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We present a QCD motivated model that mimics QCD theory. We examine the characteristics of the gauge field coupled with the
color dielectric function (𝐺) in the presence of temperature (𝑇). The aim is to achieve confinement at low temperatures 𝑇 < 𝑇𝑐, (𝑇𝑐
is the critical temperature), similar to what occurs among quarks and gluons in hadrons at low energies. Also, we investigate scalar
glueballs and QCD string tension and effect of temperature on them. To achieve this, we use the phenomenon of color dielectric
function in gauge fields in a slowly varying tachyon medium. This method is suitable for analytically computing the resulting
potential, glueball masses, and the string tension associated with the confinement at a finite temperature. We demonstrate that the
color dielectric function changes Maxwell’s equation as a function of the tachyon fields and induces the electric field in a way that
brings about confinement during the tachyon condensation below the critical temperature.

1. Introduction

Quantum chromodynamics (QCD) is a theory that attempts
to explain the strong interactions carried by gluons that
keep quarks and gluons in a confined state in hadrons. The
success of this theory depends on asymptotic freedom [1–
3]. QCD forms the bases of nuclear physics and enables us
to appreciate and explain the features of matter. However,
nonrelativistic perturbative QCD theories cannot accurately
reproduce the results of charmonium and bottomonium
spectra outputs, unless the leading renormalon terms cancel
out. In this case, the net energy of such bound states from
QCD potentials is in agreement with phenomenological
potentials for the range 0.5 GeV−1 ≲ 𝑟 ≲ 3 GeV−1
[4]. Thus, for many years now, it has been conceived that
phenomenological potential models are described by such
systems.

It has been realized that owing to the gluon confinement,
the QCD vacuum shows a characteristic of a dielectric
medium [5, 6]. This idea has been employed in developing
several models, including MIT bag model [7], SLAC bag
model [8], Cornell potential for heavy quarks [9], and many

soliton models [10–12] which are used to describe hadron
spectroscopy. However, until recently, no successful effort
had been made to compute the color dielectric function
representing theQCDvacuum fromquantum theory. In view
of this, all the models developed using the dielectric func-
tion approach were considered phenomenological though it
agrees with QCD as shown in [13].

There exists some similarity between QCD and QED
(Quantum Electrodynamics) in terms of the successes of both
theories, but they depart from each other by their strength,
medium, and dynamics of interactions. QED explains the
interaction between charged particles while QCD explains
the strong interaction between subatomic particles. QED
creates a screening effectwhich decreases its net electric charge
as inter-(anti)particle distance increases. The opposite effect
is observed in QCD where antiscreening occurs and the
net color-charges increase with increasing distance between
(anti)particle pairs. This similarity and the differences make
it interesting to advance a study of one in terms of the other.
In this work we will explore QCD in terms of QED. The
most popular potential for heavy quarks at confined state is
the Cornell potential known to be V𝑐 = −𝑎/𝑟 + 𝑏𝑟, where 𝑎
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and 𝑏 are positive constants.This potential comprises linearly
increasing part (infrared interaction) and Colombian part
(ultraviolet interaction) [2, 14].

In this paper, we will establish that the phenomenon of
confinement is achievable with an electric field immersed
in a color dielectric medium (𝐺) at a finite temperature 𝑇.
We will also show that the net potential resulting from the
confinement at 𝑇 = 0 is similar to Cornell’s potential for
confinement of heavy quarks and gluons in hadrons at low
energies. Our dielectric function 𝐺 is identified with tachyon
condensation [15, 16] at low energies. The tachyon matter
creates the necessary conditions for confinement phase at low
temperatures (𝑇 < 𝑇𝑐) and deconfinement phase at high
temperatures (𝑇 ≥ 𝑇𝑐). The relevance of the color dielectric
function𝐺(𝜙) is to generate the strong interaction needed for
(de)confinement of the associated colored particles [15–18].

Many works have been done on determining the poten-
tials for quark confinement as a function of temperature,
commonly called thermal QCD, by using a number of
different approaches including Wilson and Polyakov loop
corrections [19–22]. Most of the challenges posed by these
models stem from the proper behavior of theQCD string ten-
sion at all temperatures as compared with lattice simulation
results. The expected behavior of the string as suggested by
many simulation results is a sharp decrease with temperature
at 𝑇 < 𝑇𝑐, vanishes at 𝑇 = 𝑇𝑐, and slowly decreases at 𝑇 > 𝑇𝑐
[1, 2, 22, 23].

The main purpose of this paper is to determine ana-
lytically the net static potential for the quarks, and gluons
confinement in 3+1 dimensions as a function of temperature.
We will also obtain the QCD string tension and glueball
masses associated with it as a function of temperature and
study its behavior. We will use an Abelian theory, as it is
applied to QED, but the dielectric function 𝐺(𝑟) will be
carefully chosen to give the expected (de)confinement in
the chosen tachyon matter [24, 25]. It has already been
shown that the Abelian part of the non-Abelian QCD string
tension constitutes 92% that comprises linear part of the net
potential. Hence, we can estimate non-Abelian theory using
an Abelian approach [26, 27]. This fact also permits us to
study the QCD theory phenomenologically to establish the
confinement of the quarks and gluons inside the hadron
[7, 8, 28, 29]. The self-interacting scalar fields 𝜙(𝑟) describe
the dynamics of the dielectric function in the tachyon matter.
Thus, we shall use a Lagrangian that would collectively carry
information on the dynamics of the gauge and the scalar
field associated with the tachyon dynamics and tempera-
ture.

