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The exotic JPC = 1−+resonance π1ð1600Þ is examined in the framework of the Quark Model with Constituent Gluon (QMCG).
We report the possibility of interpreting that resonance as q�qg meson, with a masse ≃1:65+0:05−0:04 GeV, and a decay width to
ρπ ≃ 0:28+0:14−0:09 GeV.

1. Introduction

Over the last four decades, intensive experimental activity
has been carried out seeking to detect new hadrons beyond
the quark model: glueballs or gluonium, hybrids, diquonia,
and tetraquarks. These “exotic” species are most likely the
new hadrons allowed by the QCD and are the subject of
numerous researches, both theoretical and experimental.

Hybrid mesons (quark-antiquark-gluon) can have JPC

quantum numbers which are not allowed by the naive quark
model, like 0−−, 0+−, 1−+, and 2+−, then they cannot mix with
the standard mesons and hence can facilitate their observa-
tion. These “exotic” objects are the most promising new spe-
cies of hadrons allowed by QCD and subject of lot of works
both in the theoretical and experimental levels. In fact, sev-
eral JPC = 1−+ exotic resonances have been claimed to be
identified, especially π1ð1600Þ and π1ð1400Þ have received
great interest, but some doubts are raised about the last one
(for a review, see Ref [1]).

In the theoretical framework, these hybrid mesons were
studied from different models: lattice QCD [2–7], flux tube
model [8–11], bag model [12, 13], QCD sum rules [14–18],
constituent gluon models [19–26], and the effective Hamil-
tonian model [11, 27, 28]. Some of these models can per-
form both estimations of masses and decay widths, they
predicted that the lightest hybrid mesons will be in 1.4-
2.1GeV mass range which is consistent with the confirmed
1−+ candidates.

The π1ð1600Þ was observed decaying into b1π, f1π,
η′π, and ρπ. But although the first three modes have
been confirmed for a long time, the ρπ mode has been
incorporated only recently in PDG since 2018 [29].
Indeed, this mode is forbidden due to the “standard” flux
tube predictions in a symmetry limit where the ρ and π
have the same size and in the case where the decay is
triggered by breaking the flux tube [8–11], although a
value of 57MeV was calculated beyond this limit [30].
This remains quite far from the very recent measure-
ments made by COMPASS experiment [31] (see also
PDG-2018 [29]).

In this work, we focus our attention on the 1−+ hybrid
meson in the context of the Quark Model with Constituent
Gluon (QMCG), and we shall see that this constituent glue
model gives values of the mass and the ρπ decay width of
the lightest 1−+ q�qg quite compatible with the observed exotic
candidate π1ð1600Þ.

This paper is organized as follows. In Section 2, we briefly
present the experimental situation of the exotic JPC = 1−+π1
ð1600Þ. We give predictions of the model QMGC in
Section 3, and we conclude in Section 4.

2. The Experiemental Status of π1ð1600Þ
We consider here only the status of the resonance π1ð1600Þ
(for a review of the experimental situation on the exotic
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hybrid mesons, see the Ref [1] that we have mainly used
when preparing this section).

VES Collaboration [32] observed a broad peak at a mass
value of ~1.6GeV in the η′π, f1ð1235Þπ, and b1ð1235Þπ sys-
tems, interpreted as an exotic resonance of width about
300MeV. Actually, they are unable to make a definitive con-
clusion on the resonance nature of it. For the ρπ final state,
they are unable to conclude that the π1ð1600Þ is present,
while the following experimental relationship between the
branching fractions of the π1ð1600Þ decays is obtained
(and therefore a limit on the branching fraction of ρπ):

b1π : f1π : ρπ : η′π = 1:0 ± 0:3ð Þ: 1:1 ± 0:3ð Þ: < 0:3 : 1:
ð1Þ

E852 Collaboration at BNL reported an evidence for
the 1−+ π1ð1600Þ resonance decaying into ρπ [33, 34], η′π
[35], f1π [36], and b1π [37], regarding the ρπ channel,
in the earlier E852 analysis [33, 34] of 250K ðπ−π−π+Þ
events showed a possible evidence for a 1−+ exotic meson
with a mass of ~1.6GeV and width ~168MeV, this state
have been excluded by a more refined analysis [38], with
2.6M ðπ−π−π+Þ and 3M ðπ−π0π0Þ events.

The exotic π1ð1600Þ is observed decaying to b1π from the
Crystal Barrel data, and only results with mass and width
fixed to the PDG values were reported [39].

CLEOCollaboration found evidence for an exotic P-wave
η′π amplitude, which, if interpreted as a resonance, would
have parameters consistent with the π1ð1600Þ state with
a mass of 1670 ± 30 ± 20MeV and a width of 240 ± 50 ±
60MeV [40].

A search for exotic mesons in the ðπ+π+π−Þ system
photoproduced by the charge exchange reaction γp⟶ π+

π+π−ðnÞ was carried out by the CLAS Collaboration at Jeffer-
son Lab., and no evidence is shown of the exotic π1ð1600Þ
decaying to three charged pions [41, 42].

COMPASS collaboration observed the spin-exotic π1
ð1600Þ in their partial-wave analysis of the 3π final state.
They reported the observation of the π1ð1600Þ in the ρπ
decay mode initially with a mass 1660 ± 10+0−64MeV and
width 269 ± 21+42−64MeV [43], superseded by a mass 1:60
0+0:100−0:060GeV and width 0:580+0:100−0:230GeV in their recent analysis
[31]. COMPASS collaboration has also examined the exclu-
sive production of ηπ and η′π and reported that odd partial
waves, which carry non-q�q quantum numbers, are sup-
pressed in the ηπ system relative to the η′π system. Even
though they saw the exotic 1−+ wave in η′π as the dominant
wave, they were unable to confirm the resonant nature of the
signal [44]. This has recently been improved by the JPAC col-
laboration [45] which performed the first coupled-channel
analysis of the P-wave in the ηð′Þπ system measured at
COMPASS [44] and reported a single exotic π1 with mass
and width determined to be 1564 ± 24 ± 86 and 492 ± 54 ±
102MeV, respectively.

