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We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. 
�en, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and 
radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS 
black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters �, ��, and � satisfy some 
certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, 
quintessence, and cosmological constant fields.

1. Introduction

As well known,  Einstein’s theory of general relativity (GR) has 
made a lot of interesting predictions for solar system experi-
ments, which are in perfect agreement with the observational 
data. On larger (cosmological) scales, there are lines of strong 
observational evidence implying that dark matter (DM) and 
dark energy (DE) account for about 95% of the universe  
[1, 2]. From these observations, many theoretical models have 
been presented in Refs. [3–5]. In 1972, one of the potential 
gravity theories was proposed by Rastall [6, 7]. In the Rastall 
gravity theory, the usual conservation law of the energy–
momentum tensor (�푇�휇�휈

;�휇 = 0) is not obeyed, and the energy–
momentum tensor satisfies

where � is the Ricci scalar, and the parameter � measures the 
potential deviations of Rastall theory from GR. It is interesting 
that all electrovacuum solutions in GR are also solutions of 
Rastall gravity. However, if matter field (nonvanishing trace) 
is introduced, the spacetime depends on the Rastall parameter 
�. As the simplest modified gravity scenario, it provides an 
explanation of the inflation problem, and realizes the late-time 
acceleration and other cosmological problems [8–11]. Until 

now, many works on the various black hole solutions have 
been also investigated in Rastall theory. �e spherically sym-
metric black hole solutions were constructed in Refs. [12–16], 
the rotating black holes in Refs. [17, 18], the thermodynamics 
of black holes in Refs. [19–22], and also instability of black 
holes in Refs. [23, 24].

According to the AdS/CFT correspondence, the bulk AdS 
black hole spacetimes admit a gauge duality description by 
thermal conformal field theory living on the AdS boundary 
[25–27]. For example, the usual Hawking-Page phase transi-
tion [28] in four dimensional GR can be interpreted as a con-
finement/deconfinement phase transition in the dual quark 
gluon plasma [29]. Recently, the study of thermodynamics of 
AdS black holes has been extended to the extended phase 
space, where the cosmological constant is treated as the pres-
sure of the black hole [30, 31]. In the extended phase space, 
charged AdS black hole admits a more direct and precise coin-
cidence between the first order small/large black holes (SBH/
LBH) phase transition and Van der Waals (VdW) liquid–gas 
phase transition [32], and both systems share the same critical 
exponents near the critical point. More discussions in this 
direction can be found as well in Refs. [33–61], including reen-
trant phase transitions and some other phase transitions. In 
the Rastall theory, Ali recovered the existence of VdW like 

(1)�푇�휇�휈
;�휇 = �휆�푅�휈,
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SBH/LBH phase transition for AdS black holes in four dimen-
sional spacetimes [62]. Motivated by this result, it is interesting 
to explore the effect of charge � on the critical behaviors for 
charged AdS black holes in four dimensional Rastall theory. 
We hope to reveal a more fascinating phenomenon.

�is paper is organized as follows. In Section 2, the analyt-
ical solution for static spherical symmetric charged AdS black 
holes are obtained in four dimensional Rastall theory. In 
Section 3, we study the critical behaviors of the charged AdS 
black holes in context of �푃 − �푉 criticality and phase diagrams. 
We end the paper with conclusion and discussion in Section 4.

2. Charged AdS Black Hole Solutions in Rastall 
Theory

Considering Equation (1), the field equation including the 
negative cosmological constant Λ can be written as [62]

where � equals to 8�휋�퐺� and �� is the Newton gravitational 
coupling constant.