The motivation for using this approach is twofold, firstly,
because we are able to study QCD phenomenologically by
identifying the color dielectric function naturally with the
tachyon potential; secondly, one can apply such phenomeno-
logical approach to obtainmodels thatmimicQCD in stringy
models where temperature effects in tachyon potentials [30]
can be considered in brane confinement scenarios [31]. In
this case, it may also bring new insight into confining
supersymmetric gauge theories such as the Seiberg-Witten
theory [32–34] that deals with electric-magnetic duality and
develops magnetic monopole condensation.

Thus, we choose a tachyon potential which is expected
to condense at some value [35] at the same time that the
gauge field is confined. This phenomenon coincides with the
dual Higgs mechanism, where the dual gauge field becomes
massive [31]. This means that in the infrared the QCD vac-
uum is a perfect color dielectric medium and therefore a dual
superconductor in which magnetic monopole condensation
leads to electric field confinement [32–34].

The paper is organized as follows. In Sections 2 and 3 we
review both the theory of electromagnetism in a dynamical
dielectric medium and the gluodynamics, with its associated
QCD-like vacua, respectively. In Section 4 we introduce
the tachyon Lagrangian coupled with temperature and its
associated effective potential. In the same section, we study
glueball masses at zero temperature (𝑇 = 0) and at a finite
temperature (𝑇) and analyze their characteristics. In the latter
cases we find analytically the net potential for confinement of
quarks and gluons as a function of temperature. We analyze
the characteristics of the net confinement potential. Also, we
analyze the QCD string tension as a function of temperature.
In Section 5 we present our final comments.

2. Maxwell’s Equations Modified by
Dielectric Function

In this section we will review the theory of electromagnetism
in a color dielectricmedium to set the pace for us to explain the
phenomenon of confinement. Beginning with the Maxwell
Lagrangian with no sources we have

L = −14𝐹𝜇]𝐹𝜇]. (1)

Its equations of motion are

𝜕𝜇𝐹𝜇] = 0. (2)

It is worth mentioning that though the Lagrangian is with
no source, its equations of motion still admit solutions with
spherical symmetry [36].

Consider the gauge field in dielectric medium,𝐺(𝜙), with𝜙 the field describing the dynamics of the medium. The
Lagrangian above can be rewritten as

L = −14𝐺 (𝜙) 𝐹𝜇]𝐹𝜇]. (3)

Its equations of motion are

𝜕𝜇 [𝐺 (𝜙) 𝐹𝜇]] = 0. (4)

Let us impose the restrictions, 𝜇 = 1, 2, 3 and ] = 0. Thus,

∇. [𝐺 (𝜙)E] = 0. (5)

The magnetic field is not of interest in this work, because our
concentration will be on the electric field confinement only,
so the indices were deliberately defined to avoid themagnetic
field.

We begin with (5) to determine the solution of the electric
field E in the dielectric medium 𝐺(𝜙). As stated above, all the
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solutions will be computed in spherical symmetry; i.e., 𝐸(𝑟)
and 𝜙(𝑟) are only radially, 𝑟, dependent; hence 𝐺(𝜙) follows
the same definition, thus

∇. [𝐺 (𝜙)E] = 1𝑟2 𝜕𝜕𝑟 (𝑟2𝐺 (𝜙) 𝐸𝑟) = 0 (6)

and

𝐸𝑟 = 𝜆𝑟2𝐺 (𝜙) . (7)

Here, 𝜆 is the integration constant which can be related to
electric charge as 𝜆 = 𝑞/4𝜋𝜀𝑜. Therefore, the electric field
solution,𝐸, in the dielectric medium𝐺(𝜙) can be represented
as

𝐸 = 𝑞4𝜋𝜀𝑜𝑟2𝐺 (𝜙) , (8)

where 𝐸 = |E| = 𝐸𝑟. Consequently, the dielectric medium
changes the strength of E as a function of 𝜙.

The coupling between electromagnetism and scalar field
dynamics at finite temperature is given by the effective
Lagrangian

L = −14𝐺 (𝜙) 𝐹𝜇]𝐹𝜇] + 12𝜕𝜇𝜙𝜕𝜇𝜙 − 𝑉𝑒𝑓𝑓 (𝜙) . (9)

Its effective potential as a function of the scalar field, 𝜙, at a
finite temperature, 𝑇, has already been found and is given by
[37, 38]

𝑉𝑒𝑓𝑓 (𝜙) = 𝑉 (𝜙) + 𝑇224𝑉𝜙𝜙 (𝜙) , (10)

where 𝑉𝜙𝜙 is the second derivative of 𝑉(𝜙).
The behavior of the dielectric function 𝐺(𝜙) will be

obtained from the equations of motion [39] of the above
Lagrangian. The equations of motion for the various fields,
i.e., the gauge field 𝐴𝜇 and the scalar field 𝜙, found in the
above Lagrangian are given as

