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An extensive knowledge of the dynamics of the process of pp collision serves as input to exhaustive theoretical models of strong
interaction. This knowledge is also a baseline for a system to decipher the dynamics of AA collisions at relativistic and
ultrarelativistic energies. Recent availability of di-muon data has triggered a spate of interests in revisiting strong interaction
process, the study of which in detail is extremely important for enhancement of our understanding of not only the theory of
strong interaction but also possible physics scenarios beyond the standard model. Apart from conventional approaches to the
study of the dynamics of particle production in high-energy collision the present authors proposed a new approach with
successful application in context of symmetry scaling in AA collision data from (ALICE-Collaboration, 2014) in the work
(Bhaduri, S. et al., 2019) and pp collision data at 8TeV from (CMS-collaboration, 2017) in the work (Bhaduri, S. et al., 2019) and
also in other numerous works with different collision data. This different approach essentially analyses fluctuation pattern from
the perspective of symmetry scaling or degree of self-similarity involved in the process. This was done with the help of
multifractal scaling analysis and also multifractal cross-correlation analysis using the single variable of pseudorapidity values of
di-muon data taken out from the primary dataset of RunA(2011) and RunB(2012) of the pp collision at 7 TeV and 8 TeV,
respectively, from (CMS-collaboration, 2016, 2017). High degree of persistent long-range cross-correlations (MF-DXA) exist
between pseudorapidity-value and its corresponding azimuthal-value for different rapidity ranges. The different values of scaling
exponents (across rapidity ranges and energies) signify that there may be multiple processes other than those conjectured,
involved in the underlying dynamics of the production process of oppositely charged di-muons resulting in different kinds of
scaling. Otherwise, the scaling exponents at different degrees would have remained the same across the rapidity ranges and also
for different energies.

1. Introduction

In the recent past, fluctuation and correlation have been ana-
lyzed widely using novel methods of studying nonstatistical
fluctuation which resulted in the better understanding of
the dynamics of the pionisation process. The methods
including the process of intermittency were introduced by
Bialas and Peschanski [1] who have observed association
between intermittency indices and anomalous fractal dimen-
sion [2, 3]. After that, the parameters of Gq moment and Tq
moment [4–8] were introduced which were deduced from
various methods based on fractal concepts. Then distinctive
approaches of detrended fluctuation analysis (DFA) and

multifractal-DFA (MF-DFA) [9, 10] were applied extensively
for analyzing nonstationary, nonlinear properties of data
series to investigate the long-range correlations inherent in
the process of particle production [11–14]. Among various
other contemporary works, self-similarity has been analyzed
in the areas of particle physics which includes the production
process of Jet and Top-quark in the experiments of Tevatron
and LHC [15], the procedure of strangeness production in
pp collisions at the RHIC [16] experiments, the phenome-
non of proton spin and asymmetry inherent in jet produc-
tion process [17] and the deciphering of the collective
phenomena [18], and the process of establishment of the
notion of self-similar symmetry of dark energy [19]. The
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study of long-range cross-correlation between two nonstation-
ary signals detrended cross-correlation analysis (DXA) had
been presented by Podobnik and Stanley [20]. Wang et al.
[21] introduced multifractal-detrended cross-correlation
analysis (MF-DXA) by combining MF-DFA and DXA
methods to examine higher degree of multifractal parameters
of two cross-correlated series. MF-DXA method has been
applied with substantially higher degree of accuracy in the
analysis of the unrevealed cross-correlation in the various
fields of physics, physiology finance, and power markets
[20, 21] and also in the fields of particle physics [22].

The main aim of high-energy physics is to prove the exis-
tence of the creation of the QGP state, and also the study of
the properties of this exotic state, by examining the final state
of produced-hadrons, produced in huge numbers. Most of
these final state particles may not be produced from the decay
of the plasma directly, but rather they are produced or influ-
enced by the hadronic cascade. Hence, studies of resonance
states are of great importance because there is a variety
of resonances, having very different lifespans, which signifies
that these particles decay with differing probabilities in the
hadronic stage, and therefore provide valuable information
about that stage. We have performed the scaling analysis of
the pseudorapidity space taken out from Pb-Pb VSD master-
class data at 2.76TeV per nucleon pair from ALICE Collabo-
ration [23] using both the method of complex network-based
visibility graph and multifractal-DFA (MF-DFA) [9, 10], to
study the prospective phase transition and the signature of
QGP [24, 25]. We also studied multiplicity fluctuation pro-
cess in nucleus-nucleus and hadron-nucleus interactions by
applying complex network and chaos-based visibility graph
methodology in quite a few recent works [22, 26–33]. These
techniques have also been successfully applied to identify
phase transitions in temperature-driven magnetization prop-
erties [34] and also in temperature-driven phase transition
from liquid to vapour state [35]. In a recent study [36], differ-
ent combinations of topological and kinematic input vari-
ables from the data of RunA(2011) of the pp collision at
7TeV at CMS detector have been used, from which several
ANNs (artificial neural networks) have been constructed,
and then through comparison, the optimally configured
ANN is selected .

The outcomes of the assessment of pp and pA systems
should be used as a reference to validate the understanding
of the processes which are expected to contribute to the
dynamics of the process of di-muon production [37]. More-
over, apart from the analysis of AA collisions, an extensive
knowledge of pp collisions is required both as an input to
comprehensive theoretical models of strong interactions
and also as a baseline to decipher the AA collisions at relativ-
istic and ultrarelativistic energy levels. This has been of great
interest in the area of theoretical and experimental physics.
The process of soft particle generation from ultrarelativistic
pp collisions is affected by the flavor distribution among the
proton, quark hadronization, and baryon number transport.
In the process of AA collisions, the magnitude of the spec-
trum of transverse momentum of charged particles in pp col-
lisions serves as an important reference. A pp reference
spectrum is required for AA collisions to probe for the effects

of probable initial states of the collision. The multiplicity
distribution of particles generated in pp collisions and
the multiplicity dependence of various global event features
serve as rudimentary observables which reflect the features
of the underlying dynamics of the process of particle produc-
tion. Therein lies the importance of analyzing the dynamics
of di-muon production process in pp collisions. In this work,
we have attempted DFA, MF-DFA, and MF-DXA for the
scaling analysis of the rapidity and energy dependence of
the di-muon production process.