In order to derive the black hole solutions, we consider 
the general spherical symmetric spacetime metric

where �푓(�푟) is a generic metric function depending on the 
radial coordinate �. Using this metric, the nonvanishing com-
ponents of right hand side of Equation (2) are

with the Ricci scalar �푅 = −(1/�푟2)(�푟2�푓�耠�耠 + 4�푟�푓�耠 − 2 + 2�푓).
On the other hand, the total energy–momentum tensor 

��� supporting this spacetime takes the following form  
[13, 14]

where ��
� is given by

and ��� satisfies the Maxwell equations �퐹�휇�휈
;�휈 = 0. Using this 

Maxwell equation, we can derive

where � is an integration constant playing the role of a elec-
trostatic charge. �en the nonvanishing components of the 
Maxwell tensor ��

� read as

(2)�퐺�� + Λg�� + �휅�휆g���푅 = �푇��,

(3)�푑�푠2 = −�푓(�푟)�푑�푡2 + 1
�푓(�푟)�푑�푟

2 + �푟2(�푑�휃2 + sin2�휃�푑�휗2),

(4)

�퐻0
0 = �퐻1

1 = �퐺0
0 + Λ + �휅�휆�푅 = 1

�푟2
(�푓�耠�푟 − 1 + �푓) + Λ + �휅�휆�푅,

�퐻2
2 = �퐻3

3 = �퐺2
2 + Λ + �휅�휆�푅 = 1

�푟2
(�푟�푓�耠 + 1

2�푟
2�푓�耠�耠) + Λ + �휅�휆�푅,

(5)�푇�
� = �퐸�

� + T
�
�,

(6)�퐸�� =
2
�휅(�퐹���퐹�

� − 1
4g���퐹

���퐹��)

(7)�퐹01 = �푄
�푟2
,

(8)�퐸�휇
�휈 =

�푄2

�휅�푟4
diag(−1, −1, 1, 1).

In addition, T �
� describes the energy–momentum tensor 

of surrounding field defined as [63]

where �휌�(�푟) is the energy density and satisfies barotropic equa-
tion of state �푝� = �휔��휌� with the pressure �푝�(�푟) and state param-
eter ��. �e subscript “�” denotes the surrounding field which 
can be a dust (�휔� = 0), radiation (�휔� = 1/3), ΛCDM type 
(�휔Λ = −1), quintessence and phantom field constructed by the 
combination of these fields.

From �퐻0
0 = �푇0

0 and �퐻2
2 = �푇2

2 components of Rastall field 
equations, the solution of four dimensional charged AdS black 
hole can be obtained as

where � and �� are two integration constants representing 
the black hole mass and surrounding field structure parameter, 
respectively. �e parameters � and �Λ are given by

where �Λ is the curvature radius, and �� is related to the energy 
density ��

where �� is

Regarding the weak energy condition representing the posi-
tivity of any kind of energy density of the surrounding field, 
i.e., �휌� ≥ 0, imposes the following conditions

which implies that for the surrounding field with �푊� > 0, we 
need �푁� < 0 and conversely for �푊� < 0, we need �푁� > 0. If 
�휔� ̸= −1, the constraint conditions for �� and � can be derived, 
see Table 1. For the cosmological constant field �휔�푠 = �휔Λ = −1, 
� equals to −2 which is independent of � and �Λ is −1 + 4�휓. 
�en, we find

from the weak energy condition Equation (11).

(9)
T

0
0 = T

1
1 = −�휌�푠(�푟),

T
2
2 = T

3
3 =

1
2(1 + 3�휔�푠)�휌�푠(�푟),

(10)

�푑�푠2 = −�푓(�푟)�푑�푡2 + 1
�푓(�푟)�푑�푟

2 + �푟2(�푑�휃2 + sin
2�휃�푑�휗2),

�푓(�푟) = 1 − 2�푀
�푟 + �푄2

�푟2
− �푁�푠

�푟�휉
+ �푟2

�푙2Λ
,

(11)
�휉 = 1 + 3�휔�푠 − 6�휓(1 + �휔�푠)

1 − 3�휓(1 + �휔�푠)
,

1
�푙2Λ

= − Λ
3(1 − 4�휓) , �휓 ≡ �휅�휆,

(12)�휌�푠 = − 3�푊�푠�푁�푠

�휅�푟(3(1+�휔�)−12�휓(1+�휔�))/(1−3�휓(1+�휔�)) ,

(13)�푊�푠 = −(1 − 4�휓)(�휓(1 + �휔�푠) − �휔�푠)
(1 − 3�휓(1 + �휔�푠))

2 .

(14)�푊��푁� ≤ 0,

(15)�푁Λ > 0, 0 < �휓 < 1
4 , or �푁Λ < 0, �휓 > 1

4

Table 1: �e condition for �휌� ≥ 0.