𝜕𝜇 [𝐺 (𝜙) 𝐹𝜇]] = 0 (11)

and

𝜕𝜇𝜕𝜇𝜙 + 14
𝜕𝐺 (𝜙)
𝜕𝜙 𝐹𝜇]𝐹𝜇] + 𝑇

2

24
𝜕𝑉𝜙𝜙𝜕𝜙 +

𝜕𝑉 (𝜙)
𝜕𝜙 = 0. (12)

The equations of motion for the scalar field 𝜙 and the gauge
field 𝐴] with radial symmetry are

1𝑟2 𝑑𝑑𝑟 (𝑟2𝐺 (𝜙) 𝐸) = 0 (13)

and

1𝑟2 𝑑𝑑𝑟 (𝑟2 𝑑𝜙𝑑𝑟 ) = 𝑇
2

24
𝜕𝑉𝜙𝜙𝜕𝜙 − 12

𝜕𝐺 (𝜙)
𝜕𝜙 𝐸2 +

𝜕𝑉 (𝜙)
𝜕𝜙

= 0.
(14)

As has been shown above we can identify that the solution of
(13) is that given by (8).

To establish strong interaction and its resultant confine-
ment, our dielectric function needs to asymptotically satisfy
these conditions:

𝐺 (𝜙 (𝑟)) = 0 as 𝑟 󳨀→ 𝑟∗ (15)

and

𝐺 (𝜙 (𝑟)) = 1 as 𝑟 󳨀→ 0, (16)

where 𝑟∗ stands for the scale where the confinement starts
to become effective. Particularly, 𝑟∗ = ∞ for𝐺(𝜙(∞)) ∼ 1/𝑟2
and from (8) we find𝐸 ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.This uniform electric field
behavior agrees with confinement everywhere.

3. Gluodynamics and QCD-Like Vacuum

In this section we analyze the gluodynamics in the tachyon
matter. The Lagrangian for gluodynamics is given as

L
󸀠 = −14𝐹𝑎𝜇]𝐹𝑎𝜇] + 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 , (17)

where −|𝜖V| represents the vacuum energy density that keeps
the scale and the conformal symmetries of gluodynamics
broken. Gluodynamics is generally known to be scale and
conformally invariant in the limit of classical regime but
the symmetry breaks down when there is quantum effect
due to nonvanishing gluon condensate ⟨𝐹𝑎𝜇]𝐹𝑎𝜇]⟩ > 0 [40].
This is what brings about the anomaly in the QCD energy-
momentum tensor (𝜃𝜇]) trace

𝜃𝜇𝜇 = 𝛽 (𝑔)2𝑔 𝐹𝑎𝜇]𝐹𝑎𝜇]. (18)

The leading term of the 𝛽-function of the coupling 𝑔 is given
by

𝛽 (𝑔) = − 11𝑔3(4𝜋)2 , (19)

with the vacuum expectation value given as

⟨𝜃𝜇𝜇⟩ = −4 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 . (20)

The purpose of this section is to compute the energy-
momentum tensor of (9) at 𝑇 = 0 and reconcile the results
with (20) as applied in [41]. This will require some cancella-
tions of the tachyon fields and the gluon contributions to the
vacuum density

𝜃𝜇𝜇 = 𝑔𝜇] (2 𝜕L𝜕𝑔𝜇] − 𝑔𝜇]L) + 8𝜕2𝜇𝜙. (21)

The last term is the total derivative of the tachyon field
that is sometimes left out in the energy-momentum tensor
computation. But it is sometimes necessary in quantum field
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theory due to some Ward identities [42]. Using the equation
of motion (14) into (21) yields

𝜃𝜇𝜇 = 𝐺󸀠 (𝜙) 𝐹𝜇]𝐹𝜇] + 4𝑉󸀠 (𝜙) . (22)

Thus, we can relate (20) and (22) as

⟨𝐺󸀠 (𝜙) 𝐹𝜇]𝐹𝜇]⟩ = −4 ⟨󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 + 𝑉󸀠 (𝜙)⟩ , (23)

where 𝐺󸀠(𝜙) and 𝑉󸀠(𝜙) represent the first derivative of the
effective color dielectric function and the effective potential,
respectively. It is expected that in the classical limit |𝜖V| 󳨀→ 0
the classical equation 𝜃𝜇𝜇 = 0 should be recovered. Therefore,
we redefine the potential to include the vacuum energy
density in the form [41]

𝑉 (𝜙) 󳨀→ − 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 𝑉 (𝜙) . (24)

Consequently (23) becomes

⟨𝐺󸀠 (𝜙) 𝐹𝜇]𝐹𝜇]⟩ = 4 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 ⟨𝑉󸀠 (𝜙) − 1⟩ . (25)

