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In this paper, we study interactions of a scalar particle with electromagnetic potential in the background space-time generated by a
cosmic string with a space-like dislocation. We solve the Klein-Gordon oscillator in the presence of external fields including an
internal magnetic flux field and analyze the analogue effect to the Aharonov-Bohm effect for bound states. We extend this
analysis subject to a Cornell-type scalar potential and observe the effects on the relativistic energy eigenvalue and eigenfunction.

1. Introduction

The Klein-Gordon oscillator [1, 2] was inspired by the Dirac
oscillator [3] applied to spin-ð1/2Þ particles. The Klein-
Gordon oscillator has been investigated in several physical
systems, such as in the background of the cosmic string with
external fields [4], in the presence of a Coulomb-type poten-
tial considering two ways: (i) by modifying the mass term
m⟶m + S [5] and (ii) via the minimal coupling [6] with
a linear potential, in the background space-time produced
by topological defects using the Kaluza-Klein theory [7], in
the Som-Raychaudhuri space-time in the presence of exter-
nal fields [8], in the motion of an electron in an external mag-
netic field in the presence of screw dislocations [9], in the
continuous distribution of screw dislocation [10], in the pres-
ence of a Cornell-type potential in a cosmic string space-time
[11], in the relativistic quantum dynamics of a DKP oscillator
field subject to a linear scalar potential [12], in the DKP equa-
tion for spin-zero bosons subject to a linear scalar potential
[13], and in the Dirac equation subject to a vector and scalar
potentials [14]. In the literature, it is known that a cosmic
string has been produced by phase transitions in the early
universe [15] as it is predicted in the extensions of the stan-
dard model [16, 17]. Topological defects in condensed matter

physics can be associated with the presence of curvature and
torsion. In particular, topological effects associated with
torsion have been investigated in crystalline solids with
the use of differential geometry [18, 19]. Recent studies have
explored the effects of torsion on condensed matter systems
[20–23]. Therefore, there is a great interest in the connection
between quantum mechanics and the general relativity.

The cosmic string space-time in cylindrical coordinates
ðt, r, ϕ, zÞ is described by the following line element [16–
18, 24–29]:

ds2 = −dt2 + dr2 + α2 r2 dϕ2 + dz2, ð1Þ

where α = ð1 − 4μÞ is the topological parameter with μ
being the linear mass density of a cosmic string and 0 <
α < 1. Furthermore, in the cylindrical symmetry, we have
that 0 < r ≤∞, 0 ≤ ϕ ≤ 2π, and −∞ < z <∞.

In Ref. [30], the Klein-Gordon oscillator without and/or
with a linear scalar potential in the presence of external fields
including an internal magnetic flux field in a space-time with
a space-like dislocation was studied. They solved the wave
equation analytically and analyzed the effects on the relativis-
tic energy eigenvalue. In Ref. [31], authors investigated the
Klein-Gordon oscillator with topological defects including
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an internal magnetic flux field subject to a Coulomb-type
plus linear potential (called a Cornell-type potential) in a
space-time with screw dislocation (space-like dislocation).
They obtained the relativistic energy eigenvalue and observed
the analogous effect to the Aharonov-Bohm effect for bound
states. In this work, we study the Klein-Gordon oscillator
field interaction with external fields including an internal
magnetic flux field in a space-time with a magnetic screw dis-
location. We extend this analysis subject to a Cornell-type
scalar potential by searching analytically for a bound state
solution to the system. Recently, dislocation has been investi-
gated in nonrelativistic and relativistic quantum systems. The
spiral dislocation, in the nonrelativistic context, has been
investigated in the harmonic oscillator [32]; in the relativistic
context, it has been investigated in a scalar field in a noniner-
tial frame [33]. The screw dislocation, in the nonrelativistic
context, has been applied in the harmonic oscillator [34,
35], in the Landau quantization [9, 10, 36], in the doubly
anharmonic oscillator [37], in Landau quantization for an
induced electric dipole [38], and in noninertial effects on a
nonrelativistic Dirac particle [39]. In the relativistic context,
the screw dislocation has been studied in the Dirac oscillator
[40, 41], in the Klein-Gordon oscillator [31], and in the ana-
logue effects to the Aharonov-Bohm effect for bound states in
a position-dependent mass system [42].