�푁� > 0 ∪�푊� < 0 �휔� > −1 ∪ −2 < �휉 < 1 �휔� < −1 ∪ �휉 > 1 �휔� < −1 ∪ �휉 < −2
�푁� < 0 ∪�푊� > 0 �휔� < −1 ∪ −2 < �휉 < 1 �휔� > −1 ∪ �휉 > 1 �휔� > −1 ∪ �휉 < −2
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3. Critical Behaviors of Charged AdS Black 
Holes

In the extended phase space, we interpret the cosmological 
constant Λ as a positive thermodynamic pressure � in the 
geometric units �퐺� = ℏ = �푐 = 1

In terms of horizon radius �+, mass �, Hawking temperature 
�, entropy �, and electromagnetic potential Φ of the charged 
AdS black holes can be written as

Here the black hole mass � should be considered as the 
enthalpy rather than the internal energy of the gravitational 
system. Moreover, those thermodynamic quantities should 
satisfy first law of black hole thermodynamics

where the thermodynamic volume � conjugate to � equals to 
4�휋�푟3+/3(1 − 4�휓) and Θ� as a generalized force conjugate to the 
parameter �� reads as −�푟1−�휉+ /2.

Using Equation (17), the equation of state �푃(�푉, �푇) can be 
written as

As usual, a critical point occurs when � has an inflection point

where the subscript “�” denotes the values of the physical 
quantities at the critical point. When �휔� ̸= −1, we can obtain

(16)�푃 = − Λ
8�휋 = 3(1 − 4�휓)

8�휋�푙2Λ
.

(17)
�푀 = 1

2(
�푄2

�푟+ + �푟+ − �푁�푠

�푟�휉−1+
+ 8�휋�푃�푟3+3(1 − 4�휓)), �푆 = �휋�푟2+,

�푇 = 1
4�휋(

1
�푟+ + 8�휋�푃�푟+1 − 4�휓 − �푄2

�푟3+ + (�휉 − 1)�푁�푠

�푟1+�휉+
), Φ = �푄

�푟+ .

(18)�푑�푀 = �푇�푑�푆 + �푉�푑�푃 + Θ��푑�푁� +Φ�푑�푄,

(19)�푃 = (1 − 4�휓)
2�푟+ [�푇 − 1

4�휋�푟+ + �푄2

4�휋�푟3+ − (�휉 − 1)�푁�푠

4�휋�푟1+�휉+
].

(20)
�휕�푃
�휕�푟+

�儨�儨�儨�儨�儨�儨�儨�儨�儨�푇=�푇�푐 ,�푟+=�푟�푐
= �휕2�푃

�휕�푟2+

�儨�儨�儨�儨�儨�儨�儨�儨�儨�푇=�푇�푐 ,�푟+=�푟�푐

= 0,

(21)�푇�푐 =
�휉�푟2�푐 − 2�푄2(�휉 − 2)
2�휋(1 + �휉)�푟3�푐

,

(22)
�푃�푐 =

(�휉�푟2�푐 − 3�푄2(�휉 − 2))(3�휔�푠 − 1)
24�휋�푟4�푐 (�휉 − 2)(�휔�푠 + 1)

,

and the equation for critical horizon radius ��

(23)
�퐹(�푟�푐) = (1 − �휉)(1 + �휉)(2 + �휉)�푁�푠 − 2�푟�휉−2�푐 (�푟2�푐 − 6�푄2) = 0

Table 2: Real root �� of Equation (23).

��
�휔� > −1 �휔� < −1

�푁� > 0 �푁� < 0 �푁� > 0 �푁� < 0
�휉 < −2 None 1 0,1,2 None
−2 < �휉 < −1 1 None None 0,1,2
−1 < �휉 < 0 0,1,2 None None 1
0 < �휉 ≤ 2 1
2 < �휉 None 1 0,1,2 None
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Figure 1: �e �(��) − ln �� and �� − ln �� diagrams with �푄 = 0.1 
and �푁� = 0.1113 for different values of �.
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with Equation (11). Evidently, it is hard to derive any analytic 
solution for the critical quantities ��, �푇�, and �� from Equations 
(21)–(23). By analyzing the asymptotical behavior of function 
�(��) at the horizon and infinity, we summarize the number 
of real root �� of Equation (23) in Table 2. �e discussion for 
cosmological constant field �휔� = −1 will be shown in the last 
part of this section.

