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The interaction of nucleon-nucleon (NN) has certain physical characteristics, indicated by nucleon, and meson degrees of freedom.
The main purpose of this work is calculating the ground-state energies of 2

1H and 4
2He through the two-body system with the

exchange of mesons (π, σ, and ω) that mediated between two nucleons. This paper investigates the NN interaction based on the
quasirelativistic decoupled Dirac equation and self-consistent Hartree-Fock formulation. We construct a one-boson exchange
potential (OBEP) model, where each nucleon is treated as a Dirac particle and acts as a source of pseudoscalar, scalar, and
vector fields. The potential in the present work is analytically derived with two static functions of meson, the single-particle
energy-dependent (SPED) and generalized Yukawa (GY) functions; the parameters used in meson functions are just published
ones (mass, coupling constant, and cutoff parameters). The theoretical results are compared to other theoretical models and
their corresponding experimental data; one can see that the SPED function gives more satisfied agreement than the GY function
in the case of the considered nuclei.

1. Introduction

One of the aims of nuclear structure theory is to derive
the ground-state properties. Such properties are related
to the constituents of matter, which are represented in
the physics of elementary particles with their characteris-
tics (electric charge, mass, spin, etc.) and how each particle
interacts with others [1]. Yukawa (1934) introduced an
assumption of some sort of field to be the reason of attrac-
tion between proton and neutron. This field is quantized,
characterized by the force of the short range, and its mass
equals 300 times of electron called Yukawa particle
(meson). Meson is a Greek word, which means intermedi-
ate, and this is the right description for meson which
transmits the nuclear force between hadrons; meson can
participate in weak, strong, and electromagnetic interac-
tions with a net electric charge. All mesons are unstable
and their lifetimes reach to hundredths of microseconds.

Each meson is characterized by quantum numbers,
principal number (n = 0, 1,⋯), orbital angular momentum
l = n − 1 (indicating the orbiting of quarks around each
other), magnetic number (m = −l,⋯, l), and spin s = 0 for
singlet state (1 for triplet state). The description of quan-
tum numbers can be illustrated by using the nuclear shell
model [2].

The interaction between each nucleon with all other
nucleons generates an average potential field where each
nucleon moves. The rules of Pauli exclusion principle govern
the occupation of orbital quantum states in the shell model
and postulate that under the meson exchange between two
nucleons, the wave function is a totally antisymmetrical
product wave function. The interacted nucleons have a
potential (the nuclear mean field) characterized by its depen-
dence on the position coordinates. There is an ability to cal-
culate the mean-field potential for electrons or in nuclei;
the calculation methods are very similar, but the interactions
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are different. The NN interaction is a fundamental problem
in nuclear physics. It had a variant success in describing the
nuclear properties; this determination ranged from the
empirical picture to fit the experimental data and to derive
it microscopically from the bare NN potential. Thus, there
is no unique NN potential to be the start point [3–5].

A microscopic description was provided in nuclear
models to include the elementary interaction between
nucleons. The original attempts to find the fundamental the-
ory of nuclear forces [6–10] were not so successful. The rea-
son for their failure was the pion dynamics which has been
restricted by the chiral symmetry [11, 12]. The quantum
description and field methods were included in making the
potential structure such as the Partovi-lomon model [13],
Stony Brook-group [14], Paris-group [15], Nijmegen-group
[16], and Bonn-group potentials [12]. The successful theoret-
ical models were based on OBEP, including one-meson
exchange and multimeson exchange, plus short-range phe-
nomenology. Inside a nucleus, there is a fact that nucleons
move quasi-independently from one to another which
achieves the concept of nuclear mean field (NMF); this fact
relies on Hartree-Fock interaction.

The microscopic description of degrees of freedom
related to nucleon and meson has to depend on a relativistic
quantum field to include the full structure of the medium
(spin structure) which is associated with the fermion field
of Dirac equation [17] and the bound-state energies. This
can be found by solving the Dirac equation which leads to
investigating the ground-state energies of nuclei which is
ensured by the calculation of the NMF potential with
Dirac-Hartree-Fock [18].

It is known that the NN interaction can be distinguished
into three parts: the first part is the long range at r ≥ 2 fm
originated from pseudoscalar mesons; the second part is the
medium range at 1 fm ≤ r ≤ 2 fm, which mainly comes from
the exchange of scalar meson (σ which is a fictitious scalar
meson responsible for attraction); and the third part is the
short range at r ≤ 1 fm, from the vector meson (ρ, ω,⋯)
exchange. In order to have a potential of NN interaction,
there were many models that serve this point [19–25]. After
little development in nuclear properties, the dominant part
of the interaction is central, having a strong repulsion at a
short range (r ≤ 0:7 fm) and attraction force at an intermedi-
ate range (>1 fm). There is a cancelation of major static
effects between vector and scalar mesons to maintain the sta-
bility of nucleus [26].

Now, a variant number of pseudoscalar, scalar, and
vector mesons are found; the vast advance of OBEP
models related to NN interaction not only for free param-
eter reduction but also for the accuracy and fitting them
with experimental data [12, 27]. The development of
quantum field theory and boson field Lagrangian by Hei-
senberg, Pauli, Dirac, and Rosenfeld in 1930 allows the
meson field coordinates to depend on themselves by
Yukawa in 1935. Firstly, Yukawa suggested the conjunc-
tion of a scalar field coordinate of mesons and then
extended to include vector fields by Proca (1936), and
Kemmer (1938) embraced the pseudoscalar, axial vector,
and antisymmetric tensor. Till now, there are a large num-

ber of modifications in the vector-scalar combinations as
well as pseudoscalar and pseudovector mesons.

The present work represents a motivated model of deter-
mining the ground state for deuteron (2H) and helium (4He)
based on the NN interaction, the potential related to OBEP
with the exchange of pseudoscalar meson (π), scalar meson
(σ), and vector meson (ω). This potential is derived analyti-
cally with two static functions of mesons; it relies on the
Dirac-Hartree-Fock equation. Then, we compare the
obtained theoretical results with others and their corre-
sponding experimental data.

This paper is arranged as follows. Section 2 is devoted
to explain the theoretical analysis in details, with three
subsections, 2.1, 2.2, and 2.3. Subsection 2.1 refers to
how this model uses the Hartree-Fock equation with the
Dirac Hamiltonian and how it deals with the wave
functions. Subsection 2.2 is related to the mathematical
treatment of each term in the Hamiltonian equation. Sub-
section 2.3 represents the potential of our model. Section 3
represents the results of the potential and ground-state
energy for the selected nuclei. Finally, Section 4 is the
conclusion.

2. Theoretical Analysis

There are several models which determine the structure and
properties of the nucleus through the strong force between
nucleons in the nucleus [28, 29]. The states of the nucleus
are bounded due to this strong force. The nature of nucleon
interactions can be described by studying it as a two-body
problem. The general wave equation used in such models
has the form

Ĥ Ψj i = E Ψj i, ð1Þ

where Ĥ represents the general Hamiltonian operator and E
is the eigen energy. We studied the interaction through two
bodies via OBEP between two fermions (nucleons), so the
convenient representation of the energy is the relativistic
form of the Dirac equation.