This equation guarantees the correct classical behavior, where
(25) vanishes at |𝜖V| 󳨀→ 0 as expected. It is important to
add that, with some quantum corrections, we can obtain
a nonvanishing contributions to ⟨𝜃𝜇𝜇⟩ in the same limit.
This result is similar to the results obtained in [41] for
dilaton theory. We will show in the subsequent sections that
the potential is precisely equivalent to the color dielectric
function in string theory and, thus, it represents the QCD
vacuum density modified by a function 𝐺(𝜙). Using (25) and
the Lagrangian in (9) we can redefine the effective potential
to include the vacuum energy density as

𝑉𝑒𝑓𝑓 󳨀→ − 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 𝑉𝑒𝑓𝑓 (𝜙, 𝑇) (26)

Therefore, the gluon condensate for this potential becomes

⟨𝐺󸀠 (𝜙) 𝐹𝜇]𝐹𝜇]⟩ = 4 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 ⟨𝑉󸀠𝑒𝑓𝑓 (𝜙, 𝑇) − 1⟩ . (27)

This equation also vanishes at |𝜖V| 󳨀→ 0, in consistency
with the classical prediction and we recover exactly (25) at𝑇 = 0. We will soon find that themagnitude of ⟨𝐺󸀠(𝜙)𝐹𝜇]𝐹𝜇]⟩
reduces at 𝑇 = 𝑇𝑐 which is also expected.

4. Tachyon Condensation and Confinement

In this section we will establish the relationship between
tachyon condensation and confinement. Tachyons are par-
ticles that are faster than light, have negative masses, and
are unstable. Their existence is presumed theoretically in the
same way as magnetic monopoles. Tachyons just as magnetic
monopoles have never been seen isolated in nature. In
superstring theory, they are presumed to be interacting with
other particles or interacting with each other at higher orders
to form tachyon condensation [15, 16, 43]. Tachyon conden-
sation is directly related to confinement just as monopole
condensation.

4.1. Tachyon Lagrangian with Electromagnetic Field and
Temperature. From (14) we only have the potential 𝑉(𝜙)
and the dielectric function 𝐺(𝜙) as a functions of 𝜙(𝑟).
Meanwhile, it will be convenient to restrict these choices as𝐺(𝜙(𝑟)) = 𝑉(𝜙(𝑟)). The propriety of this assertion will be
demonstrated below in a while, working with a Lagrangian
that characterizes the dynamics of the tachyon fields, 𝜙(𝑟).

To start, let us consider the Lagrangian at (9) without the
temperature correction as seen in [18]

L = −14𝐺 (𝜙) 𝐹𝜇]𝐹𝜇] + 12𝜕𝜇𝜙𝜕𝜇𝜙 − 𝑉 (𝜙) . (28)

The equation of motion of this Lagrangian is given by

𝜕𝜇𝜕𝜇𝜙 + 14
𝜕𝐺 (𝜙)
𝜕𝜙 𝐹𝜇]𝐹𝜇] +

𝜕𝑉 (𝜙)
𝜕𝜙 = 0. (29)

For simplicity let us consider the fields only in one dimension𝑥; this yields
𝜙 = 𝜙 (𝑥) ,
𝐴𝜇 = 𝐴𝜇 (𝑥) . (30)

The resulting equations of motion are

𝑑𝑑𝑥 [𝐺 (𝜙) 𝐸] = 0, (31)

−𝑑2𝜙𝑑𝑥2 − 12 𝜕𝐺𝜕𝜙 𝐸2 + 𝜕𝑉𝜕𝜙 = 0, (32)

where we used 𝐹01 = 𝐸. Integrating (31) we have
𝐺 (𝜙) 𝐸 = 𝑞 󳨐⇒

𝐸 = 𝑞𝐺 (𝜙) .
(33)

Substituting (33) into (32), we find

−𝑑2𝜙𝑑𝑥2 − 12 𝜕𝐺𝜕𝜙 𝑞2
𝐺 (𝜙)2 +

𝜕𝑉𝜕𝜙 = 0. (34)

We now make use of the tachyon Lagrangian commonly
known in string theory with tachyon dynamics, 𝑇̃(𝑥), with
electric field 𝐸(𝑥). Hence, for slowly varying tachyon fields,
we can expand our Lagrangian in power series as [15, 16, 43]

𝑒−1L = −𝑉 (𝑇̃)√1 − 𝑇̃󸀠2 + 𝐹01𝐹01 (35)

= −𝑉 (𝑇̃) [1 − 12 (𝑇̃󸀠2 + 𝐹01𝐹01) + ⋅ ⋅ ⋅] (36)

= −𝑉 (𝑇̃) + 12𝑉 (𝑇̃) 𝑇̃󸀠2 − 12𝑉 (𝑇̃) 𝐹01𝐹01 + ⋅ ⋅ ⋅ (37)

= −𝑉 (𝜙) + 12𝜙󸀠2 − 12𝑉 (𝜙) 𝐹01𝐹01 + ⋅ ⋅ ⋅ , (38)
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where 𝑒 = √|𝑔| represents the general space-time. This
relation also holds for 3 + 1 dimensions for 𝜙 a function of𝑟, which can be associated with 𝑥. In (38) we can relate