Taking the region of �휔� > −1, −1 < �휉 < 0 and �푁� > 0 for 
instance, the function �(��) [Equation (23)] approaches +∞ 
near the origin �푟 → 0 and tends to −�푁�(1 − �휉)(1 + �휉)(2 + �휉)(> 0) 
when �푟 → +∞. For the critical temperature �� [Equation (21)], 
it approaches +∞ near the origin �푟 → 0, �� disappears at 
�푟�푐 = �푟�푐0 = √2(�휉 − 2)/�휉�푄 and tends to 0 when �푟 → +∞, see 
Figures 1(a) and 1(b). On the other hand, the derivative of 
�(��), ��, and �� leads to a same expression

which vanishes at �푟� ≡ �푟g = √6(�휉 − 2)/�휉�푄. From �퐹(�푟�) = 0, the 
two real positive critical radius ��푐1 and ��푐2 (if exist) satisfy 
��푐1 < �g < ��푐2. We have �푇�푐(�푟�푐2) < 0 because of ��푐0 < �g < ��푐2 and 
�푇�푐(�푟�푐1) > 0 if ��푐1 < ��푐0, see Figure 1(c). In general, a black hole 
should possess positive temperature �푇 > 0, and reduces to 
extremal one when �푇 = 0. Moreover, holding positive temper-
ature �푇 > 0 makes it possible to set up an analogy between the 
realistic Van der Waals phase transition for liquid/gas system 
[64] and SBH/LBH phase transition for the charged AdS black 
hole in the Rastall gravity. For the four dimensional Reissner–
Nordström AdS black hole, Kubiznak and Mann derived one 
set of positive critical quantities ��, ��, and �� by utilizing 
Equation (20) in the extended phase space, and further recov-
ered that Reissner–Nordström AdS black hole admits VdW-
like SBH/LBH phase transition in the Einstein gravity [32].

Besides the VdW-like SBH/LBH phase transition, Ref. [48] 
firstly proposed the reentrant phase transition (RPT) for 
Born–Infeld AdS black hole in GR, if there exist more than 
one positive critical points. Nevertheless, the RPT does not 
happen in this region (�휔� > −1, −1 < �휉 < 0 and �푁� > 0) for 
charged AdS black hole in Rastall gravity because of the 
unphysical critical temperature �푇�푐(�푟�푐2) < 0, even though there 
could exist two positive real critical radius �� from Table 2.

In addition, to study the possible phase transitions in the 
system, we need to discuss the Gibbs free energy, which obeys 
the following thermodynamic relation � = � − �� with

where �+ is understood as a function of pressure and temper-
ature, �푟+ = �푟+(�푃, �푇), via equation of state [Equation (19)]. In 
the rest of this section, we mainly focus on that regions pos-
sessing more than one real roots of �� from Table 2, and then 
consider the critical behaviors of charged AdS black holes 
surrounded by dust, radiation, quintessence, phantom, or Λ
CDM type fields.

3.1. Black Hole Surrounded by Dust or Quintessence Fields. For 
the dust surrounding field, we set �휔� = 0. Taking �휉 = −0.8, 
�푄 = 0.1 and �푁� = 0.1 for instance, one can obtain two critical 
radius �푟�푐1 = 0.245 and �푟�푐2 = 120.762, and corresponding 

