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In the space-time of the nonstationary spherical symmetry Vaidya-Bonner black hole, an accurate modification of Hawking
tunneling radiation for fermions with arbitrary spin is researched. Considering a light dispersion relationship derived from
string theory, quantum gravitational theory, and the Rarita-Schwinger equation in the nonstationary spherical symmetry space-
time, we derive an accurately modified dynamic equation for fermions with arbitrary spin. By solving the equation, the modified
tunneling rate of fermions with arbitrary spin, Hawking temperature, and entropy at the event horizon of the Vaidya-Bonner
black hole are presented. We find that the Hawking temperature will increase, but the entropy will decrease compared with the
case without the Lorentz Invariation Violation modification.

1. Introduction

The theory of Hawking thermal radiation reveals the rela-
tionship between gravitational theory, quantum theory, and
statistical thermal dynamic mechanics [1]. After the research
of Hawking thermal radiation to all kinds of black holes [2],
Kraus and Wilczek did some modifications to the Hawking
thermal radiation adopting self-gravitational interaction [3].
Hereafter, researchers studied the Hawking tunneling radia-
tion for many types of black holes [4–9]. In 2007, Kerner
and Mann proposed a semiclassic method to investigate the
tunneling radiation of fermions with spin 1/2 [10, 11]. In
the later research, this semiclassic method is widely used to
calculate the tunneling radiation of the other type of particles
[12–14]. Yang and Lin developed Kerner and Mann’s theory
and proposed that the Hamilton-Jacobi method is efficient
for the tunneling of fermions [15, 16]. According to refer-
ences [15, 16], after choosing a suitable Gamma matrix and
considering the commutation relation of the Pauli matrix in
the Dirac equation, which describes the dynamic of the fer-
mion quite well, the Hamilton-Jacobi equation in the curved

space-time can be derived. This result means that the
Hamilton-Jacobi equation is also a very important equation
in the research of the tunneling theory of fermions. In recent
years, the Lorentz light dispersion relationship is generally
regarded as a basic relation in modern physics. It seems that
both general relativity and quantum mechanics are built on
this relationship. However, the research of quantum gravita-
tional theory indicates that the Lorentz relationship should
be modified in the high-energy case. Although scientists have
not built a successful light dispersion relationship in the
high-energy case, current researches are helpful to the devel-
opment of this theory. People usually estimate that the mag-
nitude of this modification should be in the Plank scale. It is
confirmed that both the Dirac equation and the Hamilton-
Jacobi equation must be modified if the Lorentz Invariation
Violation is considered. In such a case, only an accurate mod-
ification can efficiently research fermion tunneling radiation
from a black hole, such as the Vaidya-Bonner black hole. In
this paper, the most important progress is that we use a
new method which is suitable for fermions with an arbitrary
spin. We will research the exact modification of tunneling
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radiation for fermions with an arbitrary spin, considering the
Lorentz Invariation Violation.

2. Exact Modification of Arbitrary Spin Fermion
Rarita-Schwinger Equation and Hamilton-
Jacobi Equation

In the research of string theory, the authors proposed a rela-
tion [17–21]:

P2
0 = p2 +m2 − LP0ð Þαp2: ð1Þ

In the natural unit, P0 and p are the energy and momen-
tum of the particle with the static mass m, respectively. L is a
constant in the magnitude of the Plank scale, which comes
from the Lorentz Invariation Violation theory. In Equation
(1), α = 1 is adopted in the Liouville-string model. Kruglov
obtained a modified Dirac equation considering α = 2 [22].
Therefore, we substitute α = 2 into Equation (1) and get a
general Rarita-Schwinger equation in the flat space:

�γμ∂μ +
m
ℏ

− λℏ�γt∂t�γ
j∂j

h i
Ψα1⋯αk

= 0, ð2Þ

where ℏ is the reduced Plank constant, which equals 1 in the
natural units. λ is a very small constant. Ψα1⋯αk

is a wave
function, where the value of αk corresponds to a different
spin. The larger the αk, the higher the spin is. The wave func-
tion satisfies following supplementary condition:

�γμΨμ
α2⋯αk

= ∂μΨ
μ
α2⋯αk

=Ψμ
μα3⋯αk

= 0: ð3Þ

When k = 0 and Ψα1⋯αk
=Ψ, Equation (2) changes to

the Dirac equation for spin 1/2 and condition (3) disap-
pears automatically. When k = 1, Equation (2) describes
the dynamic of fermions with spin 3/2 and the condition
(3) also disappears automatically. Note that the commuta-
tion relation

γμ, γνf g = 2gμνI: ð4Þ

In the curved space-time, the Rarita-Schwinger equa-
tion can be rewritten as

γμDμ +
m
ℏ

− λℏγtDtγ
jDj

h i
Ψα1 ⋯ αk = 0, ð5Þ

where Dμ = ∂μ + ði/ℏÞeAμ, λ≪1, and λℏγtDtγ
jDj is a very

small term. For fermions with an arbitrary spin, the wave
function is

Ψα1⋯αk
= ξα1⋯αk

e i/ℏð ÞS, ð6Þ

where ξα1⋯αk
and S are matrices and the action of the fer-

mion, respectively. The line element of the nonstationary
Vaidya-Bonner black hole represented in an advanced
Eddington coordinate [23] is given by

dS2 = −F r, vð Þdv2 + 2drdv + r2 dθ2 + sin2 θdφ2� �
, ð7Þ

F r, vð Þ = 1 − 2M vð Þ
r

+ Q2 vð Þ
r2

, ð8Þ

where v is the Eddington time and MðvÞ and QðvÞ repre-
sent the mass and charge of the black hole changes with
time, respectively. When QðvÞ = 0, the nonstationary
Vaidya-Bonner black hole is reduced to the Vaidya black
hole. The electromagnetic four-potential of the Vaidya-
Bonner black hole is

Aμ =
Q
r
, 0, 0, 0

� �
= A0, 0, 0, 0ð Þ: ð9Þ

Corresponding to the line element (7), the inverse met-
ric tensor is

gμv =

0 1 0 0

1 Δ

r2
0 0

0 0 r−2 0
0 0 0 r−2 sin−2θ

0
BBBBBB@

1
CCCCCCA
, ð10Þ

where

Δ = r2 − 2Mr +Q2: ð11Þ

Because the component of the inverse metric tensor
g00 = 0 in the curved space-time of line element (7), so
Equations (5) and (6) become

�
iγ0 ∂vS + eA0ð Þ + iγj∂jS +m

+ λ ∂vS + eA0ð Þγ0γi∂iS
�
ξα1⋯αk

= 0:
ð12Þ

In this paper, the range for i and j in the superscript
and subscript satisfies i, j = 1, 2, 3. μ and ν in the super-
script and subscript are defined as μ, ν = 0, 1, 2, 3. Setting

Γμ = iγμ + λ ∂vS + eA0ð Þγ0γμ, ð13Þ

Equation (12) becomes

m + Γμ ∂μS + eAμ

� �� �
ξα1⋯αk

= 0: ð14Þ

Multiplying Γνð∂νS + eAνÞ in both sides of Equation
(14), then

Γν ∂νS + eAνð ÞΓμ ∂μS + eAμ

� �
ξα1⋯αk

−m2ξα1⋯αk
= 0: ð15Þ

Exchanging ν and μ in Equation (15), we get

Γμ ∂μS + eAμ

� �
Γν ∂νS + eAνð Þξα1⋯αk

−m2ξα1⋯αk
= 0: ð16Þ

Equations (15) and (16) are equivalent. Considering
γ0γ0 = g00 = 0, firstly adding the left side and the right side
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of Equations (15) and (16), respectively, and then dividing
the new equation by 2, finally combining with Equation
(13), we obtain

n
2g0j ∂vS + eA0ð Þ∂jS + gij∂iS∂jS

− i2λ ∂vS + eA0ð Þg0i∂iSγ
μ ∂μS + eAμ

� �
− λ2 ∂vS + eA0ð Þg0j∂jS

� �2 +m2
o
ξα1⋯αk

= 0:

ð17Þ

Defining

ml =
−2g0j ∂vS + eA0ð Þ∂jS − gij∂iS∂jS

2 ∂vS + eA0ð Þg0i∂iS

+
−m2 + λ2 ∂vS + eA0ð Þg0j∂jS

� �2
2 ∂vS + eA0ð Þg0i∂iS

,
ð18Þ

Equation (17) changes to

iλγμ ∂μS + eAμ

� �
ξα1⋯αk

+mlξα1⋯αk
= 0: ð19Þ

Multiplying iλγνð∂νS + eAνÞ at both sides, we get

λ2γμγν ∂μS + eAμ

� �
∂νS + eAνð Þξα1⋯αk

+m2
l ξα1⋯αk

= 0: ð20Þ

By exchanging μ and ν for Equation (20), then

λ2γνγμ ∂νS + eAνð Þ ∂μS + eAμ

� �
ξα1⋯αk

+m2
l ξα1⋯αk

= 0: ð21Þ

Combining Equations (20), (21), and

γνγμ + γμγν = 2gμνI, ð22Þ

it is easy to get

λ2gμν ∂μS + eAμ

� �
∂νS + eAνð Þ +m2

l

� �
ξα1⋯αk

= 0: ð23Þ

Equation (23) is a matrix equation. In fact, it is an
eigenvalue matrix equation. The condition for the nonsin-
gular solution of this eigenvalue matrix equation requires
that the corresponding value of the determinant is zero.
Combining Equations (18), (23), and (7), we get

2g0j ∂vS + eA0ð Þ∂jS + gij∂iS∂jS +m2

2 ∂vS + eA0ð Þg0i∂iS

+
−λ2 ∂vS + eA0ð Þg0j∂jS
� �2
2 ∂vS + eA0ð Þg0i∂iS

− λm = 0:
ð24Þ

Therefore,

2g0j ∂vS + eA0ð Þ∂jS + gij∂iS∂jS +m2

− 2λm ∂vS + eA0ð Þg0i∂iS
− λ2 ∂vS + eA0ð Þg0j∂jS

� �2 = 0:
ð25Þ

As λ≪1, oðλ2Þ is a high-order term. For accuracy of mod-
ification, the term oðλ2Þ is kept in Equations (17), (23), and
(24). If oðλ2Þ is ignored in Equation (17), one cannot obtain
a correct result. For the Vaidya-Bonner black hole, only this
derivation can get a correct result. In fact, Equation (25) is
the dynamic equation describing an arbitrary spin fermion
in the Vaidya-Bonner space-time. Moreover, this equation
is derived from the Rarita-Schwinger equation in the curved
space-time with the Lorentz Invariance Violation. So this
equation is a deformation of the Hamilton-Jacobi equation
or can be called exactly as the Rarita-Schwinger-Hamilton-
Jacobi equation. The first two terms of this equation can be
expressed as gμνð∂μS + eAμÞð∂νS + eAνÞ. Considering Equa-
tion (10), one can obtain the first two terms in Equation
(25), so Equation (25) can be rewritten as

gμν ∂μS + eAμ

� �
∂νS + eAνð Þ +m2

− 2λm ∂vS + eA0ð Þg0i∂iS
− λ2 ∂vS + eA0ð Þg0j∂jS

� �2 = 0:
ð26Þ

From this equation, we can get the action of the fermion
and then study the modified tunneling radiation of fermions.
Equation (26) is a highly accurate dynamic equation because
the term oðλ2Þ is not ignored during the derivation and the
Lorentz Invariance Violation is included. If it is not done so,
an accurate modification cannot be obtained. Note that the
modification of boson Hamilton-Jacobi equation is different
from this method [24, 25]. This indicates the significance of
accurate modification of tunneling for particles with an arbi-
trary spin. In the following, we will derive the thermal
dynamic characteristics at the horizon of the Vaidya-
Bonner black hole.