The rest of the paper is structured in the following
manner. The objective of the study is elaborated in Section
2. Section 3 describes the methods of analysis. Section 3.1
presents the algorithm of DFA and MF-DFA, and Section
3.2 presents the method of MF-DXA in detail and the impor-
tance of the parameters—the width of multifractal spectrum
and the cross-correlation exponent. Section 4.1 describes the
data in detail. Section 4.2 describes the details of our study
and the deductions from the test results. Section 5 details
the physical importance of the proposed parameters and
their relevance with regards to the dynamics of the di-
muon production process and finally comes the conclusion.

2. Goal of the Study

Using pp collisions at a center-of-mass energy of
ffiffiffi
S

p
= 7TeV,

the analysis of the production process of exclusive γγ⟶
μ+μ− was carried out by the ATLAS and CMS collaborations
[38]. A latest review work has been reported about the com-
plexities involved in resonance production process for differ-
ent high-energy collisions like pp, pA, and AA collisions at
LHC(using data from ALICE collaboration), to analyze the
complexity and eventually explain the inherent dynamics
of the particle production process and the properties of
the generated particles for the different collision system
[39]. We have elaborated in Section 1 how after few success-
ful ventures by the present authors in the field of analyzing
the pionisation process in high-energy interaction using
chaos-based procedures and being motivated by the different
attempts reported to investigate the dynamics of the genera-
tion process of di-muon pairs in [39], we have attempted to
revisit the di-muon production process in hadron-hadron
interactions. We have proposed to implement the chaos-
based methods of DFA, MF-DFA, and MF-DXA to analyze
the energy and rapidity dependence of di-muon production
process by utilizing a single variable of pseudorapidity values
of di-muon data taken out of the primary dataset of
RunA(2011) and RunB(2012) of the pp collision at 7TeV
and 8TeV, respectively, from CMS collaboration [40, 41].
The rapidity and energy dependence of the process are exam-
ined by means of fundamental scaling parameter signifying
the degree of symmetry scaling or scale-freeness in the di-
muon production process, extracted by the proposed method.

(1) All these rigorous methods provide the information
from the deepest level about the particle production
process from the emergent di-muons produced from
the pp collisions at 7TeV and 8TeV from CMS col-
laboration [40, 41].
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(2) The study reveals that pseudorapidity spaces corre-
sponding to different range of pseudorapidity values
are highly scale free and possess multifractal charac-
teristics. They also reveal how the scaling pattern
changes from one rapidity range to another and also
from one range of energy level to another

(3) For different rapidity range and at two different
levels of energy, differences in the values of scaling
exponent signify that there are multiple processes
involved in the production process of oppositely
charged di-muons which give rise to different kinds
of scaling

Traditionally invariant-mass/transverse-momentum
methods were used to probe various resonance states in
high-energy collision. Apart from the J/Ψ peak observed in
their invariant-mass spectrum, there can be existence of
other upsilon states and other processes in principle contrib-
uting to the di-muon continuum due to open charm and
open beauty decays. One may select different ranges of
invariant mass by examining the pattern of invariant-mass
spectrum of the events producing di-muons. For each such
range, the pseudorapidity spaces corresponding to the pro-
duced di-muons would be extracted, and then for each of
the spaces, the proposed scaling analysis may be done for dif-
ferent ranges of rapidity and energy. Any substantial change
in scaling behavior indicated by the width of MF-DFA spec-
trum and the degree of multifractal cross-correlation may be
attributed to the occurrence of different kinds of resonance
states from which di-muons are produced in pp collisions.
This may act as basic input for studying similar resonance
production in pp collisions at higher energy and also for pA
and AA collisions.

3. Method of Analysis

We have elaborated the multifractal-detrended fluctuation
analysis (MF-DFA) method [9, 10, 42] used to calculate the
Hurst exponent and the width of the multifractal spectrum.
We have extracted these parameters for analyzing the fluctu-
ation of data series extracted from the experimental data as
elaborated in Section 4.1.

3.1. MF-DFA Method

(1) Here, we denote the experimental data series as x
ðiÞ for i = 1, 2,⋯,N , where N = number of points.
The average of this series is computed as �x = 1/N
∑N

i=1xðiÞ. Then, the collective deviation series for
xðiÞ is calculated as

X ið Þ ≡ 〠
i

k=1
x kð Þ − �x½ �, i = 1, 2,⋯,N: ð1Þ

This deduction of the average (�x) from the input data
series is a conventional method of eliminating noise
from the input data series. The result of this subtrac-

tion would be removed by the detrending process in
the fourth step.