(24)�퐹�耠(�푟�푐) = �푇�耠
�푐 = �푃�耠

�푐 = −6�푄2(−2 + �휉) + �푟2�푐 �휉,

(25)�퐺 = �푟+
4 + 3�푄2

4�푟+
− 2�푃�휋�푟3+
3(1 − 4�휓) −

(1 + �휉)�푁�푠

4�푟�휉−1+
,

critical pressure and temperature �푃�푐1 ≈ 0.0463, �푇�푐1 ≈ 0.4104 
and �푃�푐2 ≈ −2.5984 ∗ 10−7, �푇�푐2 ≈ −0.00527166. So, there only 
exists one physical critical point, which has been verified in the 
above part. As shown in Figure 2, � − �+ diagram displays that 
the solid curve represents critical isotherm at � = ��푐1 and the 
dashed and dotted curves correspond to � > ��푐1 and � < ��푐1, 
respectively. In the � − � diagram, the solid curve represents 
� < ��푐1, the dotted curve corresponds to � > ��푐1, and the 
dashed curve is for � = ��푐1. We observe standard swallowtail 
behavior. Moreover, the � − � diagram shows the coexistence 
line of the first-order SBH/LBH phase transition terminating 
at a critical point. �ese plots are analogous to typical behavior 
of the liquid–gas phase transition of the VdW fluid.

We turn to discuss the quintessence field. �e quintessen-
tial dark energy is governed by an equation of state of the form 
�� = ���� with the state parameter �휔� ∈ (−1,−1/3) [63]. Here 
we choose a ordinary example �휔� = −2/3 [63, 65]. Taking 
�휉 = −0.7, �푄 = 0.4 and �푁� = 0.4, one can obtain two critical 
radius �푟�푐1 = 1.055 and �푟�푐2 = 17.85, and corresponding critical 
pressure and temperature �푃�푐1 ≈ 0.0184, �푇�푐1 ≈ 0.0382 and 
�푃�푐2 ≈ −0.000096, �푇�푐2 ≈ −0.0207. �erefore, there only exists 
one physical critical point, which implies the appearance of 
VdW-like SBH/LBH phase transition. �e � − �+, � − �, and 
� − � diagrams are similar with Figure 2, so we do not plot 
these figures in this case.

3.2. Black Hole Surrounded by Radiation Field. With regard 
to the case of �휔� = 1/3, one have �휉 = 2, which is independent 
of � from Equation (11). �en, the black hole solution (10) 
becomes

Obviously, the parameter �� plays a shi� role in the charge  
�. It’s worthy to point out that the condition �2 > ��푟 needs 
to be satisfied so that we can derive the possible phase transi-
tion. �en, the equation of state �푃(�푉, �푇) reduces to

According the judgement condition (20), corresponding crit-
ical values read as

�en, VdW-like SBH/LBH phase transition occurs for charged 
AdS black hole in the region of �2 > ��푟 and �휓 < 1/4, which 
is similar as that for charged AdS black hole in Einstein gravity 
[32].

3.3. Black Hole Surrounded by Phantom Field. For the phantom 
field, it possesses the supernegative equation of state �휔� < −1 
[65]. Nevertheless, when a black hole immersed this phantom 

(26)�푓(�푟) = 1 − 2�푀
�푟 + �푄2 −�푁�푟

�푟2
+ �푟2

�푙2Λ
,

(27)�푃 = (1 − 4�휓)
2�푟+

(�푇 − 1
4�휋�푟+

+ �푄2

4�휋�푟3+
− �푁�푟

4�휋�푟3+
).

(28)

�푟�푐 = √6(�푄2 − �푁�푟), �푃�푐 =
1 − 4�휓

96�휋(�푄2 − �푁�푟)
,

�푇�푐 =
1

3√6(�푄2 − �푁�푟)
, �푄2 > �푁�푟, �휓 < 1

4 .
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field, it gives rise to �푝� + �휌� < 0 and �푇��푠� < 0, and leads to 
two alternatives: either the entropy density �� is negative with 
positive temperature �� or the entropy density �� is positive but 
the temperature is negative. With �푇� > 0, the entropy of black 
hole decreases as it accretes the phantom energy, meanwhile a 
decrease in the energy density of phantom field decreases the 
entropy of phantom field [66, 67]. Finally, the total entropy of 
thermodynamic system consisting of phantom field entropy 
and black holes entropy will decrease simultaneously, which 
violates the generalized second law (GSL) of thermodynamics, 
and then the accretion process could never occur in this case. 