𝑉(𝑇̃ (𝜙)) = (𝜕𝜙𝜕𝑇̃)
2 󳨐⇒

12𝑉 (𝑇̃) (𝑇̃󸀠2) = 12 (𝜕𝜙𝜕𝑇̃
𝜕𝑇̃𝜕𝑥)
2 = 12𝜙󸀠2,

(39)

with 𝜙 = 𝑓(𝑇̃), or 𝑇̃ = 𝑓−1(𝜙). Now comparing (38) with (28)
we find the equality𝐺 = 𝑉.This result is also true for (9) up to
the thermal correction term. From the perspective of string
theory, the thermal correction affects the tachyon potential𝑉(𝑇̃) of the original tachyon Lagrangian (35)—see, e.g., [30]
and references therein. In our context we restrict ourselves to
effective quantum field theory, where the one-loop thermal
corrections from the scalar sector affect 𝑉(𝜙) as given in the
Lagrangian (9).

4.1.1. Confinement Potential for the Electric Field in Three
Dimensions as a Function of Temperature. For the tachyon
Lagrangian in (38), it is increasingly clear that the dielectric
function 𝐺(𝜙) is equal to the potential 𝑉(𝜙). Now, we choose
the appropriate classical tachyon potential that gives us the
appropriate behavior for confinement and deconfinement in
the presence of temperature. We choose

𝑉 (𝜙) = 12 [𝛼2𝜙2 − 1]2 . (40)

In 3+1 dimensions in radial coordinates, (12) can be rewritten
as

− [ 1𝑟2 𝑑𝑑𝑟 (𝑟2 𝑑𝜙𝑑𝑟 )] + 𝑇
2

24
𝜕𝑉𝜙𝜙𝜕𝜙 − 12

𝜕𝐺 (𝜙)
𝜕𝜙 𝐸2

+ 𝜕𝑉 (𝜙)𝜕𝜙 = 0.
(41)

Recall that the solution for the electric field is

𝐸 (𝑟) = 𝑞4𝜋𝜀0𝐺 (𝜙) 𝑟2 . (42)

Substituting this solution into (41) one finds

− [ 1𝑟2 𝑑𝑑𝑟 (𝑟2 𝑑𝜙𝑑𝑟 )] + 𝑇
2

24
𝜕𝑉𝜙𝜙𝜕𝜙

− 12
𝜕𝐺 (𝜙)
𝜕𝜙 [ 𝑞4𝜋𝜀0𝐺 (𝜙) 𝑟2]

2 + 𝜕𝑉 (𝜙)𝜕𝜙 = 0.
(43)

Now, considering the fact that 𝐺(𝜙) = 𝑉(𝜙) and
𝜆 = 𝑞4𝜋𝜀0 , (44)

we have

− [ 1𝑟2 𝑑𝑑𝑟 (𝑟2 𝑑𝜙𝑑𝑟 )] + 𝑇
2

24
𝜕𝑉𝜙𝜙𝜕𝜙

− 𝜆22
𝜕𝑉 (𝜙)
𝜕𝜙 1

𝑉 (𝜙)2 𝑟4 +
𝜕𝑉 (𝜙)
𝜕𝜙 = 0,

(45)

which implies

[ 1𝑟2 𝑑𝑑𝑟 (𝑟2 𝑑𝜙𝑑𝑟 )]
= 𝜕𝜕𝜙 [𝑇

2

24𝑉𝜙𝜙 + 𝜆
2

2 1𝑉 (𝜙) 1𝑟4 + 𝑉 (𝜙)] .
(46)

Now, substituting the potential (40) into (46) gives

[ 1𝑟2 𝑑𝑑𝑟 (𝑟2 𝑑𝜙𝑑𝑟 )] = 𝜕𝜕𝜙 [𝑇
2

24 2 (−𝛼2 + 3𝛼4𝜙2)]
+ 𝜆2 𝜕𝜕𝜙 [(𝛼2𝜙2 − 1)−2] 1𝑟4
+ 𝜕𝜕𝜙 [12 (𝛼2𝜙2 − 1)2] .

(47)

Now, disregarding the term with 𝜆2 because we are
considering a relatively long distances (far from the charge
source 1/𝑟4- term), (46) gives

∇2𝜙 = 𝜕𝑉𝑒𝑓𝑓 (𝜙)𝜕𝜙 . (48)

Since 𝑉𝑒𝑓𝑓(𝜙) = 𝑉(𝜙) + (𝑇2/24)𝑉𝜙𝜙 and 𝑉(𝜙) = 1/2[(𝛼𝜙)2 −1]2, it follows that
𝑉𝑒𝑓𝑓 (𝜙) = 12 [(𝛼𝜙)2 − 𝑎2]

2 , (49)

where 𝑎2 = 1 − 𝑇2/𝑇2𝑐 and 𝑇2𝑐 = 4/𝛼2.The effective potential𝑉𝑒𝑓𝑓 indicates stability around the new vacuum 𝜙0 = 𝑎/𝛼
for 𝑇 < 𝑇𝑐 (true vacuum) and instability for 𝑇 ≥ 𝑇𝑐 (false
vacuum).