(2) XðiÞ is then divided into Ns nonoverlapping seg-
ments, with Ns ≡ int ðN/sÞ and s as the length of the
segment. In this experiment, s ranges from 16 (mini-
mum) to 1024 (maximum) value in log scale

(3) For each s, a particular segment is denoted by vðv =
1, 2,⋯,NsÞ. Least-square fitting is performed for
each segment to derive the local trend for that specific
segment [9]. xvðiÞ denotes the least-square fitted
polynomial for the segment v in series XðiÞ. xvðiÞ is
computed according to the equation xvðiÞ =∑m

k=0Ck

ðiÞm−k, with Ck as the kth coefficients of the fitted
polynomial of degree m. Different kinds of fitting—-
linear, quadratic, cubic, or higher m-order polyno-
mial—may be used [10, 42]. In this experiment,
linear least-square fitting is applied with m = 1

(4) Now, to detrend the data series, the least-square fitted
polynomial is subtracted from the data series. There
is existence of slow-varying trends in natural data
series. In order to extract the scale invariant structure
of the dissimilarity around the trend, detrending is
necessary. For each value of s and segment v ∈ 1,
2,⋯,Ns, detrending is executed by deducting the
least-square fit xvðiÞ from the specific portion of the
data series XðiÞ, for the segment v to calculate the
variance which is denoted by F2ðs, vÞ computed as

F2 s, vð Þ ≡ 1
s
〠
s

i=1
X v − 1ð Þs + i½ � − xv ið Þf g2, ð2Þ

with s ∈ 16, 32,⋯, 1024 and v ∈ 1, 2,⋯,Ns.

(5) Next, the qth order function of fluctuation, denoted
by FqðsÞ, is computed by averaging the values of
F2ðs, vÞ over all the segments (v) produced for each
s ∈ 16, 32,⋯, 1024 and for a specific q, as

Fq sð Þ ≡ 1
Ns

〠
Ns

v=1
F2 s, vð Þ� �q/2( )1/q

: ð3Þ

Here, q ≠ 0 as in that case 1/q would blow up. In this
experiment q varies from (−5) to (+5). For q = 2,
computation of FqðsÞ would sum up to conventional
method of detrended fluctuation analysis (DFA) [9].

(6) The above steps are repeated for various values of
s ∈ 16, 32,⋯, 1024, and it is observed that for a par-
ticular q, FqðsÞ rises in value with increasing s. If the
data series is long-range power correlated, then FqðsÞ
vs s for a specific q will display power-law behavior

Fq sð Þ∝ sh qð Þ: ð4Þ
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If this type of scaling exists, then log2½FqðsÞ� depends
on log2 s in a linear fashion, where hðqÞ is the slope
which is dependent on q. hð2Þ is alike to the so-
called Hurst exponent [42]. So hðqÞ is defined as the
generalized Hurst exponent.

(7) The scaling pattern of the variance F2ðs, vÞ is the
same for all segments in case of a monofractal
series. In other words, the averaging of F2ðs, vÞ
would show uniform scaling behavior for various
values of q, and hence, hðqÞ becomes independent
of q for monofractals.

But if large and small fluctuations in the series have
varying scaling pattern, then hðqÞ becomes substan-
tially dependent on q. In these cases, for positive
values of q, hðqÞ delineates the scaling pattern of the
segments with large fluctuations, and for negative
values of q, hðqÞ describes scaling behavior of the seg-
ments with smaller fluctuations. The generalized
Hurst exponent hðqÞ for a multifractal data series is
associated with the classical multifractal scaling
exponent τðqÞ according to

τ qð Þ = qh qð Þ − 1: ð5Þ

(8) As multifractal series have numerous Hurst expo-
nents, so τðqÞ depends nonlinearly upon q [43]. The
singularity spectrum, here denoted by f ðαÞ, is associ-
ated with hðqÞ as

α = h qð Þ + qh′ qð Þ, f αð Þ = q α − h qð Þ½ � + 1: ð6Þ

Here, the singularity strength is denoted by α, and f
ðαÞ describes the dimension of the subset series
denoted by α. Different values of f ðαÞ for different
α results into multifractal spectrum of f ðαÞ which is
an arc, and for this spectrum, the gap between the
maximum and minimum values of α is the width of
the multifractal spectrum or the measurement of the
multifractality of the input data series.

(9) For q = 2, if hðqÞ or hð2Þ = 0:5, no correlation exists in
the data series. There is persistent long-range cross-
correlations in the data series, which means a large
value in the series is presumably to be followed by
another large value in the series, if hð2Þ > 0:5,
whereas for hð2Þ < 0:5, there would be antipersistent
long-range correlations which implies that a large
value would probably be followed by a small value
in the series and vice versa.

3.2. MF-DXA Method.Wang et al. [21] have introducedMF-
DXA method based on the MF-DFA method [10, 42] and
analyzed the cross-correlation between two nonstationary
series quantitatively. The broad steps for the MF-DXA
method are as follows.

(1) Let xðiÞ and yðiÞ be two data series for i = 1, 2,⋯,N ,
of length N . The mean of these series is calculated as
�x = 1/N∑N

i=1xðiÞ and �y = 1/N∑N
i=1yðiÞ, respectively.

Then, accumulated deviation series for xðiÞ and yðiÞ
are calculated as per equation (1) and denoted by X
ðiÞ and YðiÞ, respectively. Both XðiÞ and YðiÞ are
divided into Ns nonoverlapping segments, where
Ns = int ðN/sÞ, s is the length of the segment. In
our experiment, s varies from a minimum of 16 to a
maximum of 512 value in log scale

(2) For each s, we denote a particular segment by vðv =
1, 2,⋯,NsÞ. Here, xvðiÞ and yvðiÞ denote the least-
square fitted polynomials for the segment v in XðiÞ
and YðiÞ, respectively. xvðiÞ and yvðiÞ are calcu-

lated as per the equations xvðiÞ =∑m
k=0CxkðiÞm−k and

yvðiÞ =∑m
k=0CykðiÞm−k, where Cxk and Cyk are the k

th

coefficients of the fit polynomials with degree m.
For this experiment, m is taken as 1 [21].