The structure of the present paper is as follows: in Section
2.1, we investigate the Klein-Gordon oscillator in the pres-
ence of an external field including an internal magnetic flux
in a cosmic string space-time with a space-like dislocation;
in Section 2.2, we extend this analysis subject to a Cornell-
type scalar potential and analyze the analogue effect to the
Aharonov-Bohm effect for bound states; and finally, conclu-
sions are presented in Section 3.

2. Klein-Gordon Oscillator Interacts with
External Fields in a Cosmic Space-Time with
a Space-Like Dislocation

Let us begin this section by introducing the space-time with a
screw dislocation. It corresponds to a space-time with a linear
topological defect associated with torsion and a cosmic string
that can be described by the line element [30]

ds2 = −dt2 + dr2 + α2 r2 dϕ2 + dz + χ dϕð Þ2, ð2Þ

where c = 1 = ℏ, 0 < α < 1 is the cosmic string parameter, and
χ is the dislocation (torsion) parameter, and in condensed
matter physics, this parameter is related to the Burgers vec-
tor b via χ = ðb/2πÞ [18, 19, 43, 44]. It is important to men-
tion that the screw dislocation (torsion) corresponds to a
singularity at the origin [18, 43]. Also note that the spatial
part of the metric (2) is called the Katanaev and Volovich
line element in studies of solids as the screw dislocation
[18, 19]. For χ⟶ 0, the metric (2) reduces to a cosmic
string space-time. Again for χ⟶ 0, and α⟶ 1, the
space-time reduces to the Minkowski flat space metric in
cylindrical coordinate system.

The metric tensor for the space-time (2) is

gμν xð Þ =

−1 0 0 0
0 1 0 0
0 0 α2 r2 + χ2 χ

0 0 χ 1

0
BBBBB@

1
CCCCCA, ð3Þ

with its inverse

gμν xð Þ =

−1 0 0 0
0 1 0 0

0 0 1
α2 r2

−
χ

α2 r2

0 0 −
χ

α2 r2
1 + χ2

α2 r2

0
BBBBBBB@

1
CCCCCCCA
: ð4Þ

The metric has the signature ð−, + , + , + Þ, and the
determinant of the corresponding metric tensor gμν is

det g = −α2r2: ð5Þ

The relativistic quantum dynamics of charged particles of
mass m is described by the Klein-Gordon equation [28]

1ffiffiffiffiffiffi−gp Dμ
ffiffiffiffiffiffi
−g

p
gμνDνð Þ −m2

� �
Ψ = 0, ð6Þ

where the minimal coupling with electromagnetic interaction
is as follows:

Dμ = ∂μ − ieAμ, ð7Þ

where e is the electric charge and Aμ is the electromagnetic
four-vector potential defined by

Aμ = 0, A
!� �

, A
!
= 0, Aϕ, 0
� �

: ð8Þ

The three-vector potential in the symmetric gauge is
defined by

A
!
= A

!
1 + A

!
2, ð9Þ

where the angular component of three-vector potential for

A
!

1 is [28].