Thus, the accurate interaction of the nuclear system can
be described by the Dirac Hamiltonian which includes all fer-
mion interactions and is given by [30–32]

Ĥ = 〠
A

i

cα!i:p
!

i + βi − Ið Þmic
2 − T̂ + 1

2〠
A

i≠j
Vij: ð2Þ

Since I is the unit matrix, α
!
and β are (4 × 4) Dirac matri-

ces, mi is the nucleon mass, p
!
i is the momentum of the sys-

tem, T̂ is kinetic energy operator, and Vij is the potential
energy between fermions’ pairs, we ignore three and many
body interactions in the present work. The total kinetic
energy of the nucleon equals the total energy subtracted from
the rest of the mass energy [33].

T̂ = E −Mc2, ð3Þ
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whereM = Ami, in which A is the number of nucleons and E
is the total relativistic energy which has the form

E =Mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + p2

M2c2

r
: ð4Þ

The kinetic energy can be decomposed into two contribu-
tions: the first one is the relative space contribution T̂ r, and
the other is the center of mass contribution T̂cm [34, 35].

T̂ =〠
i

T̂r − T̂cm =
∑A

i pi
� �2
2mA

−
∑A

i p
2
i

2mA
: ð5Þ

The second part of Equation (5) can be neglected. This
neglects the center of mass term ð∑A

i ðp2i /2mAÞÞ according
to [36]. Applying the binomial theorem for E and substitut-
ing into Equation (3), the relativistic kinetic energy T̂ takes
the form

T̂ =
∑A

i pi
� �2
2mA

= 1
2m〠

A

i=1
p2i −

2
mA

〠
A

i<j
p2ij, ð6Þ

where pij = 1/2ðpi − pjÞ is the relative momentum of the two
nucleon systems. By substituting Equation (6) into Equation
(2), this leads to the effective nuclear Hamiltonian operator.

Ĥ = 〠
A

i

cα!i:p
!

i + βi − Ið Þmic
2 −

1
2mp2 + 〠

A

i<j
Vij +

2
mA

〠
A

i<j
p2ij:

ð7Þ

In Hartree-Fock theory, we seek the best single state
given by the lowest energy expectation value of this
Hamiltonian.

2.1. Variational and Modified Hartree-Fock Wave Function.
One is able to ensure the antisymmetry of the fermions’ wave
functions with the aid of a Slater determinant and Hartree
product to have the convenient form in calculating the
ground-state energy as the following wave function which
is suitable for fermions [33]. So, the wave function of nucleus
ΨðrÞ becomes

Ψ rð Þ = 1ffiffiffiffiffi
A!
p det ψi r!i

� �
, ð8Þ

where ψi is the nucleon wave function which can be
expanded as

ψi r!i

� �
=〠

α

CiαFα r!i

� �
ð9Þ

where Ciα is the oscillator constant and Fαð r!iÞ is the oscilla-
tor wave function which has two components, radial compo-
nent Φα and spin component χα.

Faj i =
Φa

Xa

�����
+
: ð10Þ

The two components have the following relation between
them [17, 37], as

χ = 1 − ε − v
2Mc2

� � σ
! · p!

2mc
ϕ: ð11Þ

The principle of antisymmetry of the wave function was
not clarified by the Hartree method only, but the accurate pic-
ture of the ground-state energy calculations should have the
Hartree-Fock approximation besides the Slater determinant
as in Equation (8) for the wave function. To facilitate the cal-
culation of the wave function, we will use Equation (11) which
enables replacing between the two parts of the oscillator wave
function with the quantities of 1, 2, and 3. Here, we are dealing
with the ground state, so ðε − vÞ/c2 makes the value of the sec-
ond term very small and can be neglected.

χ ≅
σ
! · p!

2mc
ϕ ð12Þ

The wave functions for two nucleons i and j have the for-
mula for bra part hΦaðriÞϕγðrjÞj and ket part jϕβðriÞϕδðrjÞi
as the bracket needs two wave functions in each side of the
bracket:

ϕα rið Þϕγ rj
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

lαsαmlα
msα

jαMαj� �
� lγsγmlγ

msγ
jγMγ

���� �
ϕnαlαmlα

rið Þϕnγlγmlγ
rj
� �D ���

� χ1/2
msα

χ1/2
msγ

D ��� P̂Tα
P̂Tγ

D ���,
ð13Þ

where ðlαsαmlα
msα
jjαMαÞ is the Clebsch-Gordon coefficient,

χ1/2
msα

is the spin function, and P̂Tα
is the function of isotopic

spin. The two wave functions depend on ri and rj which can
be merged to one wave by changing the special coordinates
for it that converts to the relative and center ofmass coordinates
(see Appendix A for more details). Then, we have the formula

ϕα rið Þϕγ r j
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

〠
lS

〠
λμ

〠
nlNL

〠
mM

〠
sms

〠
T

� lαsαmlα
msα

jαMαj� �
lγsγmlγ

msγ
jγMγ

���� �
� lαlγmlα

mlγ
λμj

� �
nαlαnγlγ NLnlj� 	

� lSmlmS JMjð Þ LlMm λμjð Þ
� sαsγmsα

msγ
SMsj

� �
sαsγTαTγ TMTj� �

� ϕnlm rð ÞϕNLM Rð Þh j χS
ms

i, jð Þ
D ��� P̂T i, jð Þ� ��,

ð14Þ
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where hnαlαnγlγ ∣NLnli is the Talmi-Moshinsky bracket and
ϕnlmðrÞ = RnlmYnlm, with radial function Rnlm and Ynlm the
spherical harmonics; the same treatment happens to the ket
part. The bracket of the spin function is hχS

ms
ði, jÞ ∣ χS

ms
ði, jÞi

= 1, and the isotopic function is hP̂Tði, jÞ ∣ P̂Tði, jÞi = 1. This
formula is convenient for two-body interaction as in Deu-
teron, and the number of nucleons of the Helium nucleus
should be emerged in an equation through adding Σ4

i<j=1.
The bracket for spherical functions equals one as ϑ and φ
are not affected here, but the distance r does. We have the
solution of radial wave function as an oscillator with the
Laguerre function (Leigh, Ritz, and Galerkin) method [38]
where the wave function can be expanded in terms of a com-
plete set with basis set:

Rnlm = 2n!
Γ n + l + 3/2ð Þ

 �1/2 1

b

� 3/2 r
b

� �l
exp −1

2
r
b

� �2� 
Ll+1/2n

r
b

� �2
:

ð15Þ

l represents the angular momentum, Ll+ð1/2Þn is the associ-

ated Laguerre polynomial [39], and the length parameter b

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏcÞ2/ðmc2 ℏωÞ

q
, where m is the mass of the considered

particles (nucleons) and ω is the oscillator frequency. The
simplest shell model should have the overall size of the
nucleus through the scale of this parameter, and it is related
to the number density of nucleons or equivalent to ℏω = 45
A−ð1/3Þ − 25A−ð2/3Þ according to the equilibrium density A of
the even-even nucleus [40].

