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It appears that having our own brane to somehow interact with other branes could give rise to quite an interesting system and that
interaction could lead to some observable effects. We consider the question of whether or not these signatures of interaction
between the branes can be observed. To answer this question, we investigate the effect induced by the inflaton in the WMAP7
data using the warm inflationary model. In this model, slow-roll and perturbation parameters are given in terms of the inflaton
thermal distribution. We show that this distribution depends on the orbital radius of the brane motion under the interaction
potential of other branes in extra dimensions. Thus, an enhancement in the brane inflation can be a signature of an orbital
motion in extra dimensions, and consequently, some signals of other branes can be detected by observational data. According to
experimental data, the N ≃ 50 case leads to ns ≃ 0:96, where N and ns are the number of e-folds and the spectral index,
respectively. This standard case may be found in the range 0:01 < Rtensor‐scalar < 0:22, where Rtensor‐scalar is the tensor-scalar ratio.
We find that at this point, the radial distance between our brane and another brane is R = ð1:5GeVÞ−1 in intermediate and R =
ð0:02225GeVÞ−1 in logamediate inflation.

1. Introduction

Recently, it was argued that the boundary conditions to be
imposed on the quantum state of the whole multiverse could
be such that brane universes could be created in entangled
pairs [1]. Also, the consideration of entanglement between
the quantum states of two or more brane universes in a mul-
tiverse scenario provides us with a completely new paradigm
that opens the door to novel approaches for traditionally
unsolved problems in cosmology, more precisely, the prob-
lems of the cosmological constant, the arrow of time, and
the choice of boundary conditions, amongst others [2]. Some
authors have tried to find direct evidence of the existence of
other brane universes using a dark energy model [3, 4]. Also,
some researchers show that other branes are made observable
for us through interaction with our own brane [5]. In their
paper, the orbital radius of our brane in extra dimensions

can be described according to the interaction potential of
other branes. In some scenarios, the properties of the interac-
tion potential are calculated for a composite quantum state of
two branes whose states are quantum mechanically corre-
lated [1, 2]. It appears that having our own brane to somehow
interact with other branes could give rise to quite an interest-
ing system and that interaction could lead to an orbital
motion in extra dimensions.

This scenario is very close to the well-known DGPmodel.
Dvali et al. [6] proposed a new braneworld model, named the
DGP model, having two branches. One branch is known as
the accelerating branch, i.e., the accelerating phase of the uni-
verse can be explained without adding a cosmological con-
stant or dark energy, whereas the latter one represents the
decelerating branch. In this paper, we generalize this model
and show that by the acceleration of branes, some extra fields
emerge. These fields dissolve into branes and lead to inflation.
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For this reason, these fields could be considered candidates
for inflation.

The main question is the possibility of considering the
properties of other branes against observational data. The
warm inflationary model helps us to perform precision tests
of the universal extra dimensional models and explore the
new physics against observational data. In this scenario, after
the period of inflation, the radiation of the universe becomes
dominant and the reheating epoch will not happen. The
results of this model are compatible with the WMAP7 and
Planck data [7]. In this theory, slow-roll and perturbation
parameters are given in terms of the thermal distribution of
the inflaton. On the other hand, this distribution is given in
terms of the orbital radius of the brane motion [5] in extra
dimensions. As the interaction potential increases, the effect
of the inflaton radiation from the horizon that appears in
the brane-antibrane system on the universe’s inflation
becomes systematically more effective because at higher
energies, there exist more channels for inflaton production
and its decay into particles.

The outline of the paper is as follows. In Section 2, we
consider the effect of the orbital radius of the brane motion
under the interaction potential of the other branes on the
thermal distribution of inflatons. In Section 3, using the
warm inflationary model, we analyze the signature of other
branes against observational data. The last section is devoted
to a summary and conclusion.

2. The Thermal Distribution of Inflatons near
the Appeared Horizon in the Brane-
Antibrane System

Previously, the dynamical behavior of a pair of Dp and anti-
Dp branes which move parallel to each other in the region
that the brane and antibrane annihilation will not occur
was considered [5]. Also, the orbital radius of the brane
motion due to the interaction potential in extra dimensions
was studied. Using these results, we calculate the thermal dis-
tribution of inflatons near the horizon that appears in the
brane-antibrane system and show that the thermal distribu-
tion of inflatons can be given in terms of the orbital radius
of the brane motion in extra dimensions.