A 1ð Þ
ϕ = −

1
2 αB0r

2: ð10Þ

And that for A
!
2 is [30, 31, 42, 45, 46]

A 2ð Þ
ϕ = ΦB

2π , ð11Þ
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so that the angular component of the electromagnetic four-
vector potential is

Aϕ = −
1
2 αB0r

2 + ΦB

2π : ð12Þ

The magnetic field is along the z-direction given by

B
!
= ∇

!
× A

!
= −B0 k̂: ð13Þ

Here ΦB = const is an internal quantum magnetic flux
through the core of the topological defect [34] and eAϕ =Φ

where Φ = ðΦB/ð2π/eÞÞ.
If one introduces a scalar potential by modifying the mass

term as m⟶m + SðrÞ into the above equation, we have

1ffiffiffiffiffiffi−gp Dμ
ffiffiffiffiffiffi
−g

p
gμνDνð Þ − m + Sð Þ2

� �
Ψ = 0: ð14Þ

Using the geometry (2), Equation (14) becomes

�
−∂2t +

1
r
∂r r∂rð Þ + 1

α2r2
∂ϕ − ieAϕ − χ∂z
� �2

+ ∂2z − m + Sð Þ2
�
Ψ = 0:

ð15Þ

To include the oscillator with the Klein-Gordon field, we
change the following momentum operator [7]:

p
!→ p

! + imΩ r!, ð16Þ

where Ω is the oscillator frequency and r! = rr̂ with r being
the distance from the particle to the string. So we can write

p2 ⟶ ðp! + imΩ r!Þðp! − imΩ r!Þ. Therefore, Equation (15)
becomes

�
−∂2t +

1
r

∂r +mΩrð Þ r∂r −mΩr2
� �

+ 1
α2 r2

∂ϕ − ieAϕ − χ∂z
� �2 + ∂2z − m + Sð Þ2

�
Ψ

= 0⇒
�
−∂2t +

1
r
∂r r∂rð Þ − 2mΩ −m2Ω2r2

+ 1
α2r2

∂ϕ − ieAϕ − χ∂z
� �2 + ∂2z − m + Sð Þ2

�
Ψ = 0:

ð17Þ

We choose the following ansatz for the function Ψ:

Ψ t, r, ϕ, zð Þ = ei −Et+lϕ+kzð Þψ rð Þ, ð18Þ

where E is the energy, l = 0, ±1, ±2,⋯∈ Z are the eigenvalue
of the z-component of the angular momentum operator, and
k is a constant.

Substituting the above ansatz (18) into Equation (17), we
have

ψ″ rð Þ + 1
r
ψ′ rð Þ +

�
E2 − 2mΩ −m2Ω2r2

−
1

α2r2
l − eAϕ − kχ
� �2 − k2 − m + Sð Þ2

�
ψ = 0:

ð19Þ

2.1. Interaction without a Scalar Potential S = 0. Here, we
investigate the gravitational effect produced by the topologi-
cal defects (cosmic string) on the above relativistic quantum
system without scalar potential in the presence of external
fields including an internal magnetic flux field. We see that
the relativistic energy eigenvalue is modified by the topolog-
ical defects and break their degeneracy.

Substituting the angular component of the four-vector
potential Equation (12) into Equation (19), we obtain the fol-
lowing differential equation:

ψ″ rð Þ + 1
r
ψ′ rð Þ + λ −m2ω2r2 −

j2

r2

� �
ψ = 0, ð20Þ

where

λ = E2 − k2 −
2mωc

α
αleff − kχð Þ −m2 − 2mΩ,

j = l −Φ − kχj j
α

,

ω =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c +Ω2

q
,

leff =
1
α

l −Φð Þ,

Φ = ΦB

2π/e ,

ð21Þ

and the cyclotron frequency is

ωc =
eB0
2m : ð22Þ

Transforming s =mωr2 into the above equation, we
obtain the following differential equation [47]:

ψ″ sð Þ + 1
s
ψ′ sð Þ + 1

s2
−ξ1s

2 + ξ2s − ξ3
� �

ψ sð Þ = 0, ð23Þ

where

ξ1 =
1
4 ,

ξ2 =
λ

4mω
,

ξ3 =
j2

4 :

ð24Þ
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The energy eigenvalue is given by

