝐾+,𝐾−,Λ,Λ,Ξ−,Ξ+, andΩ−+Ω+ produced in𝑝+𝑝 collisions
at √𝑠 = 200 GeV. The solid dots, circles, and solid triangles
represent the experimental data of the STAR Collaboration
[44].The solid curves are the results calculated fromEquation
(19). The values of free parameters 𝑞, 𝑄0, and 𝜒2/NDF are
listed in Table 1. It can be seen that the present model can give
a good description of the transversemomentumdistributions
of strange particles. Since strangeness enhancement is origi-
nally proposed as a signature of sQGP produced in nuclear
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Figure 1: The transverse momentum distributions of strange particles (|𝑦| < 0.5) produced in 𝑝 + 𝑝 collisions at √𝑠 = 200 GeV. The solid
dots, circles, and solid triangles represent the experimental data of the STAR Collaboration [44]. The solid curves are the results calculated
from Equation (19).

Table 1: The values of 𝑞, 𝑄0, and 𝜒2/NDF obtained from the analyses of STAR data [44] in 𝑝 + 𝑝 collisions at√𝑠 = 200 GeV.

Parameters 𝐾0S 𝐾+/𝐾− Λ/Λ Ξ−/Ξ+ Ω− + Ω+
𝑞 1.083±0.002 1.083±0.005 1.062±0.001 1.075±0.003 1.068±0.007

1.083±0.006 1.062±0.001 1.075±0.003
𝑄0 0.084±0.005 0.087±0.012 0.379±0.026 0.026±0.006 0.016±0.010

0.086±0.012 0.337±0.023 0.026±0.005𝜒2/NDF 0.68 0.32/0.39 0.47/0.90 0.47/0.64 0.02
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Figure 2: The transverse momentum distributions of 𝜋+, 𝜋−,𝐾+,𝐾−, 𝑝, and 𝑝 produced in 𝑝 + 𝑝 collisions at√𝑠 = 200 GeV at midrapidity.
The solid dots, solid triangles, solid squares, circles, triangles, and squares represent the experimental data of the PHENIXCollaboration [45].
The solid curves are the results calculated from Equation (19).
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Figure 3:The transverse momentum distributions of 𝑝 and 𝑝 produced in 𝑝+𝑝 collisions at√𝑠 = 200 GeV in the whole measured 𝑝𝑇 range.
The solid squares and squares represent the experimental data of the PHENIX Collaboration [45]. The solid curves are the results calculated
from Equation (19).

collisions, this proves the reasonableness of hypothesis given
at the beginning of this paper that sQGPmight appear in𝑝+𝑝
collisions.

Figure 2 presents the transverse momentum spectra of𝜋+, 𝜋−, 𝐾+, 𝐾−, 𝑝, and 𝑝 produced in 𝑝 + 𝑝 collisions at√𝑠 = 200 GeV. The solid dots, solid triangles, solid squares,
circles, triangles, and squares represent the experimental data
of the PHENIX Collaboration [45]. The solid curves are
the results calculated from Equation (19). The values of free
parameters 𝑞, 𝑄0, and 𝜒2/NDF are summarized in Table 2.
The theoretical model can give a good description of the
experimental data for 𝜋+, 𝜋−, 𝐾+, 𝐾− in the whole measured
transverse momentum range, and for 𝑝 and 𝑝 in the range of

𝑝𝑇 ≤ 3.0 GeV/c. In the range of 𝑝𝑇 > 3.0 GeV/c, the deviation
appears as shown in Figure 3, which shows the transverse
momentum distributions of 𝑝 and 𝑝 in the whole measured𝑝𝑇 range.

Figure 4 shows the transverse momentum spectra of 𝜋+,𝜋−,𝐾+,𝐾−, 𝑝, and 𝑝 produced in 𝑝+𝑝 collisions at√𝑠 = 0.9,
2.76, and 7 TeV. The solid dots, solid triangles, solid squares,
circles, triangles, and squares represent the experimental
data of the CMS Collaboration [46]. The solid curves are
the results calculated from Equation (19). The values of free
parameters 𝑞, 𝑄0, and 𝜒2/NDF are summarized in Table 3.

In calculations, the sound speed in hadronic state takes
the value of 𝑐ℎ = 0.35 [47, 48]. The critical temperature takes
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Figure 4: The transverse momentum distributions of the identified charged particles (|𝑦| < 1) produced in 𝑝 + 𝑝 collisions at√𝑠 = 0.9, 2.76,
and 7 TeV (from top to bottom). The solid dots, solid triangles, solid squares, circles, triangles, and squares represent the experimental data
of the CMS Collaboration [46]. The solid curves are the results calculated from Equation (19).

Table 2: The values of 𝑞, 𝑄0, and 𝜒2/NDF obtained from the analyses of PHENIX data [45] in 𝑝 + 𝑝 collisions at√𝑠 = 200 GeV.