The d-dimensional metric in the brane-antibrane system
is expressed as

ds2 = gµνdx
µdxν + gρσdx

ρdxσ + gabdx
adxb, ð1Þ

where gµν and gρσ are the p-dimensional metrics along the
Dp and anti-Dp branes, respectively, and gab is the ðd‐2pÞ
dimensional metric along the transverse coordinates.

Now, let us consider the wave equation of the inflaton in
extra dimensions between two branes:

−
∂2

c2∂χ2 +
∂2

∂r2

( )
B = 0, ð2Þ

where χ and r are the transverse coordinates between the two
branes. This equation corresponds to flat space-time. The
interaction potential between the Dp brane and the anti-Dp
brane in extra dimensions is of the type [5]

V Rð Þ ∼ 64π2μ4

27
, ð3Þ

where μ4 = ð27/32π2ÞT3h
4, hðRÞ = b4/R4, R is the orbital

radius distance between the two branes, T3 the brane tension,
and b the curvature radius of the AdS5 throat. This potential
leads to curved space-time.

There are more models for interbrane potential; however,
we make use of a symmetric model to explain the interaction
between two parallel and similar branes. This helps us to
understand the model better, and we could generalize it by
adding more corrections due to the nonsymmetric part of
potential. However, this is not the main thrust of this work.

Thus, to write the inflaton wave equation in curved
space-time, we should use the following reparameterizations:

r⟶ ρ r, χð Þ,
χ⟶ τ r, χð Þ,

ð4Þ

that lead to the following inflaton wave equation:

∂τ
∂r

� �2
−

∂τ
∂χ

� �2
( )

∂2

c2∂τ2
+

∂ρ
∂r

� �2
−

∂ρ
∂χ

� �2
( )

∂2

∂ρ2

" #
B = 0:

ð5Þ

We can normalize the distance between the two branes to
unity by making the following choices:

ρ r, χð Þ = r
R χð Þ ,

τ = βc2
ðχ
0
d ′t

R ′χ
� �
_R ′χ
� � − β

r2

2
:

ð6Þ

With the above considerations, the wave equation is writ-
ten as

−gð Þ1/2 ∂
∂xμ

gμν −gð Þ1/2 ∂
∂xμ

� �
B = 0, ð7Þ

where x5 = τ and x4 = ρ, and the metric elements are
obtained as

gττ = −
1

β2c2
R
_R

� � 1 − _R
2/c2

� �
ρ2

1 + _R/c2
� 	

ρ2

0
@

1
A,

g44 = R2
1 + _R

2/c2
� �

ρ2

1 − _R/c2
� 	

ρ2

0
@

1
A:

ð8Þ
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The horizon of this system is located at

rhorizon =
cR
_R
, ð9Þ

where c is velocity of light. In Kruskal coordinates, the metric
of the system becomes [8, 9]

ds2 = gμνdx
μdxν + gρσdx

ρdxσ

− rhorizon
e− r/rhorizonð Þ

r
d�ud�v + r2dθ2,

�u = −2rhorizone−u/2rhorizon , �v = −2rhorizone−v/2rhorizon ,

u = χ − r∗, v = χ + r∗, r∗ = −r − rhorizon ln r − rhorizonj j:
ð10Þ

Since the Killing vector in Kruskal coordinates is given by
∂/∂�u on the past horizon H−, the positive frequency normal
mode solution in Kruskal coordinates is approximated by

B∝ e−iω�u, ð11Þ

where ω is the inflaton energy in extra dimensions. Using this
fact that �v = 0 onH− [9], we can estimate the original positive
frequency normal mode on the past horizon as

B∝ e−iω�u =
�uj j

2rhorizon

� �−i2rhorizonω

=
−�u/2rhorizonð Þ−i2rhorizonω region Ið Þ,
−�u/2rhorizonð Þ−i2rhorizonrhorizon region IIð Þ:

8<
:

ð12Þ

In Equation (12), we can use the fact that ð−1Þ−i2rhorizonω
= e2rhorizonω. Using Equation (12), we observe that the inflaton
states in the horizon satisfy the following condition [9, 10]:

Bout − tanh rωBinð Þ systemj iin⊗out = 0,

tanh rω = e−2rhorizonω,
ð13Þ

which actually constitutes a boundary state. In fact, we can
view Hawking radiation as the pair creation of a positive
energy field that goes to infinity and a negative energy field
that falls into the horizon of the brane-antibrane system.
The pair is created in a particular entangled state. So the
Unruh state can be viewed as an entangled thermal state.
The above definition of the positive frequency solution in
terms of Bout and Bin leads to the Bogoliubov transformation
[8–10] for the particle creation and annihilation operators in
the brane-antibrane system and Minkowski space-times in
the exterior region of the system:

d = cosh rωαout − sinh rωα
†
in,

d† = cosh rωα
†
out − sinh rωαin,

tanh rω = e−2πrhorizonω,

ð14Þ

where d† and d are the creation and annihilation operators,
respectively, acting on the Minkowski vacuum, α†out and αout
are the respective operators acting on the brane-antibrane
vacuum outside the event horizon, and α†in and αin are the
respective operators acting on the brane-antibrane vacuum
inside the event horizon.