2n + 1ð Þ
ffiffiffiffi
ξ1

p
− ξ2 + 2

ffiffiffiffiffiffiffiffi
ξ1ξ3

p
= 0⇒ λ = 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c +Ω2

q
2n + 1 + jð Þ⇒ E2

n,l

=m2 + k2 + 2mΩ + 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c +Ω2

q
2n + 1 + l − kχ −Φj j

α

	 


+ 2mωc
l − kχ −Φ

α
,

ð25Þ

where n = 0, 1, 2, 3, 4,⋯.
The eigenfunction is given by

ψ sð Þ = s l−Φ−kχj jð Þ/2αe− s/2ð ÞL l−Φ−kχj jð Þ/α
n sð Þ, ð26Þ

where LðβÞn ðsÞ is the generalized Laguerre polynomials.
If we take α⟶ 1, one will recover the results obtained in

[30] (see Equation (31) in [30]). As the cosmic string para-
meterαis composed of the values0 < α < 1, we can see that
the presence of the cosmic string parameterαmodifies the
energy spectrum. For ΦB ≠ 0 and χ ≠ 0, we can observe in
Equation (25) that there exists an effective angular momen-
tum, l⟶ leff = ð1/αÞðl −Φ − kχÞ. Thus, the relativistic
energy eigenvalue depends on the Aharonov-Bohm geomet-
ric quantum phase [48]. This dependence of the energy
eigenvalue on the geometric quantum phase gives rise to
the analogous effect to the Aharonov-Bohm effect for bound
states [49–51]. Besides, we have that En,�l ðΦB +Φ0Þ = En,�l∓τ
ðΦBÞ where Φ0 = ±ð2πα/eÞτ with τ = 1, 2, 3,⋯ and�l = ðl/αÞ.

For the zero torsion parameter, χ = 0, Equation (25)
becomes

E2
n,l =m2 + k2 + 2mΩ

+ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c +Ω2

q
2n + 1 + l −Φj j

α

	 

+ 2mωc

l −Φ

α
:

ð27Þ

Equation (27) is the energy spectrum of the Klein-
Gordon oscillator in the presence of an external uniform
magnetic field including an internal magnetic flux in a cos-
mic string space-time. For ΦB ≠ 0, we can observe in Equa-
tion (27) that the angular quantum number is shifted,
l⟶ l′ = ð1/αÞðl − ðϕB/ð2π/eÞÞÞ, and thus, the relativistic
energy eigenvalue depends on the Aharonov-Bohm geomet-
ric phase [48]. This dependence of the energy eigenvalue on
the geometric quantum phase gives rise to the analogous
effect to the Aharonov-Bohm effect for bound states [49–
51]. Besides, we have that En,�lðΦB +Φ0Þ = En,�l∓τðΦBÞ, where
Φ0 = ±ð2πα/eÞτ with τ = 1, 2, 3,⋯ and �l = l/α. By taking
ΦB = 0 in Equation (27), we have that the relativistic energy
levels arise from the interaction of the Klein-Gordon oscil-
lator with a uniform magnetic field in the Minkowski
space-time with a cosmic string. On the other hand, by tak-
ing ωc ⟶ 0 and ΦB ⟶ 0 in Equation (27), we recover the
results obtained in Ref. [7]. Thus, for χ ≠ 0 and ΦB ≠ 0 in

the energy eigenvalue Equation (25), we have that the pres-
ence of torsion in the space-time modifies the degeneracy
of the relativistic energy levels. Besides, the presence of tor-
sion in the space-time changes the pattern of oscillation of
the energy levels.

2.2. Interaction with a Cornell-Type Scalar Potential. Here, we
investigate the above relativistic quantum system described by
the Klein-Gordon oscillator subject to a Cornell-type scalar
potential in the presence of external fields including an inter-
nal magnetic flux field. A scalar potential is included into the
systems bymodifying the massm⟶m + SðrÞwhich is called
a position-dependent mass system in the relativistic quantum
systems (see, e.g., [5, 6, 8, 28, 30, 31, 42, 46, 52–62]).