3. Tunneling Modification for Fermions with
Arbitrary Spin in Vaidya-Bonner Black Hole

The Vaidya-Bonner black hole is a charged nonstationary
spherical black hole; the line element is shown in Equation
(7). The event horizon of the Vaidya-Bonner black hole is
determined by the zero supercurved equation

gμν ∂f
∂xμ

∂f
∂xv

= 0: ð27Þ

From Equations (10) and (27), we find that the event
horizon rH satisfies

r2H − 2MrH +Q2 − 2 _rHr
2
H = 0, ð28Þ

where _rH = drH/dv is the change rate of rH with time. Solving
Equation (28), we get

rH = M ± M2 −Q2 1 − 2_rHð Þ� �1/2
1 − 2_rH

, ð29Þ
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where “+” denotes the event horizon of the Vaidya-Bonner
black hole. From Equations (10) and (25), the accurate
dynamic equation of fermions with an arbitrary spin is

Δ

r2
∂S
∂r

� �2
+ 1
r2

∂S
∂θ

� �2
+ 1
r2 sin2θ

∂S
∂φ

� �2

+ 2 ∂S
∂v

+ eA0

� �
∂S
∂r

� �
+m2 − 2λm ∂S

∂v
+ eA0

� �

� ∂S
∂r

� �
− λ2

∂S
∂v

+ eA0

� �2 ∂S
∂r

� �2
= 0:

ð30Þ

The key to research the tunneling is to get the action S of
fermions. For this black hole, the key is the solution of the
action in the direction of the radius, so a tortoise coordinate
transformation is necessary,

r∗ = r + 1
2κ ln r − rH vð Þ

rH v0ð Þ , ð31Þ

v∗ = v − v0, ð32Þ
where κ is the surface gravity, rH is the event horizon of the
black hole, and v0 is a special moment when the fermion
escapes from the event horizon. Both v0 and κ are constants.
From Equations (31) and (32), we have

∂
∂r

= 1 + 1
2κ r − rHð Þ

� 	
∂
∂r∗

, ð33Þ

∂
∂v

= ∂
∂v∗

+ _rH
2κ r − rHð Þ

� 	
∂
∂r∗

: ð34Þ

We make a separation of the variable to action S as

S v∗, rH , θ, φð Þ = R v∗, rHð Þ + Y θ, φð Þ, ð35Þ

and set

∂S
∂v∗

= ∂R
∂v∗

= −ω: ð36Þ

Substituting Equations (31), (32), (33), (34), (35), (36)
into Equation (30), then Equation (30) becomes

∂R
∂r∗

� �2 Δ

r2
1 + 2κ r − rHð Þ
2κ r − rHð Þ

� 	2
+ 2_rH 1 + 2κ r − rHð Þ½ �

2κ r − rHð Þ½ �2
(

− 2λm_rH
1 + 2κ r − rHð Þ½ �
2κ r − rHð Þ½ �2 − λ2

1
2κ r − rHð Þ½ �2

� ∂R
∂v∗

+ eA0

� �2
1 + 2κ r − rHð Þ½ �

)

+ 2 ∂R
∂v∗

+ eA0

� �
1 − λmð Þ 1 + 2κ r − rHð Þ½ �

κ r − rHð Þ
∂R
∂r∗

+m2 + λ

r2
+ o λ′2

 �

= 0,

ð37Þ

where λ′ = λ_rH . For simplification, it is suitable to keep the
first-order term of λ in the final results. Multiplying 2κðr −
rHÞ to both sides of Equation (37), and taking the limit for
the condition r⟶ rH , we get