In terms of �푇� < 0, the accretion of phantom field by this black 
hole is also not possible if the mass of black hole is above 

0.14
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Figure 2:  �e � − �+, � − �, and � − � diagrams of four-
dimensional charged AdS black holes with �휔� = 0, �휉 = −0.8, �푄 = 0.1
, and �푁� = 0.1. �ere is one critical point, which corresponds to 
VdW-like SBH/LBH phase transition when �푇 < �푇�푐1 ≈ 0.4104 and 
�푃 < �푃�푐1 ≈ 0.0463.
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Figure 3:  �e � − �+ and � − � diagrams of four-dimensional 
charged AdS black holes with �휔� = −1.03, �휉 = 2.1, �푄 = 0.4,  
and �푁� = 0.1113. It shows the existence of two critical points 
(�푃�푐1 = 165.8340, �푇�푐1 = 0.2743) and (�푃�푐2 = 356.10, �푇�푐2 = 0.3153).  
For �푃 ∈ (�푃�, �푃�), we observe a “zeroth-order phase transition” at �0 
signifying the onset of an RPT in (c).
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from corresponding critical value [68–71]. Here we only 
discuss thermodynamics and phase transitions of charged 
AdS black holes in the Rastall gravity. �erefore, we can 
assume the phantom field with �푇� > 0 for simplicity, so that 
the thermodynamic system consisting of charged AdS black 
hole and phantom field is always stable.

Recently, Kumar and Xu adopted the observational data 
sets of SNLS3, BAO, Planck + WMAP9 + WiggleZ to determine 
the parameter �휔�푝 = −1.06+0.11−0.13 [72]. Moreover, the Planck 2018 
results recovers �휔� = −1.03 ± 0.03 [73]. In view of these con-
straints on �� from observations, we consider the phantom 
field with �휔� = −1.03. With �푁� > 0 and �휉 > 2 in Table 2, the 
function �(��) [Equation (23)] tends to 
−�푁�(�휉 − 1)(�휉 + 1)(�휉 + 2)(< 0) as �푟� → 0 and −∞ when 
�푟� → −∞. Based on �퐹(�푟�) = 0 and Equations (21) and (22), we 
can obtain two positive critical points when the parameters  
�, �, and �� satisfy

By using the graphical and numerical method, � − �+ and 
� − � diagrams of charged AdS black hole with �휉 = 2.1,  
�푄 = 0.4, and �푁� = 0.1113 are displayed in Figure 3. One can 
find two physical critical points [Figure 3(a)]. For 
� < ��푐2(� < ��푐2), the VdW-like SBH/LBH phase transition 
occurs, and terminates at � = ��(� = ��). At the same time, 
there also exists a certain range of �푃 ∈ (�푃�, �푃�), namely 
�푇 ∈ (�푇�, �푇�), for which the global minimum of � is discontin-
uous; see Figure 3(c). In this range of temperatures, two sep-
arate branches of intermediate size and small size black holes 
co-exist. �ey are separated by a finite jump in �, which is 
so-called “zeroth-order phase transition”.

�is novel situation can be also clearly illustrated in the 
� − � diagrams in Figure 4. �ere is the expected SBH/LBH 
line of co-existence, which initiates from the critical point 
(�푇�, �푃�) and terminates at (�푇�푐2, �푃�푐2). Especially, a “triple point” 

(29)

2(√3(�휉 − 2)/�휉�푄)�

(�휉 − 2)(�휉 − 1)(�휉 + 1) < �푁� <
4(√6(�휉 − 2)/�휉�푄)�

(�휉 − 2)(�휉 − 1)(�휉 + 1)(�휉 + 2) .

between the small (SBH), intermediate (IBH), and large black 
holes (LBH) emerges in the point (�푇�, �푃�). In the region of 
�푇 ∈ (�푇�, �푇�), a new IBH/SBH line of coexistence appears and 
then it terminates in another critical point (�푇�, �푃�). �ese val-
ues are obtained as