2.2. The Handling of the Kinetic Energy Term. Using Equa-
tions (9), (10), and (7), we obtain the relativistic modified
Hartree-Fock equations, and we apply the Lagrange multi-
plier method for seeking the minimum point of the
expression:

〠
iαβ

hiC
∗
iαCiβ Fα ∣fFβ

D E
=〠

iαβ

C∗
iαCiβ Fα rð Þ ∣ cα!i:p

!
i + βi − Ið Þmic

2
D

−
1
2mp2i ∣ Fβ

E
+〠

i<j
〠
αγβδ

C∗
iαCiβC

∗
jγCjδ

� FαFγ ∣
2
Am

p2ij + Vij ∣ gFβFδ

� �
:

ð16Þ

Differentiating Equation (16) with respect to C∗
iα which

is the conjugate of the oscillator constant, one has

〠
iαβ

Ciβ Fα ∣ cαi:pi + βi − Ið Þmic
2 −

1
2mp2i ∣ Fβ

� �
+〠

i<j
〠
αγβδ

CiβC
∗
jγCjδ FαFγ ∣

2
Am

p2ij

�
+Vij ∣ gFβFδ

�
−〠

iαβ

hiCiβ Fα ∣ Fβ

� 	
= 0:

ð17Þ

Treating the first bracket as H1,

〠
iαβ

Ciβ Fα ∣ Ĥ1 ∣ Fβ

� 	
=〠

iαβ

Ciβ Fα ∣ cα
!

i:p
!

i

D
+ βi − Ið Þmic

2 −
1
2mp2i ∣ Fβ

E
:

ð18Þ

Taking into account Dirac matrices [26, 41], α =

0 σ

σ 0

 !
, β =

I 0
0 −I

 !
, the unit matrix I =

1 0
0 1

 !
and pi = p:

Fα ∣H1 ∣ Fβ

� 	
= ϕα ∣

σ
!
:p
!� �

σ
!
:p
!� �

2m ∣ ϕβ

* +

+ ϕα ∣
σ
!
:p
!� �

σ
!
:p
!� �

2m ∣ ϕβ

* +

− ϕα ∣
σ
!
:p
!� �

σ
!
:p
!� �

2m ∣ ϕβ

* +

− ϕα ∣
p2

2m ∣ ϕβ

� �
− ϕα ∣

σ
!
:p
!� �

σ
!
:p
!� �

p2

2mð Þ 4m2c2ð Þ ∣ ϕβ

* +
= 0:

ð19Þ

We ignore the last term for both simplicity and
avoiding the fourth power of momentum and speed of
light ðp4/8m3c4Þ; hence, we have the kinetic term being
vanished.

2.3. The Construction of the Potential through One-Boson
Exchange. After the treatment of the kinetic energy, the
two-body Hamiltonian becomes

H =〠
i<j

2
Am

P2
ij +Vij

� 
: ð20Þ

The first term in the right hand side is the remainder part
results from the treatment of kinetic term in the Dirac equa-
tion as Equation (6), and VijðrÞ is the potential according to
the two-body interaction. The relativistic form of one-meson
exchange potential between two nucleons ði, jÞ based on the
degrees of freedom was associated with three, pseudoscalar,
scalar, and vector mesons:

Vij rð Þ =Vπ rð Þ + Vσ rð Þ +Vω rð Þ, ð21Þ

Vps rð Þ = γoi γ
5
i γ

o
jγ

j
5 Jps,

Vσ = −γoi γ
o
j Jσ,

Vω rð Þ = γoi γ
o
j γi
 μ

γ
!

j
μ
Jω,

ð22Þ

where γ
!
i
μ
γ
!

j
μ = ½γoi γoj − γ

!
i γ
!

j�:
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γoi =
1 0

0 −1

 !
γ5 = iγoγ1γ2γ3 =

0 I

I 0

 !
γ
!

i

=
I 0

0 −I

 ! 0 σi

−σi 0

 !
:

ð23Þ

The Dirac representation for mesons’ functions will
be used to have Dirac matrices corresponding to Pauli
spin matrices [30, 42]. Substitute Equations (23) and
(22) into Eq. (21) to get Vπ, Vσ, and Vω. We add
π-meson as a pseudoscalar one to the previous two
mesons because it ties the mesons with the nucleus
as it is the fare one. We seek for the stability of
the nucleus, and the exchange of pion meson increases
the stability of the nucleus. The attractive behavior is
represented in scalar ðσÞ meson, and the repulsive
behavior is represented in vector ðωÞ meson. So, the
physics of nucleon potential is maintained. The Fock
exchange between the two wave functions spatially is
introduced after interaction in the potential, briefly in
the (~) symbol on the right part (ket part).

FαFγ Vij

�� �� gFβFδ

D E
= FαFγ Vπ rð Þj jgFβFδ

D E
+ FαFγ Vσ rð Þj jgFβFδ

D E
+ FαFγ Vω rð Þ

��� ��� gFβFδ

D E
= ϕαh j ϕγ

D ���Jπ g
χβ

��� E
χδj i

+ ϕαh j χγ

D ���Jπ g
−ϕβ
��� E

χδj i + χαh j ϕγ

D ���Jπ g
χβ

��� E
−ϕδj i

+ χαh j χγ

D ���Jπ g
−ϕβ
��� E

−ϕδj i − ϕaϕγ

� �
Jσj j

g
ϕβϕδ

� �� �
+ ϕαχγ

� �
Jσj j

g
χβϕδ

� �� �
+ χαϕγ

� �
Jσj j

g
ϕβχδ

� �� �
− χαχy

� �
Jσj j

g
χβχδ

� �� �
+ ϕαϕγ

� �
Jωj j

g
ϕβϕδ

� �� �
+ ϕαχγ

� �
Jωj j

g
χβϕδ

� �� �
+ χaϕγ

� �
Jωj j

g
ϕβχδ

� �� �
+ χaχγ

� �
Jωj j χβχδ

� �D E
− ϕαϕγ

� �
Jω σ

!
i ⋅ σ
!

j

� ���� ��� g
χβχδ

� �� �
− ϕαχγ

� �
Jω σ

!
i ⋅ σ
!

j

� ���� ��� g
ϕβχδ

� �� �
− χαϕγ

� �
Jω σ

!
i ⋅ σ
!

j

� ���� ��� g
χβϕδ

� �� �
− χαχγ

� �
Jω σ

!
i ⋅ σ
!

j

� ���� ��� g
ϕβϕδ

� �� �
:

ð24Þ

According to the relation between ϕ and χ in Equation
(12) and defining the momentum for each nucleon (i, j)
[33, 43], pi = pr + ð1/2ÞpR, pj = −pr + ð1/2ÞpR, and pi = p′i,
pj = p′ j, and pr = p:

Substituting those relations into Equation (B.1), We will
apply some important relations [44] on this equation. We
have used two static functions for the meson degree of
freedom in the NN interaction, GY and SPED, with
(k = π, σ, ω). These forms were used to carry out our calcula-

tions for a Hartree-Fock problem (HF). The first function
[30] is represented by

Jkð ÞGY = gkℏc
exp −μkrð Þ

r
−
exp −λkrð Þ

r
1 + λ2k − μ2k

2λk
r

 ! !
:

ð25Þ

We have the following: g2
k is the meson-nucleon coupling

constant, λk is a parameter related to the structure function
of the form factor, and μk =mc/h is the range of i-meson
associated with the meson mass. The second function has
the form [33]