Now perturbing the tachyon fields around its true vac-
uum 𝜙0, that is, 𝜙(𝑟) 󳨀→ 𝜙0 + 𝜂(𝑟), where 𝜂(𝑟) is the small
fluctuation, we can expand (48) as

∇2 (𝜙0 + 𝜂) = 𝜕𝑉𝑒𝑓𝑓 (𝜙)𝜕𝜙 = ∇2𝜙0 + ∇2𝜂

= 𝜕𝑉𝑒𝑓𝑓𝜕𝜙
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜙0 +

𝜕2𝑉𝑒𝑓𝑓𝜕𝜙2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂 󳨀→

∇2𝜂 = 𝜕2𝑉𝑒𝑓𝑓𝜕𝜙2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂.

(50)

We have disregarded the terms of higher derivatives because
the second derivative is sufficient for our analysis; thus at 𝜙0 =𝑎/𝛼
∇2𝜂 = 4𝛼2𝑎2𝜂 = 4𝛼2 [1 − 𝑇2𝑇2𝑐 ] 𝜂 = −4𝛼

2 [𝑇2𝑇2𝑐 − 1] 𝜂
= −2𝐴𝜂,

(51)
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where 𝐴 = 2𝛼2[𝑇2/𝑇2𝑐 − 1] = −2𝑎2𝛼2. Now, developing the
Laplacian in (51) yields

𝜂󸀠󸀠 + 2𝑟 𝜂󸀠 + 2𝐴𝜂 = 0. (52)

This equation has a solution given by

𝜂 (𝑟) = cosh (√2 |𝐴|𝑟)
𝛼√|𝐴|𝑟 , (53)

where |𝐴| = −𝐴 = 2𝛼2(1 − 𝑇2/𝑇2𝑐 ). Hence, the dielectric
function for this solution is given as

𝐺 (𝜙) = 𝑉 (𝜙0 + 𝜂)
= 𝑉 (𝜙)󵄨󵄨󵄨󵄨𝜙0 + 𝑉󸀠 (𝜙)󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂 + 12 𝑉󸀠󸀠 (𝜙)󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂2
+ O (𝜂3) = 12 𝑉󸀠󸀠 (𝜙)󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂2,

(54)

where in the last step we went up to second order. This yields

𝐺 (𝑟) = 2𝛼2𝜂2 = 2|𝐴| 𝑟2 cosh2√2 |𝐴|𝑟. (55)

Substituting this result into the electric field equation modi-
fied by dielectric function 𝐺(𝑟) we have

𝐸 = 𝜆𝑟2𝐺 (𝑟) = 𝜆
𝑟2 [(2/ |𝐴| 𝑟2) cosh2√2 |𝐴|𝑟] . (56)

Using the well-known relation for determining electric field
potential, 𝑉(𝑟) = ∫𝐸𝑑𝑟, to determine the confinement
potential 𝑉𝑐(𝑟), we get

𝑉𝑐 (𝑟, 𝑇) = 𝜆√|𝐴| tanh (√2 |𝐴|𝑟)2√2 + 𝑐. (57)

Now, we can compare our equation (47) with the results of
[14, 44], for confinement of quarks and gluons with𝑁𝑐 colors

𝑑2𝜙 (𝑟)𝑑𝑟2 + 2𝑟 𝑑𝜙 (𝑟)𝑑𝑟
= − 𝑔264𝜋2𝑓𝜙 (1 −

1𝑁𝑐) exp(−
𝜙 (𝑟)𝑓𝜙 )

1𝑟4 ,
(58)

and thus, (47) can be rewritten as

𝑑2𝜙 (𝑟)𝑑𝑟2 + 2𝑟 𝑑𝜙 (𝑟)𝑑𝑟 = 𝜕𝜕𝜙 [𝑇
2

24 2 (−𝛼2 + 3𝛼4𝜙2)]
+ −4𝛼2𝜆2 [𝜙 (𝛼2𝜙2 − 1)−3] 1𝑟4
+ 𝜕𝜕𝜙 [12 (𝛼2𝜙2 − 1)2] .

(59)

Since the exponential and quadratic potentials in the former
and latter cases are just dielectric functions that modify the

charges, we can now identify our electric charge 𝑞 in terms
of the gluon charge 𝑔 by comparing the charge source 1/𝑟4-
terms of both (58) and (59) to obtain

4𝜆2𝛼2 = 𝑔232𝜋2𝑓𝜙 (1 −
1𝑁𝑐) . (60)

Therefore, identifying 𝛼2 = 1/𝑓𝜙 we find
𝜆 = 𝑔4𝜋 (1 − 1𝑁𝑐)

1/2 , (61)

where we have redefined 𝑔 󳨀→ 𝑔/2√2. Using (44) one can
readily find the following relationship between the charges:

𝑞 = 𝜀0𝑔√(1 − 1𝑁𝑐). (62)

Substituting the results obtained above into (57), we have

𝑉𝑐 (𝑟, 𝑇) = 𝑔4𝜋√(1 − 1𝑁𝑐)
√|𝐴| tanh (√2 |𝐴|𝑟)

2√2 + 𝑐. (63)

This represents the static potential observed for the con-
finement of quarks and gluons in the tachyon matter. At𝑇 = 0 we observe strong confinement regime at short
distances. For sufficiently large distances 𝑟 we observe a
steady deconfinement of the quarks and the gluons leading to
hadronization. At𝑇 ≥ 𝑇𝑐 the confinement vanishes leading to
the breaking of the QCD string tension.