For each s and segment v, v = 1, 2,⋯,Ns, detrending
is done by subtracting the least-square fits xvðiÞ and
yvðiÞ from the part of the data series XðiÞ and YðiÞ,
respectively, for the segment v. The covariance of
the these residuals, denoted by f 2xyðs, vÞ for a particu-
lar s and v, is then calculated as follows.

f 2xy s, vð Þ = 1
s
〠
s

i=1
X v − 1ð Þs + i½ � − xv ið Þf g

× Y v − 1ð Þs + i½ � − yv ið Þf g,
ð7Þ

for each segment v, v = 1, 2,⋯,Ns.

(3) Then, the qth order detrended covariance, denoted by
Fxyðq, sÞ, is calculated by averaging f 2xy ðs, vÞ over all
the segments (v) generated for a particular s and q,
as per the equation below [10, 21, 42].

Fxy q, sð Þ = 1
Ns

〠
Ns

v=1
f 2xy s, vð Þ

h iq/2( )1/q

: ð8Þ

Here, q ≠ 0 because in that case, 1/q would blow up.

(4) The above process is repeated for different values of
s ∈ 16, 32,⋯, 512, and it can be seen that for a specific
q, Fxyðq, sÞ increases with increasing s. If the series are
long-range power correlated, the relation between
Fxyðq, sÞ versus s for a particular q will show power-
law behavior as below [21].

Fxy q, sð Þ∝ shxy qð Þ: ð9Þ

If this kind of scaling exists, log2½Fxyðq, sÞ� would
depend linearly on log2s, where hxyðqÞ is the slope
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and represents the degree of the cross-correlation
between the data series xðiÞ and yðiÞ.
In general, hxyðqÞ depends on q. q ranges from nega-
tive to positive values. For q = 2, the method is
referred as the so-called method of DXA [21].

(5) As confirmed from several experiments done by
Wang et al. [21], if hxyðqÞ = 0:5, there is no cross-
correlation. Further, if hxyðqÞ > 0:5, there are persis-
tent long-range cross-correlations, where the large
value of one variable, which is in this study the η
values, is likely to be followed by a large value of
another variable, which is the corresponding ϕ
values, in the series, whereas in case of hxyðqÞ < 0:5,
there are antipersistent long-range cross-correla-
tions, where a large value of one variable is most
likely to be followed by a small value and vice versa
in the series

(6) hxyðqÞ for q = 2, i.e., hxyð2Þ, is the DXA exponent. As
per Podobnik and Stanley, the cross-correlation
exponent between two nonstationary series, denoted
by γi, is calculated as per the equation γi = 2 − 2fhxy
ð2Þg [20]. For uncorrelated data series, γi = 1, the
lower the value of γi, the more correlated the data
series are

4. Experimental Details

The datasets for the proposed analysis are taken out from two
publicly available experimental primary datasets from CMS
collaboration. The details of the data is given in Section 4.1,
and the complete method of the experiment is explained in
step by step in Section 4.2.

4.1. Data Description. The primary dataset of the pp collision
at 8TeV in AOD format from RunB of 2012 [40] and another
dataset of pp collision at 7TeV in the same AOD format from
RunA of 2011 [41] of the CMS collaboration are taken as the
source datasets for this experiment. The run numbers which
are selected and qualified by CMS to be processed along
with the appropriate parameters for generation of the colli-
sion datasets are provided in the links—link1 and link2 for
8TeV and 7TeV, respectively. These datasets are made avail-
able for experiment. We have extracted the pseudorapidity-η
space and corresponding azimuthal-ϕ space for the gener-
ated di-muons from these runs qualified by CMS from the
primary datasets in the following formats—text (.txt) and
.root format. In this analysis, we have utilized these pseudor-
apidity space and the corresponding azimuthal space from
the text (.txt) file.

4.2. Data Analysis and Results

(1) The pseudorapidity-η space for each of the datasets
for 8 and 7TeV extracted from the primary datasets
of the CMS collaboration as described in Section 4.1
is divided into the following 5 ranges of η values

(a) −2.5 to −1.5

(b) −1.5 to −0.5

(c) −0.5 to 0.5

(d) 0.5 to 1.5

(e) 1.5 to 2.5

For all the 5 ranges, the η values are extracted from
the full-phase space of the two source datasets and
mapped to data series. The data series is plotted with
the X-axis denoting the sequence number of η
values and the Y corresponds to the η values corre-
sponding to the sequence number as in the X-axis.

For each of these data series, the following values are
calculated.

(i) The width of the multifractal spectrum

(ii) Degree of cross-correlation between the η space
and their corresponding ϕ space

(2) For each of the 10 datasets (5 for 8TeV and 5 for
7TeV datasets) created for the 5 ranges of pseudor-
apidity values, as specified in Step 1, the multifractal
analysis is done and the width of multifractal spec-
trum is calculated as per the method elaborated in
Section 3.1

The qth order detrended variance FqðsÞ is calcu-
lated as per equation (3) in the Step 5 of the
MF-DFA methodology as described in Section
3.1. Figures 1(a) and 1(b) show the log2½FqðsÞ� vs
log2½s�s trend for q = −5, 0, 5, extracted for a partic-
ular range of η values for 8 and 7TeV datasets,
respectively.

Their linear trend confirms the power-law behavior
of FqðsÞ versus s for all the values of q. Similar calcu-
lation is done for all the η ranges for both 8 and
7TeV datasets, and similar trend is observed.