Jkð ÞSPED = gkℏc
λ2k

λ2k − μ2k

 !
exp −μkrð Þ

r
−
exp −λkrð Þ

r

� 
:

ð26Þ

The details to obtain the following equation is explained
in Appendices B and C:

FαFγ ∣Vij ∣ gFβFδ

D E
= ϕαϕγ

D ��� − Jσ + Jω +
1

4m2c2

� 2Jσp2 − 2ℏ2 dJσ
dr

d
dr

� �
+ 2
r
dJσ
dr

S
!
:L
!h i


+ 2Jωp2 − 2ℏ2 dJω
dr

d
dr

� �
+ 2
r
dJω
dr

S · L½ � − 6Jωp2 + 6ℏ2 dJω
dr

d
dr

� �
−
6
r
dJω
dr

S
!
· L
!h i

+ Jω σ
!

i · σ
!

j

� � 2
ℏ2

S · pð Þ2

− Jω σ
!

i · σ
!

j

� �
p2 + 2

ℏ2
S · pð Þ2 Jω σ

!
i · σ
!

j

� �
− p2 Jω σ

!
i · σ
!

j

� ��
+ 1
4m2c2

� −Jω σ
!

i · σ
!

j

� � 2
ℏ2

S · PRð Þ2 + Jω σ
!
i · σ
!

j

� �
p2R



+ 1/2ð Þp2RJσ + 1/2ð Þp2RJω

�
+ −ℏ2

m2c2
2S S + 1ð Þ − 3ð Þ

� dJπ
dr

d
dr

� 
−

1
mc2

2
ℏ2

S · n̂ð Þ2 − 1
� 

Jπ ℏω 2n + l + 3
2

� �
−
1
2mω2r2

 gϕβϕδE��� :

ð27Þ

With total spin operator S and the meson function
JðrÞ, to simplify the solution and get the result, we sup-
pose the nucleons of equal masses, so the relative mass
μ = ðm1m2/ðm1 +m2ÞÞ and center mass M =m1 +m2.
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FαFγ ∣ Vij ∣ FβFδ

� 	
= ϕαϕγ

���D
− Jσ + Jω +

1
8μ2c2 −ℏ2

dJσ
dr

d
dr

� �

+ 1
r
dJσ
dr

ℏ2

2 J J + 1ð Þ − L L + 1ð Þ − S S + 1ð Þ½ �
" ##

+ 2ℏ2 dJω
dr

d
dr

� �
−
2
r
dJω
dr

ℏ2

2 J J + 1ð Þ − L L + 1ð Þ − S S + 1ð Þ½ �
#"

+ 1
4μc2

"
Jσ rð Þ ℏω 2n + l + 3/2ð Þð Þ − 1/2μω2r2

� �
− 2Jω rð Þ ℏω 2n + l + 3/2ð Þð Þ − 1/2μω2r2

� �
+ 4 2S S + 1ð Þ − 3ð Þ 2

ℏ2
S:n̂ð Þ2 − 1

� 
Jω ℏω 2n + l + 3/2ð Þð Þð

− 1/2μω2r2Þ
#
+ 1
Mc2

−2 2S S + 1ð Þ − 3ð Þ 2
ℏ2

S:n̂ð Þ2 − 1
� 


� Jω ℏω 2N + L + 3/2ð Þð Þ − 1/2ð ÞMω2R2� �
+ Jσ + Jωð Þ ℏω 2N + L + 3/2ð Þð Þ − 1/2ð ÞMω2R2� �

Jω

�
+ −ℏ2

m2c2
2S S + 1ð Þ − 3ð Þ dJπ

dr
d
dr

� 
−

1
mc2

2
ℏ2

S:n̂ð Þ2 − 1
� 

� Jπ ℏω 2n + l + 3
2

� 
−
1
2mω2r2

�  gϕβϕδE��� :

ð28Þ

We substitute ðS · n̂Þ from [45]. The determination of
the energy eigen values requires the diagonalization of
the Hamiltonian matrix whose elements are calculated
with the functions of Equation (7). We have Equation
(28) to show that our model can determine a satisfied
result for S state with the meson functions Jσ, Jω, and
Jomega; the value of mesons’ wave functions depends on
distance r which is determined as follows:

(i) In the case of repulsive meson exchange ω, the lower
value of (r) is taken as the hadron radius ≃ 0:5 fm
and the upper value is calculated using the following
equation, where R is the range of meson and μ is the
mass of meson:

R = 1
μ

ð29Þ

(ii) In the case of the attractive meson exchange π and σ,
the upper limit of the previous case is taken as the
lower limit in this case and the upper limit is deter-
mined using Equation (29)

In the present work, we have applied our model to calcu-
late the ground states of 2H and 4He nuclei (A = 2, A = 4),
respectively. We have determined for two nucleons and four
nucleons in 1S1/2-state according to nXj where n = 1, j = l + s,
and X represents the state. Table 1 shows the group of
parameters used for π, σ, and ω mesons. The set of parame-
ters are I and II that include mass μ, coupling constant (g),
and the cutoff λ parameters.

We have determined the ratio R, to ensure the accuracy
between the calculated results and the experimental data [47].

R = Etheor:
Eexp:

, ð30Þ

where Etheor is the calculated ground state and Eexp the exper-
imental one. We can also determine the binding energy per
nucleon E/A for the studied nuclei as [48]

E
A

= −
Eg:s:
A

, ð31Þ

with the mass number A and the total ground state
energy Eg.s..

3. Results and Discussion

Table 1 represents the group of parameters used for π, σ, and
ω mesons. The set of parameters are I and II that include the
mass of meson, the coupling constant (g), and the cutoff
parameter (λ). The potential is elaborated to calculate the
ground-state energies for the H2, He4 nuclei. The results are
listed in Tables 2 and 3 in comparison with the experimental
data. The ratio between the present work and experimental
one is estimated for both cases, in other words, by using the
potential extracted from GY and SPED functions.

We have examined potential Equation (28) to calculate
the ground-state energy of H2 and He4 nuclei using two static
meson functions (GY and SPED) with two sets of parameters
listed in Table 1 which shows the different sets of the used
parameters and for different exchange mesons, σ and ω
mesons and π, σ, and ω mesons. The potential for different
cases is plotted in Figures 1−8.

Figures 1−8 illustrate the potential VðrÞ in MeV versus r
in fm for H2 and He4 nuclei for both cases (GY and SPED)
and for different sets of parameters (I and II) (Table 1).

Potential energy Equation (28) is illustrated in
Figures 1–8 by two sets of parameters. We have checked
them with different meson exchange function GY and
SPED. So, we categorize our results into two groups: for
the set I parameter with GY and SPED calculated within
σ and ω and for the set II parameter the same above for
both nuclei (H2 and He4).

All cases are calculated again within σ, ω, and π, in other
words, by adding the third exchange meson “π” which works

Table 1: The meson parameters for OBEP for different sets.