Writing (63) in a more compact form, we have

𝑉𝑐 (𝑟, 𝑇) = 𝜎 (𝑇) 𝑟 + 𝑐 (64)

where 𝑐 is the integration constant and 𝜎 is the QCD
string tension which in this case depends explicitly on the
temperature.

The QCD string tension can be written as

𝜎 (𝑇) ≃ 𝑔4𝜋√(1 − 1𝑁𝑐)
|𝐴|2

≃ 𝑔𝛼24𝜋 √(1 − 1𝑁𝑐)[1 −
𝑇2𝑇2𝑐 ] .

(65)

At𝑇 = 0,𝜎 does no longer depend on temperature, indicating
a constant string tension that binds the quarks together. At
this temperature, the quarks and the gluons are automatically
in a confined state. At 𝑇 = 𝑇𝑐, 𝜎(𝑇 = 𝑇𝑐) breaks leading to
hadronization.

Plotting the results from (64) and (65) in Figures 1 and 2
we assumed that 𝛼 = 1 and 𝜆 = 1; with this, we get 𝑔/4𝜋 = 1,𝑁𝑐 ≫ 1, and 𝑐 = 0.

The static potential for the confinement regimes is
depicted in Figure 1. At nonzero temperatures 𝑇 ≤ 𝑇𝑐, the
potential rises linearly as expected, but the slope decreases
with steady increase in temperature from 𝑇 = 0 to 𝑇 ≃ 𝑇𝑐,
where the slope approaches zero. This represents an increase
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Figure 1: A plot of a potential 𝑉𝑐(𝑟, 𝑇) against 𝑟 for different
temperatures.
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Figure 2: A plot of the string tension 𝜎(𝑇) against 𝑇/𝑇𝑐.

in the energy and a decrease in the interactions between the
quarks and the gluons as temperature increases. At 𝑇 ≥ 𝑇𝑐
the confinement vanishes, showing a rise in the energy and
a reduction in the interactions of the quarks and the gluons,
making them free (asymptotically) in the hadrons. Figure 2
shows a sharp decrease in 𝜎(𝑇) (the coefficient of the linearly
increasing potential) with 𝜎 vanishing at 𝑇 = 𝑇𝑐.

The color dielectric function in (55) is plotted in Figure 3.
As we have earlier shown that 𝑉(𝑟) = 𝐺(𝑟) we can as well
say that 𝑉(𝑟, 𝑇) = 𝐺(𝑟, 𝑇). In this sense, we can clearly see
from Figures 1 and 3 that the confinement regime/tachyon
condensation (at 𝑟 󳨀→ 𝑟∗, where 𝑉(𝑟∗) = 𝐺(𝑟∗) 󳨀→0) coincides. We observe from Figure 3 that the tachyon
condensation corresponds to the minima of the curves 𝑇 =0, 𝑇1, 𝑇2, 𝑇3, 𝑇4. It is worth noting that the smaller theminima
the higher the depth of the curve and the higher the tachyon
condensation; hence we have more tachyons condensing at𝑇 = 0 and as the temperature increases the tachyons becomes
gradually free until 𝑇 ≥ 𝑇𝑐. This regime also coincides with
deconfinement phase as seen in Figure 1.Thus, by comparing
Figures 1 and 3 we can identify that the electric confinement
is associated with tachyon condensation [18].

4.2. Glueball Masses. The search for glueballs has been on
for a while now; unfortunately, the only evidence of its
existence is a “possible” candidate because it has not been
confirmed experimentally. They are known to be bound
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Figure 3: A plot of the color dielectric function𝐺(𝑟, 𝑇) against 𝑟 for𝑇1 = 0.5𝑇𝑐, 𝑇2 = 0.7𝑇𝑐, 𝑇3 = 0.8𝑇𝑐, 𝑇4 = 0.98𝑇𝑐, and 𝑇 = 0.

states of pure gluons, mixture of quark and gluon states
(hybride), multiquark bound states, etc. Their presence is the
consequence of gluon self-interactions in QCD theory. In
this section we will be focusing on scalar glueballs. They are
known to be the lightest in glueball mass; they have QCD
degrees of freedom with isospin quantum state of 𝐽𝑃𝐶 = 0++,
where 𝐽 is total spin, 𝑃 is parity, and 𝐶 is charge conjugation
with isospin 𝐼 = 0 for isoscalars [45–48].

4.2.1. Glueball Mass at 𝑇 = 0. From our model, the glueball
masses are expected to appear as excitations around the
vacuum and are given by [49]

𝑀2𝐺 = 𝜕
2𝑉 (𝜙)
𝜕𝜙2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜙0 = 4𝛼
2, (66)

with 𝑓𝛼 = 1/𝛼 representing the decay constant of the
tachyons; hence the glueball mass (𝑀2𝐺) depends on how fast
or slow the tachyon decays.