The Cornell potential, which consists of a linear potential
plus a Coulomb potential, is a particular case of the quark-
antiquark interaction, which has one more harmonic type
term [53]. Recently, the Cornell potential has been studied
in the ground state of three quarks [63]. However, this type
of potential is worked on spherical symmetry; in cylindrical
symmetry, which is in our case, this type of potential is
known as a Cornell-type potential [8, 31, 54–56].

The Cornell-type scalar potential is given by

S = ηc
r
+ ηLr, ð28Þ

where ηc and ηL are the positive arbitrary potential parame-
ters. This potential has been used successfully in models
describing binding states of heavy quarks [64–66]. The Cornell
potential contains a short-range part dominated by a Coulom-
bic term of quark and gluon interaction ~ ða/rÞ and the large
distance quark confinement as a linear term ~ br [67–72]. In
some situations when the parameter b is small, it provides a
particular case of perturbed Coulomb problem in atomic
physics [73]. This potential has been used to study the strange,
charmed, and beautiful baryon masses in the framework of a
variational approach [74].

Substituting the vector potential Equation (12) and the
scalar potential Equation (28) into Equation (19), we obtain
the following differential equation:

ψ″ rð Þ + 1
r
ψ′ rð Þ + ~λ − ~ω2r2 −

~j
2

r2
−
a
r
− br

" #
ψ rð Þ = 0, ð29Þ

where

~λ = E2 −m2 − k2 − 2 ηcηL −
2mωc

α
l −Φ − kχð Þ − 2mΩ,

~ω =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ω2

c +Ω2� �
+ η2L

q
,

~j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l −Φ − kχð Þ2

α2
+ η2c

r
,

a = 2mηc,
b = 2mηL:

ð30Þ
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Transforming x =
ffiffiffiffi
~ω

p
r into the above Equation (29), we

obtain the following wave equation:

ψ″ xð Þ + 1
x
ψ′ xð Þ + ζ − x2 −

~j
2

x2
−
η

x
− θx

" #
ψ xð Þ = 0, ð31Þ

where we have defined

ζ =
~λ

~ω
,

η = affiffiffiffi
~ω

p ,

θ = b

~ω3/2 :

ð32Þ

Now, we use the appropriate boundary conditions to
investigate the bound state solution in this problem. It is
required that the wave functions must be regular both at
x⟶ 0 and x⟶∞. These conditions are necessary since
the wave functions must be well-behaved in these limits,
and thus, bound states of energy for the system can be
obtained. Suppose the possible solution to Equation (31) is

ψ xð Þ = x~je− 1/2ð Þ θ+xð ÞxH xð Þ, ð33Þ

where HðxÞ is an unknown function. Substituting solution
(33) into Equation (31), we obtain

H″ xð Þ + γ

x
− θ − 2x

h i
H ′ xð Þ + −

β

x
+Θ

� �
H xð Þ = 0, ð34Þ

where

γ = 1 + 2~j,

Θ = ζ + θ2

4 − 2 1 +~j
� �

,

β = η + θ

2 1 + 2~j
� �

:

ð35Þ

Equation (34) is the biconfluent Heun’s differential equa-
tion [28, 75, 76] with HðxÞ as Heun’s polynomial function.
Many authors studied the analytical solutions to the relativis-
tic wave equations in terms of Heun functions (e.g., [77–82]).