Ref Meson
Mass
(MeV)

Coupling
constant gi

Cutoff parameter
λ (MeV)

Set I [46]

π 138.03 14.9 2000

σ 700 16.07 2000

ω 782.6 28 1300

Set II [46]

π 138.03 14.40 1700

σ 710 18.37 2000

ω 782.6 24.50 1850
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Figure 1: The potential with GY and SPED functions, respectively, of 2H nuclei as OBEP through the exchange of σ and ω mesons, with
parameter I.
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Figure 2: The potential with GY and SPED functions, respectively, of 4He nuclei as OBEP through the exchange of σ and ω mesons, with
parameter I.

Table 2: The ground-state energy of 2H with the aid of Table 1.

Parameter
sets [46]

Meson
exchange

Present work
(GY)

Present
work (SPED)

Others
exp.

[49–51]
Ratio
GY

Ratio
SPED

E/A
GY

E/A
SPED

E/A
exp. [52]

I σ, ω −2:916 −2:041 -2.215[53] 1.311 0.918 1.458 1.0205

II −3:486 −1:973 −2:224 1.567 0.887 1.743 0.9865 1.112

I π, σ, ω −2:199 −2:248 -2.220 0.989 1.011 1.0995 1.124

II −2:168 −2:204 ±0:179[54] 0.975 0.991 1.084 1.102

Table 3: The ground-state energy of 4He with the aid of Table 1.

Parameter
sets [46]

Meson
exchange

Present work
(GY)

Present work
(SPED)

[55]
exp.

[47, 56]
Ratio
GY

Ratio
SPED

E/A
GY

E/A
SPED

E/A
exp.

I σ, ω −22:372 −20:238 1.0966 0.992 5.593 5.0595

II −22:751 −21:556 -21.385 -20.4±0:3 1.115 1.057 5.6877 5.389 5.1

I π, σ, ω −22:637 −20:375 1.109 0.999 5.659 5.0937

II −21:871 −20:337 1.072 0.997 5.4677 5.08425
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attractively at large r. Figures 1–4 represent category “I, II”
for two-meson exchange, respectively, and Figures 5–8
represent category “I, II” for three-meson exchange.
Figure 1(a) shows the potential by using the GY meson
function in which the effect of repulsive potential due to ω
meson appears at quite large distance, while the attractive

part does not appear clearly as the depth of the potential is
very small, the attractive part began with r~2:0 fm near to
the diameter of H2 nuclei and finished at r~0:7 fm.

Figure 1(b) is calculated by using the SPED meson func-
tion; in this case, a significant attractive potential began with
r~1:1 fm and ended at r~0:25 fm. (Figure 2) represents the
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Figure 3: The potential with GY and SPED functions, respectively, of 2H nuclei as OBEP through the exchange of σ and ω mesons, with
parameter II.
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Figure 4: The potential with GY and SPED functions, respectively, of 4He nuclei as OBEP through the exchange of σ and ω mesons, with
parameter II.
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Figure 5: The potential with GY and SPED functions, respectively, of 2H nuclei as OBEP through the exchange of π, σ, and ωmesons, with
parameter I.
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same manner of H4 nuclei with different values of the poten-
tial; the transferred point between the attractive and repulsive
parts is similar to the one in (Figure 1), and the beginning
point of the attractive part is controlled by the diameter of
nuclei.

It can be noticed that the depth of the attractive potential
extracted by the SPED function is greater than the one from

the GY function for both nuclei (Figures 1 and 2). But it
seems that, using set II, the behavior of two functions is close
to each other from the transferred point and the depth; the
difference between two nuclei is still the values of the attrac-
tive potential, and ω meson is the master here in which the
repulsive potential has more higher values and the effect of
σ has been damped (see Figures 3 and 4). The effect of the
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Figure 6: The potential with GY and SPED functions, respectively, of 4He nuclei as OBEP through the exchange of π, σ, and ωmesons, with
parameter I.
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Figure 7: The potential with GY and SPED functions, respectively, of 2H nuclei as OBEP through the exchange of π, σ, and ωmesons, with
parameter II.
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Figure 8: The potential with GY and SPED functions, respectively, of 4He nucleus as OBEP through the exchange of π, σ, and ωmesons, with
parameter II.
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third meson exchange π meson is added as shown in
Figures 5 and 6 for set I and Figures 7 and 8 for set II. Firstly,
again for set I, Figures 5 and 6 represent the potential that
behaves as the same before for two-meson exchange, in
which the attractive part increased very slowly. The depth
of the attractive potential increased significantly, π meson
flies at more than r~1:5 fm, and the transferred point has dif-
ferent values from the one in the two-meson exchange by
using the SPED function. On the other hand, for set II as
shown in Figures 7 and 8, GY and SPED have an improve-
ment in their transferred point and depth than in the two-
meson exchange; the SPED function is still better than the
GY function.

We observe from Tables 2 and 3 two sets of parameters
and how many mesons to be exchanged between two
nucleons and meson exchanges with two functions, and we
listed our results for each one for the selected nuclei. Mean-
while, if the ratio tends to unite, the ground energies would
be close to the experimental data. The preferable theoretical
value of the 2H nucleus in case of using two mesons is the
SPED function for parameter I, and by using three mesons,
we have the value of SPED in parameter II to be more accu-
rate than others. It is obvious from Tables 2 and 3 that the
ground energy is close to the data in the case of SPED func-
tion for set I and set II in comparison with the experimental
data. The 4He nucleus has a little different manner; the theo-
retical value of the SPED function for two mesons in param-
eter I is better than the value of the GY function. In case of
handling three mesons, SPED function in parameter II is
the best as shown in Table 3. Using the ratio relation is useful
to ensure that our results for the SPED function is better than
the GY function, and our attempt to include more two
mesons in OBEP analytically is successful in result improve-
ment. The ratio is getting a better result for going on more
massive nuclei and encouraged for our potential. We con-
cluded that the used model is well-defined and compatible
with the data and even with other models (see [57, 58]).
The deuteron ground-state energy is quiet a little different
from the numerical data in [54, 59] as a good sign for our
constructing potential analytically. The calculation of bind-
ing energy per nucleon serves our idea of being the OBEP
with three and four mesons in the case of SPED function
and gives satisfied values for Deuteron and Helium nuclei
comparing with the experimental one.

4. Conclusion

In the framework of quasirelativistic formulation, the meson
exchange potential helps in obtaining a potential with few
numbers of parameters to calculate the ground state for the
light nuclei Deuteron and Helium using two- (σ and ω)
and three- (π, σ, and ω) meson exchange. In addition, it
was shown that a self-consistent treatment of the semirelati-
vistic nucleon wave function in nuclear state has a great
importance in calculations. The difference in masses of σ
and ω mesons would not seriously change the main aspect
of the concept of relativistic or semirelativistic interaction,
providing an average potential of cancelation of the repulsive
meson (ω) and the attractive meson (σ) in conjunction with a

weak long-range effect (π). This work with OBEP in the
Dirac-Hartree-Fock equation gives a close relationship to
other recent approaches, based upon different formalisms
which tended to support this direction. The ground-state
energies for 2H and 4He nuclei are successfully determined
through this work and give us a hope to continue with more
massive nuclei. The nuclear properties are being clear in our
trail to include two more mesons to describe the NN interac-
tion through our potential. The SPED function has a good
ability to give us the better shapes of our potential and also
better values for energies. We hope that our potential repre-
sents a base for the NN interaction with different ranges of
energies in the following search.