Thus, we can write the Bogoliubov transformation
between the Minkowski and curved creation and annihila-
tion operators as

d systemj iout⊗in = αout − tanh rωα
†
in

� 	
systemj iout⊗in = 0, ð15Þ

which actually constitutes a boundary state. Now, we assume
that the system vacuum jsystemiout⊗in is related to the flat
vacuum j0iflat by

systemj iout⊗in = F 0j iflat, ð16Þ

where F is a function to be determined later.
From ½αout, α†out� = 1, we obtain ½αout, ðα†outÞm� = ð∂/∂α†outÞ

ðα†outÞm and ½αout, F� = ð∂/∂α†outÞF. Then, using Equations
(15) and (16), we get the following differential equation for
F:

∂F
∂α†out

− tanh rωα
†
inF

� �
= 0, ð17Þ

and the solution is given by

F = etanh rωα
†
outα

†
in : ð18Þ

By substituting Equation (18) into Equation (16) and by
properly normalizing the state vector, we get

systemj iout⊗in =Netanh rωα
†
inα

†
out 0j iflat

=
1

cosh rω
〠
m

tanhmrω mj iout ⊗ �mj iin,
ð19Þ

where jmiin and j�miout are the orthonormal bases (normal
mode solutions) for a particle that acts on Hin and Hout,
respectively, and N is the normalization constant.

Equation (19) expresses that the states inside and outside
the horizon are entangled. However, this entanglement
depends on the event horizon and the horizon is given in
terms of R, the orbital radius of the brane motion in the inter-
action potential of the other brane, rhorizon = cR/R, and conse-
quently, the entanglement changes with the orbital radial
distance between the two branes. We derive the thermal dis-
tribution for inflatons in extra dimensions as the following:

Bh i = out⊗in systemh jα†inαin systemj iout⊗in
=

e−2πrhorizonω

1 − e−2πrhorizonω
:

ð20Þ

The above equation shows that different numbers of
inflatons are produced with different probabilities inside
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and outside of the apparent horizon in the brane-antibrane
system. These probabilities are related to the orbital radial
distance of the two branes and the energy of the inflatons.

3. Considering the Effect of Other Branes on
Cosmic Inflation by Using the Warm
Inflationary Model

In this section, we enter the effects of the interaction
potential between the branes on the results of the derivation
of slow-roll and perturbation parameters and other impor-
tant parameters in the inflationary model [7]. We show that
these parameters are given in terms of the orbital radial
distance between the two branes and describe the shape of
the interaction potential between branes. Also, using the
inflationary model, we discuss the signature of interaction
between branes against observational data.

Previously, it has been shown that in the FRW brane with
the metric

ds2 = gµνdx
µdxν = −dt2 − a2 tð Þdxidxi, ð21Þ

the dynamics of warm inflation is presented by these equa-
tions [7]:

_ρ + 3H P + ρð Þ = −Γ _B

 �2,

_ργ + 4Hργ = −Γ _B

 �2,

H2 =
1
2

_B

 �2 +V Bð Þ
� �

+
1
3
ργ,

V Bð Þ =m2 Bh i2,

ð22Þ

where ρ is the energy density, p is the pressure, ργ is the
energy density of the radiation, Γ is the dissipative coefficient,
hBi is the thermal distribution of the inflaton, and the over-
dot (˙) is the derivative with respect to cosmic time. In the
previous section, we discussed that the thermal distribution
of the inflaton can be given as a function of the orbital radial
distance between branes. Using this fact, we can rewrite the
above equations as

_ρ + 3H P + ρð Þ = −Γ
€RR − _R

2πωR2

 !2

,

_ργ + 4Hργ = −Γ
€RR − _R

2πωR2

 !2

,

H2 =
1
2

€RR − _R

2πωR2

 !2

+ V R, _R
� 	 !