The above Equation (34) can be solved by the series solu-
tion method. Writing the solution as a power series expan-
sion around the origin [83],

H xð Þ = 〠
∞

i=0
cix

i: ð36Þ

Substituting the power series solution (36) into Equa-
tion (34), we get the following recurrence relation for the
coefficients:

cn+2 =
1

n + 2ð Þ n + 2 + 2~j
� � β + θ n + 1ð Þf gcn+1 − Θ − 2nð Þcn½ �:

ð37Þ

And the various coefficients are

c1 =
η

1 + 2~j
+ θ

2

	 

c0,

c2 =
1

4 1 +~j
� � β + θð Þ c1 −Θc0½ �:

ð38Þ

As the function HðxÞ has a power series expansion
around the origin in Equation (36), then the relativistic
bound state solution can be achieved by imposing that
the power series expansion becomes a polynomial of
degree n. Through the recurrence relation (37), we can
see that the power series expansion HðrÞ becomes a poly-
nomial of degree n by imposing the following two condi-
tions [28]:

Θ = 2n,
cn+1 = 0,
 n = 1, 2, 3, 4,⋯:

ð39Þ

By analyzing the condition Θ = 2n, we get the follow-
ing equation of eigenvalue En,l:

E2
n,l =m2 + k2 + 2ηcηL + 2mΩ + 2mωc

α
l − kχ −Φð Þ

+ 2~ω n + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − kχ −Φð Þ2

α2
+ η2c

r !
−
m2η2L
~ω2 ,

ð40Þ

where ~ω is given in Equation (30).
For ΦB ≠ 0 and χ ≠ 0, we can observe in Equation (40)

that there exists an effective angular momentum quantum
number, leff = ð1/αÞðl − kχ − ðϕB/ð2π/eÞÞÞ . Thus, the relativ-
istic energy eigenvalue depends on the Aharonov-Bohm
geometric phase [48]. This dependence on the geometric
quantum phase gives rise to the analogous effect to the
Aharonov-Bohm effect for bound states [49–51]. Besides, we
have that En,�lðΦB +Φ0Þ = En,�l∓τðΦBÞ where Φ0 = ±ð2πα/eÞτ
with τ = 1, 2, 3,⋯ and�l = l/α.

The wave function is given by

ψn,l xð Þ = x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l−Φ−kχð Þ2/α2ð Þ+η2c

p
e− 1/2ð Þ θ+xð ÞxH xð Þ: ð41Þ

Now, we impose the additional recurrence condition
cn+1 = 0 to find the individual energy levels and correspond-
ing wave functions one by one as done in [84, 85]. As exam-
ple, for n = 1, we have c2 = 0 which implies from (38)

c1 =
2

β + θ
c0 ⇒

η

1 + 2~j
+ θ

2 = 2
β + θ

, ð42Þ
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a constraint on the physical parameters from which one can
find ~ω1,l.

Therefore, the ground state energy level for n = 1 from
(40) is given by

E2
1,l =m2 + k2 + 2ηcηL + 2mΩ + 2mωc

α
l − kχ −Φð Þ

+ 2~ω1,l 2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − kχ −Φð Þ2

α2
+ η2c

r !
−
m2η2L
~ω2
1,l

:
ð43Þ

With χ = 0, we have that the ground state energies (43)
stem from the interaction of the Klein-Gordon oscillator with
a magnetic field and a Cornell-type scalar potential in the
Minkowski space-time with a cosmic string, which is also a
periodic function of the Aharonov-Bohm geometric quan-
tum phase. Thus, the topology of the space-time also changes
the pattern of oscillation of the ground state energies.

The corresponding ground state eigenfunctions using
(41) are given by

ψ1,l = x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l−Φ−kχð Þ2/α2ð Þ+η2c

p
e− 1/2ð Þ x+ 2mη1,L/~ω3/2

1,lð Þð Þx

� 1 + 1ffiffiffiffiffiffiffi
~ω1,l

p 2mηc
1 + 2j +

mη1,L
~ω1,l

� �
x

" #
,

ð44Þ

where the potential parameter ηL ⟶ η1,Lis so adjusted that
the first-order polynomial solution to the bound states can
be obtained. Similarly, one can evaluate the energy levels
and wave functions for n = 2, 3, and so on.

Now, we discuss below few cases of the above obtained
energy eigenvalues.

Case 1. Linear scalar potential S = ηLr.

We consider here ηc ⟶ 0, that is, there is only a linear
scalar potential into the relativistic quantum system.