Appendix

A. Wave Function with the Clebsch-
Gordon Coefficient

The wave functions for two nucleons i and j have a form with
Clebsch-Gordon coefficients.

ϕα rið Þϕγ rj
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

lαsαmlα
msα

jαMαj� �
� lγsγmlγ

msγ
jγMγ

���� �
ϕnαlαmlα

rið Þϕnγ lγmlγ

D
� r j
� �j χ1/2

msα
χ1/2
msγ

D ��� P̂Tα
P̂Tγ

D ���,
ðA:1Þ

where l is the orbital angular momentum; sγ is the
spin; the total angular momentum jα = lα + sα; jγ = lγ +
sγ; Mα =mlα

+msα
in which mlα

is the projection of
orbital quantum number;msα

is the projection of spin quan-

tum number; Mγ =mlγ
+msγ

; and P̂Tα
is the function of

isotopic spin. The two wave functions are not connected
and depend on ri and rj, so the two wave functions need to
be connected

ϕα rið Þϕγ r j
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

〠
λμ

lαsαmlα
msα

jαMαj� �
� lγsγmlγ

msγ
jγMγ

���� �
lαlγmlα

mlγ
λμj

� �
� ϕnαlαmlα

rið Þϕnγ lγmlγ
r j
� �D ���

� χ1/2
msα

χ1/2
msγ

D ��� P̂Tα
P̂Tγ

D ���:
ðA:2Þ

With λ = lα + lγ and μ =mlα
+mlγ

, we can change the spe-

cial coordinates for each wave function to become one wave
that depends on the relative mass and center of mass.
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ϕα rið Þϕγ rj
� ����D

= 〠
mlα

msα

〠
mlγ

msγ

〠
λμ

〠
nlNL

lαsαmlα
msα

∣ jαMα

� �
� lγsγmlγ

msγ
∣ jγMγ

� �
lαlγmlα

mlγ
∣ λμ

� �
� nαlαnγlγ ∣NLnl
� 	

ϕNLnl r, Rð Þjh χ1/2
msα

χ1/2
msγ

���D
� P̂Tα

P̂Tγ

���D
,

ðA:3Þ

where hnαlαnγlγ ∣NLnli is the Talmi-Moshinsky bracket, NL
is the total center of mass, and nl is the total relative. The
wave function ϕNLnlðr, RÞ can be spitted into the form

ϕα rið Þϕγ r j
� �D ��� = 〠

mlα
msα

〠
mlγ

msγ

〠
JM

〠
λμ

〠
nlNL

〠
mM

lαsαmlα
msα

jαMαj� �
� lγsγmlγ

msγ
jγMγ

���� �
lαlγmlα

mlγ
λμj

� �
� nαlαnγlγ NLnlj� 	

lSmlmS JMjð Þ LlMm λμjð Þ
� ϕNLM Rð Þϕnlm rð Þh j χ1/2

msα
χ1/2
msγ

D ��� P̂Tα
P̂Tγ

D ���
ðA:4Þ

As L gives the total orbital quantum number in the center
of mass, l gives the total orbital quantum number in relative
coordinates and S = si + sj is the total spin. Relative to the
spin functions and isospin functions to be connected, we
have to use them as follows:

ϕα rið Þϕγ rj
� ����D

= 〠
mlα

msα

〠
mlγ

msγ

〠
JM

〠
λμ

〠
nlNL

〠
mM

〠
sms

〠
sms

lαsαmlα
msα

∣ jαMα

� �
� lγsγmlγ

msγ
∣ jγMγ

� �
lαlγmlα

mlγ
∣ λμ

� �
� nαlαnγlγ ∣NLnl
� 	

lSmlmS ∣ JMð Þ LlMm ∣ λμð Þ
� sαsγmsα

msγ
∣ SMs

� �
sαsγTαTγ ∣ TMT

� �
� ϕNLM Rð Þϕnlm rð Þjh χS

ms
i, jð Þ
���D
P̂T i, jð Þ���

,

ðA:5Þ

with Tproton = −1/2 and Tneutron = 1/2.

B. The Derivation of OBEP through the
Exchange of Two Mesons

According to the relation between ϕ and χ in Equation (12),
one obtains

FαFγ ∣ Vij rð Þ ∣ gFβFδ

D E
= ϕαϕγ∣−Jσ + Jω +

1
4m2c2

σ
!

i · P
!

i

� �
Jσ σ

!
i · p′
!

i

� 
�
+ σ
!

j · P
!

j

� �
Jσ σ

!
j · p′
!

j

� 
+ σ
!

i · p
!

i

� �
Jω σ

!
i · p′
!

i

� 
+ σ
!

j · p
!

j

� �
Jω σ

!
j · p′
!

j

� 
− Jω σ

!
i · σ
!

j

� �
σ
!

j · p′
!

j

� 
σ
!

i · p′
!

i

� 
− σ
!

j · p
!

j

� �
Jω σ

!
i · σ
!

j

� �
σ
!

i · p′
!

i

� 
− σ
!

i · p
!

i

� �
Jω σ

!
i · σ
!

j

� �
σ
!

j · p′
!

j

� 
− σ
!

i · p
!

i

� �
σ
!

j · p
!

j

� �
Jω σ

!
i · σ
!

j

� ��
∣ gϕβϕδi:

ðB:1Þ

Defining the momentum for each nucleon (i and j),
pi = pR + ð1/2Þpr , pj = −pr + ð1/2Þpr , and pi = p′i and pj = p′j
[34, 44]. Substituting those relations into Equation (B.1), the
dependence of JðrÞ on the relative distance ðrÞ not on Rmakes
its movement with the center of mass operators more easy,
where pr = p and ðσi · prÞðσi · prÞ = p2r ; we obtain

FαFγ ∣ Vij rð Þ ∣ gFβFδ

D E
= ϕαϕγ

���D
− Jσ + Jω

+ 1
4m2c2

σ
!
i · p
!� �

Jσ σ
!

i · p
!� �

+ σ
!

j · p
!� �

Jσ σ
!

j · p
!� �h

+ σ
!
i · p
!� �

Jω σ
!

i · p
!� �

+ σ
!

j · p
!� �

Jω σ
!

j · p
!� �

+ Jω σ
!

i · σ
!

j

� �
σ
!

j · p
!� �

σ
!

i · p
!� �

+ σ
!

i · p
!� �

Jω σ
!

i · σ
!

j

� �
� σ
!

j · p
!� �

+ σ
!

j · p
!� �

Jω σ
!

i · σ
!

j

� �
σ
!

i · p
!� �

+ σ
!
i · p
!� �

σ
!

j · p
!� �

Jω σ
!

i · σ
!

j

� �
+ Jω σ
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i · σ
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j

� �
σ
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!� �

� σ
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i · p
!