+
1
3
ργ,

V R, _R
� 	

=m2 1 −
_R

2πωR

 !2

:

ð23Þ

Using quantum field theory methods [11, 12], the dissi-
pation coefficient (Γ) in the above equations could be calcu-
lated as

Γ = Γ0
T3

Bh i2 ~ Γ0
4π2ω2T3R2

_R
2 , ð24Þ

where T is the temperature of the thermal bath. During the
inflationary epoch, the energy density ρ is more than the
radiation energy density ρ > ργ; however, it is comparable

with the potential energy density VðB2Þ (ρ ~V) [7]. The
slow-roll approximation (h€Bi ≤ ð3H + ðΓ/3ÞÞh _Bi) [13, 14]
with the condition that inflation radiation production be
quasistable ( _ργ ≤ 4Hργ, _ργ ≤ Γh _Bi) leads to the following
dynamic equations [7]:

3H 1 +
r
3

� �
_B

 �

= −
1
2
′V ,

ργ =
3
4
r _B

 �2 = r

1 + r/3ð Þð Þ2
′V
2

V
= CT4,

H2 =
1
2
V ,

ð25Þ

where r = Γ/3H and C = π2g∗/30 (g∗ are the number of rela-
tivistic degrees of freedom). In the above equations, a prime (′)
denotes a derivative with respect to the field B. Using this
equation and the thermal distribution of the inflaton in Equa-
tion (20), we can obtain the dynamic equations with respect to
R, the orbital radial distance between the two branes:

3H 1 +
r
3

� � €RR − _R

2πωR2

 !
= −

1
2
′V R, _R
� 	

,

ργ =
3
4
r

€RR − _R

2πωR2

 !2

=
r

1 + r/3ð Þð Þ2
′V
2
R, _R
� 	

V R, _R
� 	 = CT4,

H2 =
1
2
V R, _R
� 	

,

ð26Þ

where the prime (′) denotes a derivative with respect to R.
From the above equations, the temperature of the thermal
bath is given by [7]

T = −
r _H

2C 1 + r/3ð Þð Þ

" #1/4
= −

r €RR − _R
� 	

4CπωR2 1 + r/3ð Þð Þ

" #1/4
: ð27Þ

This temperature depends on the orbital radial distance
between the two branes. As the branes come close to each
other, the temperature of the thermal bath increases. The rea-
son for this is as follows: with decreasing distance between the
two branes, the interaction potential increases and more infla-
tons radiate from the apparent horizon of the brane-antibrane
system.
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At this stage, we tend to calculate the dependency of
slow-roll parameters on the orbital radial distance between
different branes. These parameters in warm inflation are [7]

∈ = −
1
H

d
dt

ln Hð Þ,

η = −
€H

H _H
,

ð28Þ

where H = _a/a and a is the scale factor. To calculate these
parameters, we should determine the explicit form of the
scale factor.

Until now, eight possible asymptotic solutions for cos-
mological dynamics have been proposed [15]. Three of these
solutions have a noninflationary scale factor, and another
three solutions give de Sitter, intermediate, and power law
inflationary expansion. Finally, two cases of these solutions
have asymptotic expansion with the scale factor (a = a0 exp
ðAðln tÞλÞ. This version of inflation is named logamediate
inflation [16]. In this paper, we will study the warm tachyon

inflationary model in the scenarios of intermediate and loga-
mediate inflation.

Firstly, let us consider intermediate inflationary expan-
sion. In this model, the expansion of the universe is between
standard de Sitter inflation with the scale factor aðtÞ =
a0 exp ðH0tÞ and power law inflation with the scale factor
aðtÞ = tp, p > 1 (slower than the first one) [17, 18]. The scale
factor of this model has the form below [19–21]:

a = a0 exp Atf
� �

, 0 < f < 1, ð29Þ

where A is a positive constant. The number of e-folds in this
case is [7]

N =
ðt
t1

Hdt = A tf − t f1
� �

, ð30Þ

where t1 is the begining time of inflation. From Equations
(20), (24), (25), (26), (27), and (29), we obtain the Hubble
parameter as

where �ω = ðð6/Γ0Þð2C/3Þ3/4Þ
1/2ðð8ð f AÞ5/8ð1 − f Þ1/8Þ/ð5f + 2ÞÞ

and Γ0 is constant. This equation insists that the evolution
of our brane universe is affected by the number of inflatons

that are radiated from the apparent horizon of the brane-
antibrane system and it changes with an increase or decrease
in the orbital radial distance between the two branes.