(3) For each of the η-data series corresponding to the
ranges specified in Step 1, a randomized version
of data is produced and widths of the multifractal
spectrum are calculated as per the same methodol-
ogy elaborated in Section 3.1. The calculated values
of the parameters are compared to those for the
experimental data. In Figures 2(a) and 2(b), the
widths of the multifractal spectrum of the original
datasets and their randomized versions calculated
for one of the ranges η values are shown for 8
and 7TeV datasets, respectively. The below points
must be noted for the shape and widths of the mul-
tifractal spectrum of the original datasets and their
randomized versions

(i) The shape of the multifractal spectrum does
not necessarily have to be symmetric. The spec-
trum might have either a right or a left trunca-
tion that arises from the consistent/(almost
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constant) trend of Hurst exponents for positive
or negative values of qs. The consistent trend of
qth order Hurst exponent signifies that the qth

order RMS (calculated as per the equations in
Step 5 and Step 6 of Section 3.1) is not much
sensitive to the extent of the local fluctuations

(ii) The width and trend of multifractal spectrum
between the original and the randomized ver-
sion of the particular η-space for 8TeV dataset
shown in Figure 2(a) shows that the spectrum
for the randomized version has a long right tail

which signifies that the series have a multifrac-
tal structure not much affected by the local fluc-
tuations with large magnitudes

(iii) Whereas the multifractal spectrum calculated
for the original and the randomized version of
the η-space for the same range of η values for
7TeV dataset shown in Figure 2(b) shows that
the spectrum for the randomized version has
a long left tail, which means that the random-
ized series is not much sensitive to the local
fluctuations with small magnitudes.

4 5 6 7 8 9 10
–3

lo
g 2

 [F
q
 (s

)]

log2 (s)

–2.5

 –2

–1.5

–1

–0.5

0

0.5

1

q = –5
q = 0
q = 5

(a)
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0.5

1

1.5

4 5 6 7 8 9 10

lo
g 2

 [F
q
 (s

)]

log2 (s)

q = –5
q = 0
q = 5

(b)

Figure 1: Trend of log2½FqðsÞ� vs log2½s�s for q = −5, 0, 5, extracted for a particular range of η (a) for 8 TeV dataset and (b) for 7 TeV dataset.
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(iv) If the source data is long-range correlated, that
is eradicated by the randomization process, and
the data should start to become uncorrelated.
This makes the multifractal spectrum or the
scaling pattern of randomized series insensitive
to the local fluctuations with large or small
magnitudes, which is not the case with the
actual experimental data. Hence, it results in
the different widths of multifractal spectrum
calculated the randomized version from those
for the original version. Moreover, for two

completely different experimental datasets the
randomized data may be different with regards
to peak, shape, and trend. The width of the
multifractal spectrum has normally been less
for the randomized data than the one for the
experimental data

(v) The main conclusion comes from the fact that
the values of the width of the multifractal
spectrum calculated experimental data being
significantly different from shuffled ensembles

0.47 0.48  0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0.88

0.9

0.92

0.94

0.96

0.98

1

Shuffled 𝜂 space
𝜂 space

f
(𝛼

)

𝛼

(a)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.48

Shuffled 𝜂 space
𝜂 space

 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58

f
(𝛼

)

𝛼

(b)

Figure 2: Comparison of the trend of different values of f ðαÞ versus α between the original and the randomized version of the η space for a
particular range of η values for (a) 8 TeV dataset and (b) 7 TeV dataset.
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essentially confirms that the degree of scale-
freeness is indicative of the dynamics inherent
in the di-muon production process, and this
degree of scale-freeness may be indicative of
different processed responsible for di-muon
production even beyond standard model (SM).

(vi) It is evident from the figures that the widths of
the multifractal spectrum of the original data-
sets and their randomized versions differ sub-
stantially for both energies. Similar trend is
observed from the comparison of the original
and the randomized version of the 5 ranges of
η values for both 8 and 7TeV datasets

The comparison of the widths of the multifractal
spectrum generated for the η spaces for all the 5
ranges of η values for 7 and 8TeV datasets with
respect to their rapidity and energy dependence is
shown in Figure 3. It should be noted that:

(i) The comparison of the width of the multifrac-
tal spectrum of f ðαÞ, denoted by the differ-
ence between the maximum and minimum
values of α, between the original and the ran-
domized version of the η space for both energy
ranges confirm the mutifractality of the origi-
nal η spaces

(ii) For the 2nd, 3rd, and 5th range of η values, the
widths of multifractal spectrum is substantially
different between the energy ranges

(iii) For both 7 and 8TeV the 1st and 4th range of
η-space display minimum or no difference with
respect to multifractality

(iv) The degree of multifractality is found to be the
least for 2nd and 3rd range for 8 and 7TeV data,
respectively

Table 1 details the widths of the multifractal spec-
trum of the original datasets and their randomized
versions for all the 10 datasets (5 for 8 and 5 for
7TeV) corresponding to the η values. The values
of the width of MF-DFA spectrum, essentially is
an indicator of inherent symmetry and scale-
freeness (different at different energy and rapidity
ranges) with which the produced di-muons create
the signatures in terms of η values. The values of
these parameters in experimental data being signif-
icantly different from shuffled ensembles confirm
that this inherent symmetry and degree of scale-
freeness is never the outcome of randomization pro-
cess but is indicative of the dynamics involved in the
di-muon production process.

(4) For each of the 10 datasets (5 for 8 and 5 for 7TeV)
of η values extracted for the ranges specified in
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Figure 3: Comparison of the widths of the multifractal spectrum generated η spaces for all the 5 ranges of η values for 7 and 8TeV datasets.

Table 1: Comparison of the widths of the multifractal spectrum
generated η spaces for all the 5 ranges of η values for 7 and 8 TeV
datasets, between the original and the randomized version.