∂R
∂r∗

� �2
− 2 1 − λmð Þ ω − ω0ð Þ ∂R

∂r∗

� �
= 0, ð38Þ

where ω0 = eQ/rH . The limit of the coefficient of ð∂R/∂r∗Þ2 is

lim
r→rH

1
2κ r − rHð Þr2 r2 − 2Mr +Q2� �

1 + 2κ r − rHð Þ½ ��
+ 2_rHr2 − 2λm_rHr

2 − λ2 ω − ω0ð Þ2r2� = 1:
ð39Þ

From Equations (33) and (38)

∂R
∂r

= 1 + 2κ r − rHð Þ
2κ r − rHð Þ

∂R
∂r∗

= 2 1 + 2κ r − rHð Þ
2κ r − rHð Þ 1 − λmð Þ ω − ω0ð Þ:

ð40Þ

Using the residue theorem to solve R in Equation (40),
we get

R± =
ð
2 1 + 2κ r − rHð Þ

2κ r − rHð Þ 1 − λmð Þ ω − ω0ð Þdr

= iπ
κ

1 − λmð Þ ω − ω0ð Þ ± ω − ω0ð Þ½ �:
ð41Þ

From Equation (39), κ in Equation (41) can be
obtained as

κ = rH −M − 2_rHrH − 2λm_rHrH − λ2 ω − ω0ð Þ2rH
2MrH −Q2 : ð42Þ

Due to λ≪ 1, the final result can only retain the λ term. In
Equation (41), “+” and “-” represent outgoing and ingoing
waves, respectively, from the horizon of the back hole.

So according to the tunneling theory, we get the tunnel-
ing rate for fermions with an arbitrary spin in the Vaidya-
Bonner space-time.

Γ = exp −2 Im Sð Þ = exp −2 Im R±ð Þ

= exp −
2π
κ′

ω − ω0ð Þ
� 	

= exp −
ω − ω0
TH′

 !
:

ð43Þ

The κ′ = κ/ð1 − λmÞ in Equations (42) and (43) is the
modified surface gravitational force at the event horizon of
the black hole. TH in Equation (43) is

TH′ =
κ′
2π = rH −M − 2_rHrH − 2λm_rHrH − λ2 ω − ω0ð Þ2rH

2π 1 − λmð Þ 2MrH −Q2� � :

ð44Þ
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This is a new form of the Hawking temperature after
modification in the Vaidya-Bonner black hole. Obviously,
the tunneling rate and temperature of the black hole have
been significantly modified. Adopting the Taylor expansion
for 1/ð1 − λmÞ and neglecting the high-order items of λ,
Equation (44) becomes

TH′ =
rH −M − 2_rHrH − 2λm_rHrH − λ2 ω − ω0ð Þ2rH

2π 2MrH −Q2� �
� 1 + λm + λmð Þ2+⋯� �

≈
rH −M − 2_rHrH + λm rH −M − 4_rHrHð Þ

2π 2MrH −Q2� �
= TH + λm rH −M − 4_rHrHð Þ

2π 2MrH −Q2� � ,

ð45Þ

where TH is the Hawking temperature without the Lorentz
Invariation Violation modification. Usually, _rH ≪ rH , so the
Hawking temperature becomes higher than that without
the Lorentz Invariation Violation modification.

4. Conclusions and Discussions

In this paper, based on the modified Dirac equation proposed
by Kruglov, we extend his work to the Rarita-Schwinger
equation which can describe fermions with an arbitrary spin
and accurately modify the semiclassic Hamilton-Jacobi equa-
tion. The characteristics of tunneling radiation from a non-
stationary spherical Vaidya-Bonner black hole are derived.
The results show that the tunneling rate, surface gravitational
force, and Hawking temperature, all of them should be mod-
ified by a term related to parameter λ. Although it is a minor
modification term, it is still valuable for further research. The
tunneling rate and Hawking temperature indicate all these
characteristics are still spherically symmetrical. Another
important parameter in thermal kinetics is entropy. The
modification of the Hawking temperature must induce the
change of entropy. According to the first law of thermal
kinetics of a black hole,