4.2.2. Glueball Mass at a Finite (𝑇). We start with (49) which
defines the effective potential of the model; we expand the
potential for 𝜙 󳨀→ 𝜙0 + 𝜂 about the true vacuum of the
effective potential, 𝜙0 = 𝑎/𝛼, as follows:
𝑉𝑒𝑓𝑓 (𝜙) = 𝑉 (𝜙)󵄨󵄨󵄨󵄨𝜙0 + 𝑉󸀠 (𝜙)󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂 + 12 𝑉󸀠󸀠 (𝜙)󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂2

+ O (𝜂3) = 12 𝑉󸀠󸀠 (𝜙)󵄨󵄨󵄨󵄨󵄨𝜙0 𝜂2 = 2𝛼2𝑎2𝜂2.
(67)

Comparing the second derivative above with the definition of
glueball mass in (66) we arrive at

𝑀2𝐺 (𝑇) = 4𝛼2𝑎2 = 𝑀2𝐺 (0) [1 − 𝑇2𝑇2𝑐 ] . (68)

Hence, at 𝑇 = 0 we retrieve (66) and at 𝑇 = 𝑇𝑐,𝑀2𝐺(𝑇) vanishes. This model seems to show a remarkable
resemblance with the lattice simulation results. The glueballs
should be seen as “rings of glue” which are kept together by
the string tension 𝜎(𝑇) contained in the interquark potential



8 Advances in High Energy Physics

and vanish at 𝑇 = 𝑇𝑐 when the string breaks depicting
deconfinement phase. At 𝑇 < 𝑇𝑐 the thermodynamic
properties of the model can be well understood and studied
in terms of gas of glueballs with𝑀2𝐺(𝑇) < 𝑀2𝐺(0) [50, 51].

We may now establish a relationship between string
tension and glueball masses through (66) and (65) at 𝑇 = 0,
i.e.,

𝜎 (0) ≃ 𝑔𝑀2𝐺 (0)16𝜋 √1 − 1𝑁𝑐 . (69)

Recalling that 𝑔 = √16𝜋𝛼𝑠/3 is the chromoelectric charge,
where 𝛼𝑠 = 0.45 is close to the QCD coupling constant, and
assuming 𝑁𝑐 = 3, we find the expected results √𝜎(0) = 420
MeV for a glueball mass𝑀𝐺(0) = 1184MeV [49].

To end this section, few comments in connection with
Section 3 are in order. Substituting the effective potential (67)
into the gluon condensate in (27) we get

⟨𝐺󸀠𝐹𝜇]𝐹𝜇]⟩ = 4 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 ⟨2𝛼2𝑎2𝜂2 − 1⟩
= 4 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨⟨2𝛼2 [1 − 𝑇2𝑇2𝑐 ] 𝜂

2 − 1⟩ . (70)

Hence, the gluon condensate decreases with increasing tem-
perature and vice versa. At𝑇 = 𝑇𝑐 we recover the well-known
gluon condensate at zero temperature

⟨𝐺󸀠𝐹𝜇]𝐹𝜇]⟩ = −4 󵄨󵄨󵄨󵄨𝜖V󵄨󵄨󵄨󵄨 . (71)

5. Conclusions

In our investigations we find the net static potential for
confinement phase of quarks and gluons as a function of
temperature. We used the Abelian QED theory to approxi-
mate the non-Abelian QCD theory. We do this by employing
a phenomenological effective field theory involving tachyon
field dynamics coupled to electromagnetism via color dielec-
tric function. The color dielectric function is responsible for
the long distance interactions to bring about confinement
in the infrared (IR) regime. It also modifies the gluon
condensate ⟨𝐺󸀠𝐹𝜇]𝐹𝜇]⟩, develops tachyon condensation, and
consequently allows confinement in the IR regime. We
show that the confinement is favored at short distances and
low temperatures, whereas deconfinement shows up at long
distances and higher temperatures in the tachyon matter.
Confinement of quarks and gluons coincides with tachyon
condensation within the same temperature ranges as it is
shown in Figures 1 and 3. As a result, deconfining phase at𝑇 ≥ 𝑇𝑐 does not correspond to the tachyon condensation as it
is seen in Figures 1 and 3. Consequently, tachyon condensa-
tion is associated with electric field confinement and, thus,
our results conform with QCD-monopole condensation as
predicted in the well-known dual scenario [32–34]. In such
dual scenario, the QCD-monopole condensation is necessary
for spontaneous chiral-symmetry breaking [32–34, 52–54].
Thus, in our setup it is expected that at the confining phase
(𝑇 < 𝑇𝑐) there is a spontaneous chiral-symmetry breaking,

while at the deconfining phase (𝑇 ≥ 𝑇𝑐) there is a restoration
of the chiral-symmetry.

The QCD string tension and scalar glueball mass were
also computed as a function of temperature. They both
decrease rapidly with temperature and break (vanish) at 𝑇 =𝑇𝑐. Finally, we intend to advance further studies in this subject
by studding confinement of fermionic tachyons using similar
approach.
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