R

� 
− Jω σ

!
i · σ
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j

� �
σ
!
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!

r

� �
σ
!

i · p
!� �

+ σ
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j · p
!� �

σ
!

i · p
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r

� �
Jω σ

!
i · σ
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j

� �
− σ
!

i · p
!� �

σ
!

j · p
!

r

� �
� Jω σ

!
i · σ
!

j

� �i
+ 1
8m2c2

σ
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σ
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!

r

� �
Jσ

h
+ Jσ σ

!
i · p
!
r

� �
σ
!
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!� �

− σ
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j · p
!� �

σ
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j · p
!

r

� �
Jσ

− Jσ σ
!

j · p
!
r

� �
σ
!

j · p
!� �

+ σ
!

i · p
!� �

σ
!

i · p
!

r

� �
Jω

+ Jω σ
!

i · p
!

r

� �
σ
!

i · p
!� �

− σ
!

j · p
!� �

σ
!

j · p
!
r

� �
Jω

− Jω σ
!

j · p
!

r

� �
σ
!

j · p
!� �

+ p2r Jσ + p2r Jω

− 2Jω σ
!

i · σ
!

j

� �
σ
!

j · p
!

r

� �
σ
!
i · p
!
r

� �i gϕβϕδE:���

ðB:2Þ

We will apply some important relations [60]:

(1) ðσ!1 · A
!Þðσ!1 · B

!Þ = A · B + iσ
!
1ðA × BÞ

(2) ðσ!1 · A
!Þ

2
= A2

(3) ðσ!1 · A
!Þðσ!2 · A

!Þ = ð2/ℏ2ÞðS · AÞ2 − A2

(4) ðσ! · A
!ÞFðrÞðσ! · A

!Þ = FðrÞA2 − iℏf∇FðrÞ · A + iσ½ð∇F
ðrÞÞ × A�g

(5) σ
!
iσ
!

j = 2δij − σji

Include these relations in potential equation.

FαFγ ∣ Vij rð Þ ∣ ~FβFδ

� 	
= ϕαϕγ∣−Jσ + Jω
D

+ 1
4m2c2

σ
!
i · p
!� �

Jσ σ
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+ σ
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Jσ σ
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!

j · p
!� �

Jω σ
!

j · p
!� �

+ Jω σ
!
i · σ
!

j

� �
σ
!

j · p
!� �

σ
!

i · p
!� �

+ σ
!
i · p
!� �

� Jω σ
!
i · σ
!

j

� �
σ
!

j · p
!� �

+ σ
!

j · p
!� �

Jω σ
!
i · σ
!

j

� �
σ
!
i · p
!� �

+ σ
!

i · p
!� �

σ
!

j · p
!� �

Jω σ
!
i · σ
!

j

� �i
+ 1
4m2c2

Jω σ
!

i · σ
!

j

� �
σ
!

j:p
!
r

� �
σ
!
i:p
!

r

� �
+ 1

2

� 
p2r Jσ



+ 1

2

� 
p2r Jω:

�
∣ ~ϕβϕδi

ðB:3Þ

11Advances in High Energy Physics



To get the solution of Equation (B.3), we substitute
every term as follows, using the relation of angular
momentum L = r! × p and σ = 2S/ℏ where S is the spin
operator, P = −iℏ∇, and ∇Jσ = ð1/rÞðdJσ/drÞr. According
to the previous relations and where σ2j = σ2x + σ2y + σ2

z = 1
as triplet case for two nucleons,

σ
!

j · p
!� �

Jω rð Þ σ
!

j · p
!� �

= σ
!

j · p
!� �

Jω rð Þσ2
j σi · pð Þ

= −3Jω rð Þp2 + 3ℏ2 dJω
dr

d
dr

� �
−
6
r
dJω
dr

S
!

j · L
!h i

,

σ
!

i · p
!� �

Jω rð Þ σ
!

iσ
!

j

� �
σ
!

j · p
!� �

= −3Jω rð Þp2 + 3ℏ2 dJω
dr

d
dr

� �
−
6
r
dJω
dr

S
!
i · L
!h i

:

ðB:4Þ

We substitute those terms in Equation (B.3)

FαFγ ∣Vij rð Þ ∣ ~FβFδ

� 	
= ϕαϕγ∣−Jσ + Jω
D

+ 1
4m2c2

2Jσ rð Þp2 − 2ℏ2 dJσ
dr

d
dr

� �
+ 2
r
dJσ
dr

S
!
:L
!h i


− 4Jω rð Þp2 + 4ℏ2 dJω
dr

d
dr

� �
−
4
r
dJω
dr

S · L½ �

+ Jω σ
!
i · σ
!

j

� � 2
ℏ2

S · pð Þ2 − Jω σ
!
i · σ
!

j

� �
p2

+ 2
ℏ2

S · pð Þ2 Jω σ
!

i · σ
!

j

� �
− p2 Jω σ

!
i · σ
!

j

� ��
+ 1
4m2c2

−Jω σ
!
i · σ
!

j

� � 2
ℏ2

S · prð Þ2 + Jω σ
!
i · σ
!

j

� �
p2r



+ 1/2ð Þp2r Jσ + 1/2ð Þp2r Jω

�
∣ ~ϕβϕδ

E
,

ðB:5Þ

with total spin operator S and the meson function JðrÞ, using
ðS · PÞ2 = ðS · n̂Þ2P2, ðσi · σjÞ = ð2/ℏ2ÞS2 − 3 and S · L = ðℏ2/2Þ
½JðJ + 1Þ − LðL + 1Þ − SðS + 1Þ� [46]. Quantum mechanics
have a magnificent tool; this tool is the harmonic oscillator
which is capable of being solved in closed form; it has generally
useful approximations and exact solutions of different prob-
lems [40]. It solves the differential equations in quantum
mechanics. We have the energy of a harmonic oscillator ðℏω
ð2n + l + 3/2ÞÞ which equals the kinetic energy ðP2/2mÞ added
to the potential energy ðð1/2Þmω2x2Þ to simplify the solu-
tion and get the result. It is slitted in relative harmonic
oscillator energy ℏωð2n + l + 3/2Þ = ðP2/2μÞ + ð1/2Þμω2r2

[36, 61], with ω that is the angular frequency, and the center
of mass contribution in harmonic oscillator energy ℏωð2N +
L + 3/2Þ = ðP2/2mÞ + ð1/2ÞMω2R2.

We suppose the nucleons of equal masses, so the rela-
tive mass μ = ðm1m2Þ/ðm1 +m2Þ =m/2 and the center mass
M =m1 +m2 = 2m.

FαFγ ∣ Vij rð Þ ∣ ~FβFδ

� 	
= ϕαϕγ

���D
− Jσ + Jω +

1
8μ2c2 −ℏ2

dJσ
dr

d
dr

� �

+ 1
r
dJσ
dr

ℏ2

2 J J + 1ð Þ − L L + 1ð Þ − S S + 1ð Þ½ �
" #

+ 2ℏ2 dJω
dr

d
dr

� �
−
2
r
dJω
dr

ℏ2

2 J J + 1ð Þ − L L + 1ð Þ − S S + 1ð Þ½ �
" #

+ 1
4μc2 Jσ rð Þ p2

2μ

� 
− 2Jω rð Þ p2

2μ

� 
+ 2Jω 2S S + 1ð Þ − 3ð Þ



� 2

ℏ2
S · n̂ð Þ2 − 1

� 
p2

2μ

� 
+ 2 2

ℏ2
S · n̂ð Þ2 − 1

� 
p2

2μ

� 
� Jω 2S S + 1ð Þ − 3ð Þ

#
+ 1
Mc2

−2 2S S + 1ð Þ − 3ð ÞJω rð Þ½

� 2
ℏ2

S · n̂ð Þ2 − 1
� 

p2r
2M

� 
+ p2r

2M

� 
Jσ +

p2r
2M

� 
Jω

#
~ϕβϕδ

E��� :

ðB:6Þ

The total formula of two-nucleons interaction through
the exchange of two mesons where pij = p and A1 is the
mass number of the required nuclei.