dM = TdS +VdJ +UdQ, ð46Þ

where V and U are the rotation potential and electromagnetic
potential of the black hole, respectively. For the Vaidya-
Bonner black hole, the modified entropy at r = rH is

dS = dM −UdQ

TH′
: ð47Þ

Equations (43), (44), (45), (46), (47) show a few new
results. We find that the modification of the Hawking temper-
ature and entropy is not only related to λ but also related to
_rH for the Vaidya-Bonner black hole. For the general case of
_rH≪rH , the Hawking temperature will increase, but the

entropy will decrease compared with the fiducial results
without the Lorentz Invariation Violation modification. As
_rH = 0, our results can reduce to the results of the Reissner-
Nordström black hole; as _rH =Q = 0, our results can reduce
to the results of the Schwarzschild black hole.

For the curved space-time with a component of inverse
metric tensor g00 = 0, the modified results will include λ
and λ2. In the results, keeping the main λ term is enough
since λ is very small. In our work, we have chosen the condi-
tion α = 2 for the modified light dispersion relation. In the
general case, this condition should be cut off. Therefore, a
more general modification method to the Rarita-Schwinger
equation and the tunneling it describes should be further
discussed.

Moreover, for the tunneling radiation of bosons, gµν in
the normal Hamilton-Jacobi equation of bosons should be
substituted by gµν + λuµuν, where u is an etheric-like vector.
Applying the inverse metric tensors of the Vaidya-Bonner
black hole and choosing a suitable u, one can obtain the
dynamical equation for bosons in the Vaidya-Bonner
space-time. The solution process of this new Hamilton-
Jacobi equation is similar to the method in this paper, such
as tortoise coordinate transformation and separation of a
variable. We will do a series of researches to these problems
in the future work.

Data Availability

The data used to support the findings of this study are
included within the article. The researchers can also contact
the corresponding author for more information.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (grants 11273020 and 11573022), the
Science Foundation of Sichuan Science and Technology
Department (grant 2018JY0502), the Science Foundation of
China West Normal University (grant 17YC050), and the
Natural Science Foundation of Shandong Province (grant
ZR2019MA059).

References

[1] S. W. Hawking, “Black hole explosions?,” Nature, vol. 248,
no. 5443, pp. 30-31, 1974.

[2] Y. Shu-zheng, Z. Jian-yang, and Z. Zheng, “The dependence of
Hawking thermal spectrum on angular variables,” Acta Phy-
sica Sinica (Overseas Edition), vol. 4, p. 147, 1995.

[3] P. Kraus and F. Wilczek, “Self-interaction correction to black
hole radiance,” Nuclear Physics B, vol. 433, no. 2, pp. 403–
420, 1995.

[4] M. K. Parikh and F. Wiltzek, “Hawking radiation as tunneling,”
Physical Review Letters, vol. 85, no. 24, pp. 5042–5045, 2000.

5Advances in High Energy Physics



[5] J. Y. Zhang and Z. Zhao, “New coordinates for Kerr–Newman
black hole radiation,” Physics Letters B, vol. 618, no. 1-4,
pp. 14–22, 2005.

[6] S. Z. Yang, “Kerr–Newman–Kasuya black hole tunnelling
radiation,” Chinese Physics Letters, vol. 22, no. 10, article
2492, 2005.

[7] A. Övgün and K. Jusufi, “Massive vector particles tunneling
from noncommutative charged black holes and their GUP-
corrected thermodynamics,” The European Physical Journal
Plus, vol. 131, no. 5, article 177, 2016.

[8] X. M. Kuang, J. Saavedra, and A. Övgün, “The effect of the
Gauss–Bonnet term on Hawking radiation from arbitrary
dimensional black brane,” The European Physical Journal C,
vol. 77, no. 9, article 613, 2017.

[9] I. Sakalli and A. Ovgun, “Hawking radiation and deflection of
light from Rindler modified Schwarzschild black hole,” EPL
(Europhysics Letters), vol. 118, no. 6, article 60006, 2017.