Parameters 𝜋+/𝜋− 𝐾+/𝐾− 𝑝/𝑝
𝑞 1.075±0.003 1.080±0.003 1.060±0.002

1.075±0.003 1.080±0.003 1.060±0.001
𝑄0 10.439±0.015 3.699±0.005 13.099±1.551

10.342±0.015 3.602±0.006 10.479±1.221𝜒2/NDF 5.25/3.28 1.57/1.01 0.47/0.17
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Table 3: The values of 𝑞, 𝑄0, and 𝜒2/NDF obtained from the analyses of CMS data [46] in 𝑝 + 𝑝 collisions at LHC energies.

√𝑠 Parameters 𝜋+/𝜋− 𝐾+/𝐾− 𝑝/𝑝

0.9 TeV

𝑞 1.064±0.002 1.090±0.002 1.071±0.001
1.064±0.003 1.090±0.002 1.071±0.001

𝑄0 0.161±0.004 0.045±0.001 0.152±0.005
0.159±0.004 0.044±0.002 0.145±0.003𝜒2/NDF 8.50/10.85 0.37/0.47 1.10/1.84

2.76 TeV

𝑞 1.078±0.002 1.100±0.002 1.088±0.001
1.078±0.002 1.100±0.002 1.088±0.001

𝑄0 0.051±0.001 0.015±0.0004 0.037±0.001
0.050±0.001 0.014±0.0004 0.036±0.001𝜒2/NDF 8.90/8.25 0.30/0.62 1.75/1.35

7 TeV

𝑞 1.084±0.002 1.120±0.003 1.105±0.001
1.084±0.003 1.120±0.002 1.105±0.001

𝑄0 0.004±0.00004 0.001±0.00002 0.002±0.00004
0.004±0.00008 0.001±0.00002 0.002±0.00002𝜒2/NDF 7.28/7.69 0.23/0.35 1.13/1.43

the value of 𝑇𝑐 = 0.16 GeV [49]. For √𝑠 = 200 GeV, the
initial temperature takes the value of 𝑇0 = 0.35 GeV [50],
the kinetic freeze-out temperature takes the values of 𝑇𝑓 =
0.12 GeV for strange particles and pions, and, for protons,𝑇𝑓 =0.13 GeV from the investigation of [51], which also shows
that the baryochemical potential takes the value of 𝜇𝐵 =0.01
GeV. For √𝑠 = 0.9, 2.76, and 7 TeV, referring to [50], the
initial temperatures are estimated to be 𝑇0 = 0.4, 0.6, and
1.5GeV, respectively.The kinetic freeze-out temperature takes
the values of 𝑇𝑓 =0.12 GeV for pions and kaons, and, for
protons,𝑇𝑓 =0.13 GeV.The baryochemical potential takes the
value of 𝜇𝐵 = 0 [51].

The parameters 𝑄0 and 𝑇0 have the same effects. They
all affect the amplitudes of the theoretical curves. They are
different from parameter 𝑞 which affects the slopes of the
theoretical curves. From the above analysis we can see that
the value of the parameter 𝑞 increases with the increase of
the CMS beam energy. However, the values of 𝑞 do not seem
completely consistent with the CMS and the RHIC beam
energies.

4. Conclusions

By assuming the existence of longitudinal collective motion
and long-range interactions in sQGP produced in 𝑝 + 𝑝
collisions, the relativistic hydrodynamics including phase
transition together with the nonextensive statistics is used
to discuss the transverse momentum distributions of the
particles produced in 𝑝 + 𝑝 collisions at √𝑠 = 0.2, 0.9, 2.76,
and 7 TeV.

The theoretical model used in this paper contains rich
information about the transport coefficients of fluid, such as
the sound speed 𝑐0 in sQGP, the sound speed 𝑐ℎ in hadronic
state, the initial temperature 𝑇0, the critical temperature 𝑇𝑐,
the kinetic freeze-out temperature𝑇𝑓, and the baryochemical
potential 𝜇𝐵. Except for 𝑇0, the other five parameters take
the values either from the widely accepted theoretical results
or from experimental measurements. As for 𝑇0, there are no

acknowledged values so far. In this paper, 𝑇0 takes the values
from other studies. The investigations of the present paper
show the conclusions as follows.

(a) The theoretical model can give a good description of
the currently available experimental data collected in 𝑝 + 𝑝
collisions at RHIC and LHC energies with the only exception
of 𝑝 and 𝑝 measured in the range of 𝑝𝑇 > 3.0 GeV/c at√𝑠 = 200 GeV, which might be caused by the hard scattering
process [52]. To improve the fitting conditions, the results of
perturbative QCD should be taken into account.

(b)The fitted values of 𝑞 are close to 1.Thismeans that the
deviation between nonextensive statistics and conventional
statistics is small, while it is this small difference that plays
an essential role in fitting the experimental data.
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