ϕα rið Þϕγ r j
� �

∣H ∣ ϕβ rið Þϕδ r j
� �D E

= 〠
mlα

msα

〠
mlγ

msγ

〠
JM

〠
λμ

〠
nlNL

〠
mM

〠
sms

〠
T

lαsαmlα
msα

∣ jαMα

� �
� lγsγmlγ

msγ
∣ jγMγ

� �
lαlγmlα

mlγ
∣ λμ

� �
nαlαnγlγ ∣NLnl
� 	

� lSmlmS ∣ JMð Þ LlMm ∣ λμð Þ sαsγmsα
msγ

∣ SMs

� �
� χαχγTαTγ ∣MTT
� �

RNLM Rð ÞYNLMRnlm rð ÞYnlmjh

� P̂T i, jð Þ��� 4
A1 ℏω 2n + l + 3/2ð Þð Þ − 1/2μω2r2
� �

− Jσ + Jω

+ 1
8μ2c2 −ℏ2

dJσ
dr

d
dr

� �
+ 1
r
dJσ
dr

ℏ2

2 J J + 1ð Þ − L L + 1ð Þ½
""

− S S + 1ð Þ�
#
+ 2ℏ2 dJω

dr
d
dr

� �
−
2
r
dJω
dr

ℏ2

2 J J + 1ð Þ − L L + 1ð Þ½
"

− S S + 1ð Þ
###

+ 1
4μc2 Jσ rð Þ ℏω 2n + l + 3/2ð Þð Þ − 1/2μω2r2

� ��
− 2Jω rð Þ ℏω 2n + l + 3/2ð Þð Þ − 1/2μω2r2

� �
+ 2Jω 2S S + 1ð Þ − 3ð Þ

� 2
ℏ2

S:n̂ð Þ2 − 1
� 

ℏω 2n + l + 3/2ð Þð Þ − 1/2μω2r2
� �

+ 2 2
ℏ2

S:n̂ð Þ2 − 1
� 

ℏω 2n + l + 3/2ð Þð Þ − 1/2μω2r2
� �

Jω

� 2S S + 1ð Þ − 3ð Þ� + 1
Mc2

−2 2S S + 1ð Þ − 3ð ÞJω rð Þ 2
ℏ2

S:n̂ð Þ2 − 1
� 


� ℏω 2N + L + 3/2ð Þð Þ − 1/2ð ÞMω2R2� �
+ ℏω 2N + L + 3/2ð Þð Þð

− 1/2ð ÞMω2R2ÞJσ + ℏω 2N + L + 3/2ð Þð Þð

− 1/2ð ÞMω2R2ÞJω
�

〠
mlβ

msβ

〠
mlδ

msδ

〠
JM

〠
λμ

〠
nlNL

〠
mM

〠
sms

〠
T

������
� lβsβmlβ

msβ
∣ jβMβ

� �
lδsδmlδ

msδ
∣ jδMδ

� �
� lαlγmlα

mlγ
∣ λμ

� �
nβlβnδlδ ∣NLnl
� 	

lSmlmS ∣ JMð Þ
� LlMm ∣ λμð Þ sβsδmsβ

msδ
∣ SMs

� �
� χβχδTβTδ ∣MTT
� �

RNLM Rð ÞYNLMRnlm rð ÞYnlmij P̂T i, jð Þ	�� :

ðB:7Þ
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C. The Treatment of Pseudoscalar Meson
within Our Potential

We choose pion π as a pseudoscalar meson to be added to the
previous two mesons, because it is the one which ties the
mesons with the nucleus as it is the fare one. We do not
choose another pseudoscalar meson as it demands a reaction
between two nucleons and we want to calculate the ground
state, so we seek for stability of the nucleus and the exchange
of pion meson increases the stability of the nucleus. We have
the pseudoscalar potential as

FαFγ ∣ Vps rð Þ ∣ ~FβFδ

� 	
= ϕα χαð Þ ∣ ϕγ χγ

� �
∣

1 0

0 −1

 !
i

0 1

1 0

 !
i

1 0

0 −1

 !
j

**

�
0 1

1 0

 !
j

Jπ ∣
ϕβ

χβ

0@ 1Ai ∣ ϕδ

χδ

 !+

= ϕα ∣ ϕγ ∣ Jπ ∣ ~χβ

D E
∣ χδ

D E
+ ϕα ∣ χγ ∣ Jπ ∣ ~−ϕβ

D E
∣ χδ

D E
+ χα ∣ ϕγ ∣ Jπ ∣ ~χβ

D E
∣−ϕδ

D E
+ χα ∣ χγ ∣ Jπ ∣ ~−ϕβ

D E
∣−ϕδ

D E
:

ðC:1Þ

Substituting from the previous relations in the treatment
of two mesons, we obtain

FαFγ ∣ Vps rð Þ ∣ ~FβFδ

� 	
= ϕα ϕγ
� �

∣
1

4m2c2
Jπ σ

!
j · p
!

j

� �
− σ
!

j · p
!

j

� �
Jπ σ

!
i · p
!

i

� �h�
− σ
!

i · p
!

i

� �
Jπ σ

!
j · p
!

j

� �
+ σ
!

i · p
!

i

� �
σ
!

j · p
!

j

� �
Jπ
i
∣ ϕβ ϕδ
� �i

= ϕi ϕj

� �
∣

1
4m2c2

−Jπ σ
!

j · p
!� �

σ
!

i · p
!� �h�

+ σ
!

j · p
!� �

Jπ σ
!

i · p
!� �

+ σ
!

i · p
!� �

Jπ σ
!

j · p
!� �

− σ
!

i · p
!� �

σ
!

j · p
!� �

Jπ
i
∣ ϕj ϕi
� �i:

ðC:2Þ

Using the relation ðσ!i:p
!Þðσ!j:p

!Þ = −ℏ2ðσ!i:σ
!

jÞðdJπ/drÞ
ðd/drÞ we obtain,

FαFγ ∣ Vps rð Þ ∣ ~FβFδ

� 	
= ϕαϕγ ∣

1
4m2c2

−Jπ 2 S:n̂ð Þ2P2� �
+ JπP

2��
− 2ℏ2 2S S + 1ð Þ − 3ð Þ dJπ

dr
d
dr

− 2 S:n̂ð Þ2P2 Jπ + p2 Jπ� ∣ ~ϕβϕδi

= ϕαϕγ ∣
−2ℏ2c2
4m2c4

2S S + 1ð Þ − 3ð Þ dJπ
dr

d
dr

� *

−
ℏω
2mc2

2n + l + 3
2

� 
2 S:n̂ð Þ2 − 1
� �

Jπ

−
ℏ2ω2

16ℏ2c2
Jπr

2� �
∣ ~ϕβϕδi:

ðC:3Þ
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