η ranges
MF-DFA spectrum width

8 TeV 7TeV
Original Random Original Random

−2.5 to −1.5 0.09 0.06 0.09 0.04

−1.5 to −0.5 0.02 0.01 0.07 0.02

−0.5 to 0.5 0.09 0.04 0.02 0.04

0.5 to 1.5 0.03 0.02 0.03 0.04

1.5 to 2.5 0.05 0.04 0.07 0.06
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Step 1, the corresponding azimuthal-ϕ space is
also extracted. The 10 corresponding ϕ space is
sorted in the ascending order and then mapped
into data series. They in turn are mapped into a
two-dimensional space with their sequence along
the X-axis and the corresponding values of ϕ along
the Y-axis

(5) For the 10 ϕ spaces (5 for 8 and 5 for 7TeV), the qth

order detrended variance FqðsÞ is analyzed as per
equation (3) in Step 5 of the MF-DFA methodology
as described in Section 3.1. Figures 4(a) and 4(b)

show the log2½FqðsÞ� vs log2½s�s trend for q = −5, 0,
5, extracted for corresponding ϕ values for the same
range of η values for which the same trend is shown
in Figures 1(a) and 1(b) for 8 and 7TeV datasets,
respectively

It is to be noted that the linear trend confirms the
power-law behavior of FqðsÞ versus s for all the
values of q for the ϕ spaces. The same analysis is
done for all the ϕ spaces corresponding to the η
ranges for both 8 and 7TeV datasets, and a similar
trend is observed.
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Figure 4: Trend of log2½FqðsÞ� vs log2½s�s for q = −5, 0, 5, analyzed for the ϕ space corresponding to the η space for (a) 8 TeV dataset, as shown
in Figure 1(a), and (b) 7 TeV dataset, as shown in Figure 1(b).
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(6) Multifractal cross-correlation analysis is done as
per the method described in Section 3.2 between
the 10 pairs of datasets (5 for 8TeV and 5 for
7TeV), one being the sorted ϕ values and the
other being the corresponding η values. The trend
of generalized Hurst exponent ðhðqÞÞ for different
order (q) is analyzed for all the 10 pairs of η and
ϕ datasets as per the process described in Section
3.1. Along with that, for the same pairs of data-

sets the degree of cross-correlationðhx,yðqÞÞ for
different order (q) is analyzed as per the method-
ology described in Section 3.2. The trend of hðqÞ
and hx,yðqÞ versus q for the particular sample pair
of η and ϕ space for which trends of log2½FqðsÞ�
vs log2½s�s are shown in Figure 1(a) (η space)
and Figure 4(a) (ϕ space) for 8TeV dataset and
Figure 1(b) (η space) and Figure 4(b) (ϕ space)
for 7TeV dataset is shown in Figures 5(a) and
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Figure 5: Trend of hðqÞ and hx,yðqÞ versus q for q = −5, −4,⋯, 5, calculated for a particular range of η values and their corresponding ϕ values
for (a) 8 TeV dataset and (b) 7 TeV dataset.
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5(b) for 8 and 7TeV datasets, respectively. The
values are shown in the figures for q = −5, −4,⋯, 5.
It should be noted that:

(i) As shown in Figures 5(a) and 5(b), the trend
of dependence of hðqÞ on q for individual η
and ϕ spaces confirm their multifractality and
the same for hx,yðqÞ on q for the same pair of η
and ϕ spaces confirm their cross-correlation
for both 8 and 7TeV datasets

(ii) Figures 5(a) and 5(b) show that hðqÞ decreases
at a lower rate for the increasing values of nega-
tive qs for both φ and η data ranges in both
energies of 8 and 7TeV. This signifies that for
negative values of q, the qth order RMS (calcu-
lated as per the equations in Step 4 and Step 5
of Section 3.1) is not much sensitive to the local
fluctuations with small magnitudes for the data-
sets (ϕ and η) for both energies

However, for the ϕ data series corresponding to the
particular range of η at 8TeV, hðqÞ decreases at a
higher rate for positive values of q than the corre-
sponding ones calculated for the same range of η
at 7TeV. This means, in this case, hðqÞ is a bit more
affected by the local fluctuations with large magni-
tudes, resulting in higher rate of decrease for hðqÞ
with increasing order of positive q for the ϕ data
series of 8TeV than the corresponding one for
7TeV data. This has happened because there may
exist fluctuations with comparatively large magni-
tude for the φ data series for higher energy—8TeV
than the one for 7TeV.

(i) It is further observed in Figures 5(a) and 5(b)
that hx,yðqÞ (calculated as per the equation in
Step 4 of Section 3.2) for multifractal cross-
correlation changes almost at the same rate
for both 8 and 7TeV energies. It should be
noted that the maximum and minimum values
of hx,yðqÞ for 8 and 7TeV are different; how-
ever, the change of hx,yðqÞ with the increasing
values of q is almost the same. Although for
8TeV, there is higher rate of decrease for hðqÞ
with increasing order of positive qs for the ϕ
data series than the corresponding one for
7TeV data, resulting from possible higher
magnitude of fluctuation for ϕ data series, that
decreasing trend gets nullified while calculat-
ing the covariance of ϕ data series and corre-
sponding η data series at 8TeV energy. Hence,
the trend of hx,yðqÞ with the increasing values
of q is almost the same for both energies. How-
ever, this has resulted in the lower ranges of the
values of degree of cross-correlation hx,yðqÞ for
8TeV, making them less cross-correlated

(ii) For q = 2, both hðqÞ and hx,yðqÞ are >0.5 and for
ϕ space hðqÞ is much higher than that for the
corresponding η space

(iii) Also, hx,yðqÞ is much higher than 0.5 for the
pair of datasets for q = 2. This suggests the pres-
ence of long-range correlation and persistence
in both spaces