Therefore, the energy eigenvalue Equation (40) becomes

E2
n,l =m2 + k2 + 2mΩ + 2mωc

α
l − kχ −Φð Þ

+ 2~ω n + 1 + l − kχ −Φj j
α

	 

−
m2η2L
~ω2 :

ð45Þ

Equation (45) is the eigenvalue of a charged scalar parti-
cle in the presence of external fields including an internal
magnetic flux field in a cosmic string space-time with a
space-like dislocation subject to a linear scalar potential.
For α⟶ 1, the energy eigenvalue Equation (45) reduces to
the result obtained in Ref. [30] (see Equation (4) in Ref.
[30]). With χ = 0, we have that the energy eigenvalue (45)
stems from the interaction of the Klein-Gordon oscillator
with a magnetic field and a linear scalar potential in the Min-
kowski space-time with a cosmic string. Thus, the topology of
the space-time also changes the pattern of oscillation of the
ground state energies.

Case 2. Absence of external magnetic field, B0 = 0.

We choose here B0 ⟶ 0, that is, there are no external
fields into the considered relativistic quantum system. In that
case, the energy eigenvalue Equation (40) becomes

E2
n,l =m2 + k2 + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Ω2 + η2L

q

� n + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l − kχ −Φð Þ2

α2
+ η2c

r !

−
m2η2L

m2Ω2 + η2L
+ 2ηcηL + 2mΩ:

ð46Þ

Equation (46) is the energy eigenvalue of the Klein-
Gordon oscillator field in the presence of an internal mag-
netic flux field which is a cosmic string space-time with a
space-like dislocation subject to a Cornell-type scalar poten-
tial. For α⟶ 1, the energy eigenvalue Equation (46) reduces
to the result obtained in Ref. [31]. With χ = 0, we have that
the energy eigenvalue (46) stems from the interaction of the
Klein-Gordon oscillator with a Cornell-type scalar potential
in the Minkowski space-time with a cosmic string. Thus,
the topology of the space-time also changes the pattern of
oscillations of the ground state energies.

Case 3. Zero dislocation parameter χ = 0.

We choose here the zero torsion parameter, χ⟶ 0, into
the considered relativistic system. In that case, the energy
eigenvalue Equation (40) becomes

E2
n,l =m2 + k2 + 2ηcηL + 2mΩ + 2mωc

α
l −Φð Þ

+ 2~ω n + 1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l −Φð Þ2
α2

+ η2c

r !
−
m2η2L
~ω2 :

ð47Þ

Equation (47) is the energy eigenvalue of a massive
charged particle in the presence of an external uniform mag-
netic field including an internal magnetic flux subject to a
Cornell-type scalar potential in a cosmic string space-time.

In all the above cases, we see that the relativistic energy
eigenvalue depends on the geometric quantum phase [48]
which gives rise to the analogous effect to the Aharonov-
Bohm effect for bound states. Besides, we have that En,�l
ðΦB +Φ0Þ = En,�l∓τðΦBÞ where Φ0 = ±ð2πα/eÞτ with τ = 1, 2,
3,⋯ and �l = l/α. It is observed in Cases 1 and 2 that the
angular momentum eigenvalue l is shifted, l⟶ leff = ð1/αÞ
ðl −Φ − kχÞ, whereas in Case 3, it is l⟶ l′ = ð1/αÞðl −ΦÞ,
an effective angular quantum number. As done earlier, one
can evaluate the individual energy level and eigenfunction
one by one.