Considering the other regions of �푁� > 0, �휉 < −2, or  
�푁� < 0, −2 < �휉 < −1 in Table 2, two positive roots of ��푐1 and ��푐2 
could appear from equation �퐹(�푟�) = 0. Taking �푁� > 0 and 
�휉 < −2 for instance, we choose �휔� = −1.03, �휉 = −2.4, �푄 = 0.2, 
and �푁� = 0.4, and find that there only exists the VdW-like 
SBH/LBH phase transition in the region of ��푐1 < ��푐 < ��푐2 and 
��푐1 < ��푐 < ��푐2 with
  

see Figure 5. Similar discussion can be done in the region of 
�푁� < 0, −2 < �휉 < −1 and �휔� = −1.03, we find there only is the 
VdW-like SBH/LBH phase transition, even though there also 
exist two different physical critical points: (�푟�푐1, �푇�푐1, �푃�푐1) > 0 
and (�푟�푐2, �푇�푐2, �푃�푐2) > 0.

3.4. Black Hole Surrounded �CDM Type Field. In case 
of �휔Λ = −1, namely �휉 = −2, the critical horizon radius, 
temperature, and pressure are obtained as

Holding �푃� > 0, the parameters �Λ and � should satisfy 
�푁Λ < −1/36�푄2 for �휓 > 1/4 and �푁Λ > 0 for 0 < �휓 < 1/4 in 
terms of the condition (15). Finally, VdW-like SBH/LBH phase 
transition occurs in these regions, which is similar as that for 
charged AdS black hole in Einstein gravity [32].

(30)
(�푇�휏, �푇�푧, �푇�푐2) ≈ (0.2938, 0.2954, 0.3153),
(�푃�휏, �푃�푧, �푃�푐2) ≈ (289.8545, 300.2650, 356.10).

(31)
(�푃�푐1, �푃�푐1) ≈ (0.17836, 0.43678), (�푇�푐2, �푇�푐2) ≈ (0.23295, 0.57949),

(32)

�푟�푐 = √6�푄, �푇�푐 =
1

3√6�휋�푄 �푃�푐 = (1 + 36�푁Λ�푄2)(1 − 4�휓)
96�휋�푄2 .
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Figure 4: �e � − � diagram of four-dimensional charged AdS black holes with �휔� = −1.03, �휉 = 2.1, �푄 = 0.4, and �푁� = 0.1113. �e thick 
solid line initiating from (�푃�푐2, �푇�푐2) and terminates at (�푃�, �푇�) corresponds to the co-existence line of VdW-like SBH/LBH phase transition. 
�e solid line commencing from (�푃�, �푇�) and terminates at (�푃�, �푇�) denotes the coexistence line of small and intermediate black holes 
indicating the RPT.
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Rastall theory. Regarding the weak energy condition of energy 
density and asymptotic behavior of function �(��), we derived 
the constraint conditions for the parameters ��, �� and � or �, 
as shown in Tables 1 and 2. Later, we chose some special sur-
rounding fields which can be a dust, radiation, quintessence, Λ
CDM type and phantom field, and found that the Van der Waals 
like SBH/LBH phase transition happens for the charged AdS 
black holes with dust, radiation or quintessence and Λ CDM 
type fields. In particular, the charged AdS black hole surrounded 
by phantom field showed more interesting phenomenon in the 
region of �푁� > 0 and �휉 > 2. When the parameters �,  
�, and �� satisfy (2(√3(�휉 − 2)/�휉�푄)�/(�휉 − 2)(�휉 − 1)(�휉 + 1)) < �푁�

< (4(√6(�휉 − 2)/�휉�푄)�/(�휉 − 2)(�휉 − 1)(�휉 + 1)(�휉 + 2)) and �휉 > 2,  
we obtained two positive critical points and so-called RPT phase 
transition occurs, besides the VdW-like SBH/LBH phase tran-
sition. However, in the region of �푁� > 0, �휉 < −2, or �푁� < 0, 
−2 < �휉 < −1, there only exist the VdW-like SBH/LBH phase 
transition, even though it has two physical critical points.

Comparing with the Maxwell field, the Born–Infeld AdS 
black hole, and charged AdS black hole with Yang–Mills field 
in the Einstein gravity have proposed more interesting ther-
modynamical properties. In the Rastall gravity, one can also 
construct new black holes with nonlinear electrodynamics, 
and then explore whether the Van der Waals or reentrant phase 
transition can appear.
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