(iv) Moreover, there is a drop in the value of hx,yðqÞ
around q = −1. In most of the previous works, it
has been shown that there exists similar trend
of hx,yðqÞ or the degree of cross-correlation
with increasing values of order or q, as seen in
the present analysis

(v) Similar analysis has been done for all the 10
pairs of datasets, and similar trend is observed
for all of them

(7) Figures 6(a) and 6(b) show the comparison of the
trend of different values of f ðαÞ versus α for the
same η, ϕ spaces and the same trend calculated for
their cross-correlation, for 8 and 7TeV datasets,
respectively

(i) For both energy ranges, width of the cross-
correlation curve is the maximum, followed by
the width of the multifractal spectrum of the ϕ
space and then that of the η space

(ii) Again, similar trend is observed for all the pairs
of datasets in this experiment. The more wide
the spectrum is, the more degree of multifractal-
ity is inherent in the data series

(8) The qth order detrended covariance Fxyðq, sÞ is cal-
culated for a particular range of η values and their
corresponding ϕ values as per the Step 4 of the
MF-DXA methodology described in Section 3.2,
and the trend of log2½Fxyðq, sÞ� vs log2½s� for q = −5,
0, 5 is shown in Figures 7(a) and 7(b) for 8 and
7TeV datasets, respectively

(i) Their linear trend (more prominent for the
values of q > 0) confirms the power-law behav-
ior of Fxyðq, sÞ versus s for all the values of q

(ii) Similar calculation is done for all the η ranges
and their corresponding ϕ spaces, for both 8
and 7TeV datasets, and similar trend is observed

As explained in Step 5 of theMF-DXAmethodology
described in section 3.2, here, hxyðqÞ > 0:5 implies
that there are persistent long-range cross-correla-
tions, where a large value in ϕ space is likely to
have an equally large corresponding η value. The
higher the value of hxyðqÞ, the higher the cross-
correlation. Figures 7(a) and 7(b) show how the qth
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order detrended covariance or Fxy(q,s) varies with
increasing values of scale (s) in log scale. The straight
line fitting of Fxyðq, sÞ versus s in log scale is shown
in the figures and the relevant power-law coefficients
or degree of cross-correlations (hxyðqÞ) are also
shown in the fitting equations in the diagram. It
is evident from the figures that for negative values
of q, degree of cross-correlation is higher than that
for positive values of q. Covariance of small mag-
nitudes are reflected more prominently for nega-

tive values of q, which signifies that the average
cross-correlation between φ spaces and their corre-
sponding η spaces fluctuates more for the values of
q < 0 and gives rise higher value of hxyðqÞ. This
fluctuation becomes lesser as q increases from q =
−5, −4,⋯, −1. For positive values of q (q ≥ 0), the
qth order detrended covariance starts to fluctuate
very less and gives rise to lesser values of hxyðqÞ.
Hence, the value of hxyðqÞ also changes more for
q < 0 than for q > 0. This different degree of

0.2 0.4 0.6 0.8 1 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

1.2

𝜙 space
Cross-correlation among 𝜙-𝜂 space

𝜂 space

f
(𝛼

)

𝛼

1.2

(a)

0.2 0.4 0.6 0.8 1 1.4 1.6 1.8 2 2.2

0

0.2

0.4

0.6

0.8

1

1.2

𝜙 space

Cross-correlation among 𝜙-𝜂 space
𝜂 space

f
(𝛼

)

𝛼

1.2

(b)

Figure 6: Comparison of the trend of different values of f ðαÞ versus α among the same η, ϕ spaces and the same trend calculated for their
cross-correlation, for the (a) 8 TeV dataset and (b) 7 TeV dataset.
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detrended covariance between φ values and their
corresponding η values for different values of q
gives a range of hx,yðqÞ forming the multifractal
cross-correlation spectrum.

Figures 7(a) and 7(b) show that the qth order
detrended covariance or Fxyðq, sÞ calculated for
large values of a particular η space and its corre-
sponding ϕ space having large values is fluctuat-
ing more with increasing scale (s) for negative

values of q yielding to comparatively higher values
of hxyðqÞ—power-law coefficient. Also, for q > 0,
Fxyðq, sÞ would flatten or change in almost constant
rate with s as evident in the figures and yielding
to comparatively lesser values of hxyðqÞ for both 8
and 7TeV energies. For calculating the degree of
multifractal cross-correlation denoted by γis, the
trend of Fxyðq, sÞ∝ shxyðqÞ for q = 2 is analyzed [20],
as elaborated in Section 3.2. Further, in most of the
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Figure 7: Trend of log2½Fxyðq, sÞ� vs log2½s� for q = −5, 0, 5, calculated for a particular range of η values and their corresponding φ values for (a)
8 TeV dataset and (b) 7 TeV dataset.
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previous works, it had been shown that Fxyðq, sÞ
varies with increasing values of scale or s in log scale
for different order or values of q, in similar manner as
it is varying in this experiment.

(9) Two sets of multifractal cross-correlation coeffi-
cient, denoted by γi for i = 1, 2,⋯, 5 for each of
the 8 and 7TeV datasets, are computed as per the
method described in Section 3.2. This way, the
degree of cross-correlation between ϕ and η spaces
for all the 5 ranges of η values as specified in Step 1
for both 8 and 7TeV datasets are calculated

(10) Then, each of the azimuthal ϕ spaces extracted in
Step 4 is randomized, and the multifractal cross-
correlation coefficients between the randomized ϕ
spaces and the corresponding η spaces are extracted
for both 8 and 7TeV datasets are calculated as per
the method described in Section 3.2

(11) Figure 8 shows the comparison of multifractal
cross-correlation coefficients (γi) between ϕ and η
spaces for all the 5 ranges of η values for 7 and
8TeV datasets with respect to their rapidity as well
as energy dependence. Here, we notice that:

(i) For both 7 and 8TeV data, all the 5 η spaces are
highly cross-correlated with their correspond-
ing ϕ spaces

(ii) It should be noted that γi = 1 for uncorrelated
data series. The more correlated the data series
are, the lower the value of γi. For 8TeV data,
the first range of η values is most cross-
correlated with the corresponding ϕ space, and
the most cross-correlated range for 7TeV data
is the third one

The comparison of γis for all the 5 η ranges for 7 and
8TeV datasets between the original and the ran-
domized version is shown in Table 2. The values
of the parameter, γi, calculated for experimental
data being significantly different from the shuffled
ensembles, confirm that this inherent degree of
multifractal cross-correlation between each η space
and its corresponding ϕ space is never the out-
come of randomization process but is indicative of
the inherent multifractal cross-correlation among
η and corresponding ϕ values in the di-muon pro-
duction process.

(12) Hence, the values of γis calculated for the original
and the randomized version differ substantially,
clearly establishing the statistical significance of
the results obtained from the actual data.
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Figure 8: Comparison of multifractal cross-correlation coefficient (γi) between φ and η spaces for all the 5 ranges of η values for 7 and
8TeV datasets.

Table 2: Comparison of the experimental values of multifractal
cross-correlation coefficients (γi) between ϕ and η spaces for all
the 5 ranges of η values for 7 and 8TeV datasets, between the
original and the randomized version.

η ranges
MFD-XA coefficients (γi)

8 TeV 7TeV
Orig Rand Orig Rand

−2.5 to −1.5 −0.57 1.01 −0.49 0.94

−1.5 to −0.5 −0.48 1.00 −0.53 0.99

−0.5 to 0.5 −0.48 1.02 −0.55 1.00

0.5 to 1.5 −0.54 0.98 −0.50 1.01

1.5 to 2.5 −0.45 0.96 −0.53 0.94
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5. Conclusion

Oppositely charged di-muon production is the outcome of
several hypothetical processes and investigation for such pro-
cesses have been the goal of experiment of pp collision at 7
and 8TeV and also at other energies at the CMS collabora-
tion. However, the present investigation, as we have pointed
out earlier, is based on a deep-rooted dynamics of di-lepton
production process in hadron-hadron interaction from the
basic perspective of symmetry-based scaling in different
pseudorapidity ranges in two different energies. We have
used two rigorous and robust methodologies, namely, MF-
DFA and MF-DXA, for the scaling analysis of the dynamics
of the di-muon production process using di-muon data taken
from the primary dataset of RunA(2011) and RunB(2012) of
the pp collision at 7TeV and 8TeV, respectively, from CMS
collaboration. We have analyzed how this scaling pattern
has evolved from one rapidity range to the next one and
how this change evolved from lower energy range of 7TeV
to the higher one 8TeV, and the findings are listed below.

(1) The linear trend of FqðsÞ vs s for all the values of q for
all the 5 ranges of η values for 8 and 7TeV datasets
confirms the fractality as well as the multifractality
of all the pseudorapidity spaces. Figures 1(a) and
1(b) show similar trend for a particular range of η
values for both energy ranges. Similar linear trend is
observed for the ϕ spaces corresponding to the η
spaces, which again confirm the fractality and the
multifractality of the ϕ spaces as well. Figures 4(a)
and 4(b) show the linear trend calculated for the ϕ
spaces corresponding to the particular η range for
both energy ranges

(2) Table 1 and Figure 3 show how the widths of the
multifractal spectrum differ from one η space to the
other and how they in turn differ from one energy
range to another. It is interesting to note that for
both 7 and 8TeV energies, the η space correspond-
ing to the first range of η has the maximum width
of multifractal spectrum/degree of complexity, or in
other words, they are most multifractal in nature
among the other five ranges. Moreover, they have
exactly the same value for the parameter. As for the
minimum width of multifractal spectrum, the sec-
ond η range for 8TeV data and third η range for
7TeV data is 0.02 which is again the same for both
energy ranges

(3) The linear trend of log2½Fxyðq, sÞ� vs log2 s for q =
−5, 0, 5 which is shown in Figures 7(a) and 7(b)
for 8 and 7TeV datasets, respectively, for the same
specific η range and its corresponding ϕ space
confirms the self-similar cross-correlation between
the spaces which is evident from the goodness-of-
fit for all the values of q. Similar trend is observed
for the rest of the η ranges

(4) Table 2 and the Figure 8 show that for both 7 and
8TeV data, all the 5 η spaces are highly cross-

correlated with their corresponding ϕ spaces and
how the degree of cross-correlation changes from
one η space to the other and from one energy range
to another. It should be noted that the degree of mul-
tifractal cross-correlation, γi, is maximum for the first
η range for 8TeV data, and the same is maximum for
the third range of 7TeV data. γi is minimum for the
fifth η range for 8TeV data and for the first range
of 7TeV data

This analysis manifests different degree of symmetry
scaling or scale-freeness in different pseudorapidity domains
and at the same time different degree of cross-correlation
between pseudorapidity and azimuthal space at both energy.
The differences in the values of scaling and cross-correlation
exponents representing the degree of symmetry scaling and
degree of cross-correlation, respectively, calculated for differ-
ent ranges of rapidity and at two different energy values, indi-
cate the existence of several processes involved in the
production process of oppositely charged di-muons giving
rise to varying degree of scaling. The observed difference of
degree of symmetry scaling in different rapidity domains at
two different energy values may provide a clue for exploring
other processes in regards to di-muon production even from
the perspective beyond the standard model. This novel
method has the prospect for applications in different high-
energy interactions to detect not only different possible reso-
nance states but also for identification of exotic resonance
states proposed by theories.
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