3. Conclusions

We have investigated the effect of torsion and topological
defects that stem from a space-time with a space-like disloca-
tion on the interactions between an electrically charged par-
ticle and an external uniform magnetic field. Besides, we
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have assumed that the topological defects have an internal
magnetic flux. By solving the Klein-Gordon oscillator equa-
tion analytically in Section 2.1, we have obtained the relativ-
istic energy eigenvalue Equation (25) and the corresponding
eigenfunction Equation (26). We have shown that for α⟶ 1,
the energy eigenvalue reduces to the result obtained in Ref.
[30]. We have seen in Equation (25) that there exists an effec-
tive angular momentum quantum number, l⟶ leff = ð1/αÞ
ðl − kχ − ðϕB/ð2π/eÞÞÞ. Thus, the relativistic energy eigen-
value depends on the geometric quantum phase [48]. This
dependence of the energy eigenvalue on the geometric quan-
tum phase gives rise to the analogue effect to the Aharonov-
Bohm effect for bound states [49–51]. Thus, we have that
En,�lðΦB +Φ0Þ = En,�l∓τðΦBÞ, where Φ0 = ±ð2πα/eÞτ with τ =
1, 2, 3,⋯ and �l = l/α. For the zero torsion parameter χ⟶
0, we have also obtained the energy eigenvalue Equation
(27) which is the extended result in comparison with those
obtained in [7] in a cosmic string space-time in the presence
of external fields including an internal magnetic flux field.
We have seen that the presence of torsion χ ≠ 0 in the
space-time modifies the degeneracy of the relativistic energy
levels. Besides, the presence of torsion in the space-time
changes the pattern of oscillation of the energy levels.

We have extended our above discussion to investigate the
behaviour of this relativistic system under the influence of a
Cornell-type scalar potential in Section 2.2. We have solved
the Klein-Gordon oscillator equation in the cosmic string
space-time with a space-like dislocation and obtained the
energy eigenvalue Equation (40). We have seen that for
α⟶ 1 and ηc ⟶ 0, this energy eigenvalue reduces to the
result obtained in Ref. [30]. Furthermore, in the absence of
external fields (B0 ⟶ 0), this energy eigenvalue Equation
(40) reduces to the result obtained in Ref. [31]. Thus, we have
observed that the relativistic energy eigenvalue Equation (40)
is the extended results in comparison to those obtained in
Refs. [30, 31]. Also, we have seen that the relativistic energy
eigenvalue Equation (40) depends on the Aharonov-Bohm
geometric quantum phase [48]. This dependence of the rela-
tivistic energy eigenvalue on the geometric quantum phase
gives rise to the analogue effect to the Aharonov-Bohm effect
for bound states [49–51]. We have that En,�lðΦB +Φ0Þ =
En,�l∓τðΦBÞ where Φ0 = ±ð2πα/eÞτ with τ = 1, 2, 3,⋯ and �l =
l/α. Thus, we have seen that the presence of torsion (χ ≠ 0)
in the space-time modifies the degeneracy of the relativistic
energy levels. Besides, the presence of torsion in the space-
time changes the pattern of oscillation of the energy levels.
For χ = 0, we have also obtained the relativistic energy eigen-
value Equation (47) of a massive charged particle in the pres-
ence of external fields including an internal magnetic flux
field in a cosmic string space-time subject to a Cornell-type
scalar potential. We have seen that the energy eigenvalue
depends on the geometric quantum phase [48] which gives
rise to the analogue effect to the Aharonov-Bohm effect for
bound states [49–51].

In recent years, thermodynamic properties of quantum
systems [86–90], quantum Hall effect [23, 91, 92], and dis-
placed Fock states [93, 94] and the possibility of building a
coherent state [95–98] have attracted a great current

research interest in the literature. It is well known in nonrel-
ativistic quantum mechanics that the Landau quantization is
the simplest system that we can work with in the studies of
the quantum Hall effect. Therefore, the relativistic systems
analyzed in this work may be used for investigating the influ-
ence of torsion and topological defects (cosmic string) as well
as the potential for searching the relativistic analogue to the
quantum Hall effect, coherent states, and displaced Fock
states in topological defects of space-time with a space-like
dislocation. So the results given in this paper with those in
Refs. [7, 30, 31] would present the above interesting effects.
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