The important slow-roll parameters ϵ and η are given by

H = f A
ln Bh i − ln B0h i

�ω

� � 8 f−1ð Þð Þ/ 5f+2ð Þ

= f A
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � 8 f−1ð Þð Þ/ 5f+2ð Þ

∼ f A
−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πrhorizonω
� 	� 	

�ω

� � 8 f−1ð Þð Þ/ 5f+2ð Þ

∼ f A
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

8 f−1ð Þð Þ/ 5f+2ð Þ

,

B = B0 exp �ω 5f+2ð Þ/8
� �

,

ð31Þ

∈ =
1 − f
f A

ln Bh i − ln B0h i
�ω

� �− 8f / 5f+2ð Þð Þ

=
1 − f
f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ

∼
1 − f
f A

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ

∼
1 − f
f A

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ

,
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respectively. These parameters depend on the orbital radial
distance between the branes. With a decrease in this distance,
more inflatons are radiated from the apparent horizon of the

system, the slow-roll parameters increase, and, as a result, the
universe inflates more.

The energy density of radiation in this case has the
following form:

According to this result, the radiation energy density is
given in terms of the orbital radius of the brane motion in
extra dimensions. As the interaction potential increases, the
effect of the inflaton radiation from the apparent horizon in
the brane-antibrane system on cosmic inflation becomes sys-

tematically more effective because at higher energies, there
exist more channels for inflaton production.

Using Equations (30) and (31), the number of e-folds
between the two fields B1 and B is given by

η =
2 − f
f A

ln Bh i − ln B0h i
�ω

� �− 8f / 5f+2ð Þð Þ

=
2 − f
f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ

∼
2 − f
f A

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �

∼
2 − f
f A

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ

,

ð32Þ

ργ = 3 1 − fð Þf A ln Bh i − ln B0h i
�ω

� � 8f−2ð Þ/ 5f+2ð Þ

= 3 1 − fð Þf A ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � 8f−2ð Þ/ 5f+2ð Þ

∼ 3 1 − fð Þf A −2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� � 8f−2ð Þ/ 5f+2ð Þ

∼ 3 1 − fð Þf A
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

8f−2ð Þ/ 5f+2ð Þ

:

ð33Þ

N = A
ln Bh i − ln B0h i

�ω

� �− 8f / 5f+2ð Þð Þ
−

ln B1h i − ln B0h i
�ω

� �− 8f / 5f+2ð Þð Þ" #

= A
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ"

−
ln e−2πr1,horizonω
� 	

/ 1 − e−2πr1,horizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ#

∼ A
−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ"
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This equation depends on hB1i and hB0i. To obtain the
explicit form of the number of e-folds in terms of the orbital
radius distance between the branes, we should find the rela-
tion between hB1i and hB0i. At the begining of the inflation
period where ε = 1, the inflaton in terms of constant param-
eters of the model is

B1h i = B0h i exp �ω
1 − f
f A

� � 5f+2ð Þ/8f !
⟶

e−2πr1,horizonω

1 − e−2πr1,horizonω

=
e−2πr0,horizonω

1 − e−2πr0,horizonω
exp �ω

1 − f
f A

� � 5f+2ð Þ/8f !

⟶ r1,horizonð Þ−1 ∼ r0,horizonð Þ−1 exp

� �ω
1 − f
f A

� � 5f+2ð Þ/8f !
− 1:

ð35Þ

From the above equations, we obtain the inflaton (BðtÞ)
and the distance between the two branes (RðtÞ) in terms of
the number of e-folds:

B tð Þh i = B0h i exp �ω
N
A

+
1 − f
f A

� � 5f+2ð Þ/8f !

⟶
e−2πrhorizonω

1 − e−2πr1,horizonω

=
e−2πr0,horizonω

1 − e−2πr0,horizonω
exp �ω

N
A

+
1 − f
f A

� � 5f+2ð Þ/8f !

⟶ rhorizonð Þ−1 ∼ r0,horizonð Þ−1 exp

� �ω
N
A

+
1 − f
f A

� � 5f+2ð Þ/8f !
− 1⟶ R tð Þ

= R0 exp −
ð
dtrhorizon N , tð Þ

� �
:

ð36Þ

This equation shows that the orbital radial distance
between the brane universes depends on the number of
e-folds. This means that as the distance between the branes
decreases, more inflatons are created near the apparent
horizon of the brane-antibrane system, and the number
of e-folds increases.

In Figure 1, we present the number of e-folds N for the
intermediate scenario as a function of R−1, where R is the
orbital radial distance between branes. In this plot, we choose
R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, A = 1,
and f = 1/2. It is clear that the number of e-folds N is much
larger for a smaller orbital radial distance between the branes.
This is because as the distance between the branes becomes
smaller, the temperature becomes larger and the thermal
radiation of the inflatons enhances.