[10] R. Kerner and R. B. Mann, “Fermions tunnelling from black
holes,” Classical and Quantum Gravity, vol. 25, no. 9, article
095014, 2008.

[11] R. Kerner and R. B. Mann, “Charged fermions tunnelling from
Kerr–Newman black holes,” Physics Letters B, vol. 665, no. 4,
pp. 277–283, 2008.

[12] A. Yale and R. B. Mann, “Gravitinos tunneling from black
holes,” Physics Letters B, vol. 673, no. 2, pp. 168–172, 2009.

[13] K. Lin and S. Z. Yang, “Fermion tunnelling of a new form
Finslerian black hole,” Chinese Physics Letters, vol. 26, no. 1,
article 010401, 2009.

[14] R. Di Criscienzo and L. Vanzo, “Fermion tunneling from
dynamical horizons,” EPL (Europhysics Letters), vol. 82,
no. 6, article 60001, 2008.

[15] K. Lin and S. Z. Yang, “Fermion tunneling from higher-
dimensional black holes,” Physical Review D, vol. 79, no. 6,
article 064035, 2009.

[16] S. Z. Yang and K. Lin, “Black hole spacetime in generalized
Rastall gravity,” SCIENTIA SINICA Physica, Mechanica &
Astronomica, vol. 49, no. 7, article 070501, 2010.

[17] G. Amelino-Camelia and D. V. Ahluwalia, “Relativity in space-
times with short-distance structure governed by an observer-
independent (PLANCKIAN) LENGTH SCALE,” International
Journal of Modern Physics D, vol. 11, no. 1, pp. 35–59, 2002.

[18] J. Magueijo and L. Smolin, “Lorentz invariance with an invari-
ant energy scale,” Physical Review Letters, vol. 88, no. 19, article
190403, 2002.

[19] J. Ellis, N. E. Mavromatos, and D. V. Nanopoulos, “String the-
ory modifies quantum mechanics,” Physics Letters B, vol. 293,
no. 1-2, pp. 37–48, 1992.

[20] S. I. Kruglov, “Modified wave equation for spinless particles
and its solutions in an external magnetic field,”Modern Physics
Letters A, vol. 28, no. 6, article 1350014, 2013.

[21] T. Jacobson, S. Liberati, D. Mattingly, and A. Erratum, “A
strong astrophysical constraint on the violation of special rela-
tivity by quantum gravity,” Nature, vol. 424, no. 6952,
pp. 1019–1021, 2003.

[22] S. I. Kruglov, “Modified Dirac equation with Lorentz invari-
ance violation and its solutions for particles in an external
magnetic field,” Physics Letters B, vol. 718, no. 1, pp. 228–
231, 2012.

[23] W. B. Bonner and C. P. Vaidya, “Spherically symmetric radia-
tion of charge in Einstein-Maxwell theory,” General Relativity
and Gravitation, vol. 1, no. 2, pp. 127–130, 1970.

[24] S. Z. Yang, K. Lin, J. Li, and Q. Q. Jiang, “Lorentz invariance
violation and modified hawking fermions tunneling radia-
tion,” Advances in High Physics, vol. 2016, article 7058764, 7
pages, 2016.

[25] Z. W. Feng, Q. C. Ding, and S. Z. Yang, “Modified fermion
tunneling from higher-dimensional charged AdS black hole
in massive gravity,” The European Physical Journal C, vol. 79,
no. 5, p. 445, 2019.

6 Advances in High Energy Physics


	Influence of Lorentz Invariation Violation on Arbitrary Spin Fermion Tunneling Radiation in the Vaidya-Bonner Space-Time
	1. Introduction
	2. Exact Modification of Arbitrary Spin Fermion Rarita-Schwinger Equation and Hamilton-Jacobi Equation
	3. Tunneling Modification for Fermions with Arbitrary Spin in Vaidya-Bonner Black Hole
	4. Conclusions and Discussions
	Data Availability
	Conflicts of Interest
	Acknowledgments