Now, we will consider tensor and scalar perturbations
that appear during the inflationary period for the warm infla-
tion model. These perturbations may leave an imprint in the
CMB anisotropy and on the LSS [22–26]. The power spec-
trum and spectral index are characteristic of each fluctuation:
Δ2
RðkÞ and ns for scalar perturbations and Δ2

TðkÞ and nT for
tensor perturbations. In warm and cool inflation models,
the scalar power spectrum is given by [7]

Δ2
R =

H
_Bh i

δBh i
 !2

, ð37Þ

where the thermal fluctuation in the warm inflation model
yields [22–26]

δBh i = ΓHT2

4πð Þ3
 !1/4

: ð38Þ

Using Equations (20), (36), (37), and (38), we calculate
the scalar power spectrum as

−
−2πω r1,horizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πr1,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ#

∼ A
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ2
64

−
2πω R0/ _R0

� 	
− R1/ _R1
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R1/ _R1ð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ375:
ð34Þ

7Advances in High Energy Physics



where k is the comoving wavenumber. With the wavenumber
k = k0 = 0:002Mpc−1, the combined measurement from
WMAP+BAO+SN of Δ2

R is reported by the WMAP7 data
[27–29] as

Δ2
R = 2:455 ± 0:096ð Þ × 10−19: ð40Þ

Using this equation and Equation (39), and choosing
(A = 1, f = 1/2, _R = 0:1, ω = 4:6ðGeVÞ, and Γ0 = 1), we obtain
the radial distance between our brane and another brane,
R = ð1:5GeVÞ−1.

This result is consistent with previous calculations [30].
Another important perturbation parameter is the spectral

index ns which is given by

where we have used the thermal distribution in Equation
(20). In Figure 2, we show the results for the spectral index
in the intermediate scenario as a function of R−1, where R is
the orbital radial distance between the branes. In this plot,
we choose R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R =
0:1,A=1, and f = 1/2. As can be seen from Figure 2, the spec-
tral index decreases rapidly when the distance between the

branes increases. By comparing Figures 1 and 2, we find that
the N ≃ 50 case leads to ns ≃ 0:96. This result is compatible
with the observational data [7, 27–29, 31, 32]. At this point,
the radial distance between our brane and another brane is
R = ð1:5GeVÞ−1.

Using Equation (20), we can calculate the tensor power
spectrum and its spectral index as

Δ2
R = −

Γ3
0

36 4πð Þ3
 !1/2

H3/2

_H
=

Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8

Bh i3 ln Bh i − ln B0h i
�ω

� �− 15f−18ð Þ/ 5f+2ð Þð Þ

=
Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8
e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 15f−18ð Þ/ 5f+2ð Þð Þ

∼
Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8
e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �− 15f−18ð Þ/ 5f+2ð Þð Þ

∼
Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8
e−2π R/ _Rð Þω

1 − e−2π R/ _Rð Þω

 !3

×
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 15f−18ð Þ/ 5f+2ð Þð Þ

,

ð39Þ

ns − 1 = −
dlnΔ2

R

dlnk
=
15f − 18
8f A

ln Bh i − ln B0h i
�ω

� �−8f / 5f+2ð Þ

=
15f − 18
8f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼
15f − 18
8f A

−2πω rhorizon − r0,horizonð Þ + ln e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼
15f − 18
8f A

−2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

−8f / 5f+2ð Þ

,

ð41Þ
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These perturbations depend on the orbital radial distance
between the branes. As we discussed before, these perturba-
tions have a direct effect on the cosmicmicrowave background

(CMB). Thus, we can observe the signature of interaction
between the branes by means of observational data.

Another important parameter is the tensor-scalar ratio
that has the following form:

Δ2
T =

2H2

π2 =
2 f Að Þ2
π2

ln Bh i − ln B0h i
�ω

� � 16 f−1ð Þð Þ/ 5f+2ð Þ

=
2 f Að Þ2
π2

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � 16 f−1ð Þð Þ/ 5f+2ð Þ

∼
2 f Að Þ2
π2

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� � 16 f−1ð Þð Þ/ 5f+2ð Þ

∼
2 f Að Þ2
π2

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

16 f−1ð Þð Þ/ 5f+2ð Þ

,

ð42Þ

nT = −2ε = −
2 − 2f
f A

ln Bh i − ln B0h i
�ω

� �−8f / 5f+2ð Þ

= −
2 − 2f
f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼ −
2 − 2f
f A

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼ −
2 − 2f
f A

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

−8f / 5f+2ð Þ

:

ð43Þ

Rtensor‐scalar = −
144 4πð Þ3 f Að Þ4

Γ3
0π

4T2

 !1/2

_HH1/2 =
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

× Bh i3 ln Bh i − ln B0h i
�ω

� � f+2ð Þ/ 5f+2ð Þ

=
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � f+2ð Þ/ 5f+2ð Þ

∼
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
−2πω rhorizon − r0,horizonð Þ + ln 1 − e2πr0,horizonω

� 	
/ 1 − e2πrhorizonω
� 	� 	

�ω

� � f+2ð Þ/ 5f+2ð Þ

∼
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

e−2π R/ _Rð Þω

1 − e−2π R/ _Rð Þω

 !3

×
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

f+2ð Þ/ 5f+2ð Þ

:

ð44Þ
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In Figure 3, we present the tensor-scalar ratio in the inter-
mediate scenario as a function of R−1, where R is the orbital
radial distance between the branes. In this plot, we choose
R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, C = 70,
Γ0 = 1, A = 1, and f = 1/2. We observe that as the orbital
radius distance between branes increases, the tensor-scalar
ratio increases. By comparing Figures 2 and 3, we notice that
the standard case ns ≃ 0:96 may be found in 0:01 <
Rtensor‐scalar < 0:22, which agrees with the observational data
[7, 27–29, 31, 32]. At this stage, the radial distance between
our brane and another brane is R = ð1:5GeVÞ−1.

Now, we would like to consider the signature of interac-
tion between branes in the context of logamediate inflation
with the scale factor

a tð Þ = a0 exp A ln t½ �λ
� �

, ð45Þ

where A is a constant parameter. This model is converted to
power law inflation for the λ = 1 case. This scenario is applied
in a number of scalar-tensor theories [16]. The effective poten-
tial of this solution is used in dark energy models [33], super-
gravity, Kaluza-Klein theories, and superstring models [16,
34]. The number of e-folds in this case is given by [7]

N =
ðt
t1

Hdt = A ln t½ �λ − ln t1½ �λ
� �

, ð46Þ

where t1 is the beginning time of inflation. From Equa-
tions (20), (24), (25), (26), (27), and (45), we may find the
inflaton B and also the orbital radial distance between the
two branes:

ln Bh i − ln B0h i = ~ωΞ tð Þ⟶ ln
e−2πrhorizonω

1 − e−2πrhorizonω

− ln
e−2πr0,horizonω

1 − e−2πr0,horizonω

= ~ωΞ tð Þ⟶ −2πω rhorizon − r0,horizonð Þ

+ ln
1 − e−2πr0,horizonω

1 − e−2πrhorizonω
∼ ~ωΞ tð Þ

⟶ 2πω
R0
_R0

−
R
_R

� ��

+ ln
1 − e−2π R0/ _R0ð Þω

1 − e−2π R/ _Rð Þω

!
∼ ~ωΞ tð Þ,

ð47Þ

where ~ω = ðð6/Γ0Þð2C/3Þ3/4Þ
1/2ðð−4Þ5λ+3ðλAÞ5Þ1/8 and ΞðtÞ

= γ½ð5λ + 3Þ/8, ln t/4� is the incomplete gamma function
[35, 36]). The potential in terms of the orbital radial distance
between the two branes is presented as

This equation shows that the inflatonic potential on our
brane depends on the orbital radial distance and the interac-
tion potential between the two branes. In fact, the interaction
between branes causes inflation of our universe.

Now, we obtain the slow-roll parameters of the model in
this case:

V =
2λ2A2 ln Ξ−1 ln Bh i − ln B0h ið Þ/~ωð Þ� 	� 2λ−2

Ξ−1 ln Bh i − ln B0h ið Þ/~ωð Þ� 	2

=
2λ2A2 ln Ξ−1 2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �h i2λ−2

Ξ−1 2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �

0
B@

1
CA

2

:

ð48Þ

∈ =
ln Ξ−1 2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �h i

λA

1−λ

,

η =
2 ln Ξ−1 2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �h i1−λ

λA
:

ð49Þ
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In this case, like the intermediate case, as the distance
between the branes decreases, more inflatons are created in
the brane-antibrane system, the slow-roll parameters increase,
and the universe inflates.

Using Equations (20), (46), and (47), the number of
e-folds between the two fields B1 and BðtÞ can be obtained
as

where R1 is the the orbital radial distance between the two
branes at the begining of the inflationary epoch when ϵ = 1.
Using the above equation, the orbital radial distance between
the two branes in the inflationary period could be obtained in
terms of the number of e-folds as

R − R0 =
~ω _R

2 _R2
0

2πω
Ξ exp

N
A

+ λAð Þλ/ 1−λð Þ
� �1/λ

 !
: ð51Þ

This equation shows that, in this case, like the intermedi-
ate case, the number of e-fields depends on the orbital radial
distance between the branes. This is because as the distance
between the branes decreases, the number of inflatons, which
has direct effects on the number of e-folds, increases.

Also, the scalar and tensor power spectra in this case are
given by

These spectra in the context of logamediate inflation, like
intermediate inflation, change with an increase or decrease in

the orbital radial distance between the branes. The spectral
index in this case has the following forms:

N = A ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ0

B@

− ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R1/ _R1ð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ1CA

= A ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ

− λA½ �λ/ 1−λð Þ

0
B@

1
CA,

ð50Þ

Δ2
R =

Γ3
0

36 4πð Þ3
 !1/2

311 λAð Þ15
2Cð Þ11

 !1/8
e−2πrhorizonω

1 − e−2πrhorizonω

� �−3

× exp −
15
8

ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5

0
@

1
A

× ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ2

64
3
75
15 λ−1ð Þ/8λ

× exp −3~ωΞ exp ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

0
@

1
A

0
@

1
A

0
@

1
A,

Δ2
T =

2λ2A ln Ξ−1 2πω R0/ _R0ð Þ− R/ _Rð Þð Þ+ln 1−e−2π R0/ _R0ð Þω� 	
/ 1−e−2π R/ _Rð Þω� 	� 	� 	

/~ω
� 	� 	� 2−2λ

π2 Ξ−1 2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �2 :

ð52Þ
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In Figures 4 and 5, we present the number of e-folds N
and the spectral index for the logamediate inflation scenario
as a function of R−1, where R is the orbital radial distance
between the branes. In these plots, we choose R0 = 0:45
ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, λ = 10, A = 1,
and f = 1/2. In this case, like the intermediate case, we find
that the number of e-folds N and the spectral index are much

larger for smaller orbital radial distance between branes. This
is because as the distance between the branes becomes
smaller, the temperature becomes larger and the thermal
radiation of the inflatons enhances.

Finally, we could find the tensor-scalar ratio in terms of
the orbital radial distance between two branes:

In Figure 6, we present the tensor-scalar ratio in the loga-
mediate scenario as a function of R−1, where R is the orbital
radial distance between the branes. In this plot, we choose
R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, C = 70,
Γ0 = 1, λ = 10, A = 1, and f = 1/2. In this case, like the inter-
mediate case, with an increase in the orbital radial distance
between branes, the tensor-scalar ratio increases. By compar-
ing Figures 5 and 6, we notice that the standard case ns ≃ 0:96
may be found in 0:01 < Rtensor‐scalar < 0:22, which agrees with
the observational data [7, 27–29, 31, 32]. At this stage, the
radial distance between our brane and another brane is R =
ð0:02225GeVÞ−1.

4. Summary and Discussion

In this research, we calculate the thermal distribution of
inflatons near the apparent horizon in a brane-antibrane sys-

tem and show that the energy density, slow-roll parameters,
number of e-folds, and perturbation parameters can be given
in terms of the orbital radius of the brane motion in extra
dimensions. According to our results, when the distance
between branes increases, the number of e-folds and the
spectral index for both the intermediate and logamediate
models decrease rapidly; however, the tensor-scalar ratio
increases. This is because as the separate distance between
branes decreases, the interaction potential increases, and at
higher energies, there exist more channels for inflaton pro-
duction near the apparent horizon in the brane-antibrane
system; consequently, the effect of inflaton radiation from
this horizon on cosmic inflation becomes systematically
more effective. We find that the N ≃ 50 case leads to
ns≃ 0.96. This standard case may be found in 0:01 <
Rtensor‐scalar < 0:22, which agrees with the observational data
[7, 27–29, 31, 32] (we note that some new observational data

ns − 1 = −
15 λ − 1ð Þ

8λA
ln Ξ−1

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ2

64
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Figure 4: The number of e-folds N in the logamediate inflation
scenario as a function of R−1 for R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ,
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has been obtained, but we believe that our models will fit
this as well. This work in under progress). At this point,
the radial distance between our brane and another brane
is R = ð1:5GeVÞ−1 in the intermediate model and R =
ð0:02225GeVÞ−1 in the logamediate model.
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