In conclusion, the π1ð1600Þ was observed decaying into
b1π, f1π, and η′π and recently confirmed for ρπ mode by
COMPASS collaboration [31], it is considered by the PDG
to be an established state [29]. Table 1 shows masses and
the corresponding decay widths of the π1ð1600Þ reported
by different experiments.

3. The QMCG Predictions

The nature of the gluonic field inside the hybrid meson is not
yet clear because the gluon plays a double role: it propagates
the interaction between color sources and, being itself col-
ored, it undergoes the interaction. In an attempt to achieve
a clearer understanding about the hybrid nature, two impor-
tant hypothesis can be retained from the literature. The first
one consider gluonic degrees of freedom as “excitations” of
the “flux tube” between quark and antiquark, which leads

Table 1: The π1ð1600Þ as seen in different experiments. The resonance masses and the corresponding decay widths are reported in GeV.

ρπ b1π f1 1235ð Þπ η′π

VES ~1:6

0:3 ∗ 0:34 = 0:10
a

1:56 ± 0:06

0:34 ± 0:06

1:64 ± 0:03

0:24 ± 0:06

1:56 ± 0:06

0:34 ± 0:06

E852 1:593 ± 0:008+0:029−0:047

0:168 ± 0:020+0:150−0:012

b

1:664 ± 0:008 ± 0:010

0:185 ± 0:025 ± 0:028

1:709 ± 0:024 ± 0:041

0:403 ± 0:080 ± 0:115

1:597 ± 0:010+0:045−0:010

0:340 ± 0:040 ± 0:060

COMPASS
1:600+0:100−0:060

0:580+0:100−0:230
— — 1:564 ± 0:024 ± 0:086

0:492 ± 0:054 ± 0:102
c

CLEO — — —
1:670 ± 0:030 ± 0:020

0:240 ± 0:050 ± 0:060

Crystal Barrel —
~1:6

seen
— —

aAn experimental decay width limit. bThis state is excluded by a more refined E852 analysis (Ref. [38]). cFrom JLAC collaboration [45] using COMPASS
data [44].
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to the linear potential, that is familiar from the quark model
(flux tube model).

In the second one, the framework of the so-called Quark
Model with Constituent Gluon (QMCG) supported by this
work, the hybrid meson is considered as a QCD-bound
state composed of a quark-antiquark pair and (a massive)
constituent gluon which interact through a phenomeno-
logical potential. We can adapt this scheme with the idea
of confined and confining gluons (in the Landau and Cou-
lomb gauges and in interpolating gauges between them)
[46]. Confining gluons establish an area law behavior of
the Wilson loop and the linearly rising interquark confine-
ment, while confined gluons do not propagate over long
distances, we can accommodate the confined (massive,
constituent) gluon in coexistence with an effective quark
interaction which is confining (more details can be found
in Ref [24, 25]).

“It is important to realise that the more complicated pic-
ture emerging for QCD in the covariant gauge can certainly
accommodate confined (but not confining) gluons in coexis-
tence with an effective quark interaction which is confining,
however.” [47].

3.1. Ingredients of the QMGC. The QMCG is a natural expan-
sion of the naive quark model where the confined gluon
within the hadron matter acquires a (constituent) mass mg.
As for quarks, this important parameter represents a dynam-
ical mass which is responsible for the infrared finiteness of
the gluon propagator and the ghost dressing function
observed using continuum methods (the Schwinger-Dyson
Equations) and large-volume lattice simulations or combin-
ing continuum methods with lattice data (a more complete
presentation of the subject is given for example in Refs.
[48–51]).

From the phenomenological point of view, a nonvanish-
ing gluon mass is welcome by diffractive phenomena [52]
and inclusive radiative decays of J/ψ and Y [53]. For the glue-
ball states, color singlet bound states of gluons are considered
to be fairly massive, e.g., about 1.5GeV for the lowest 0++ and
about 2GeV for the lowest 2++, as indicated in lattice QCD
calculations [54–56], a simple constituent gluon picture
may be approximately obtained as MGB ≃ 2mg for the glue-
ball mass MGB.

Using the continuum strong QCD, one infers mg ≃ 0:4 −
0:6GeV [51] which is consistent with the lattice results:
mg ~ 0:5GeV [57, 58].

In the present work, we fix this parameter as:

mg = 0:5 ± 0:1GeV: ð2Þ

The decay parameter αs (the effective quark-gluon ver-
tex coupling) is the second ingredient of the model. There
are many theoretical evidences that the QCD effective
charge αs freezes at small momenta. Therefore, the infra-
red finiteness of the effective charge can be considered as
one of the manifestations of the phenomenon of dynami-
cal gluon mass generation. Phenomenology sensitive to
infrared properties of QCD gives αsð0Þ ≃ 0:7 ± 0:3 [59–61],

while the phenomenological evidences for the strong cou-
pling constant freezing in the infrared are much more
numerous, as with models where a static potential is used
to compute the hadronic spectra that make use of a frozen
coupling constant at long distances (for more details, see
for example the Ref. [62]).

The effective charge obtained within the pinch technique
(PT) framework [63, 64], to be denoted by αPT, constitutes
the most direct non-Abelian generalization of the familiar
concept of the QED effective charge. Since our decay model
is obtained in the Feynman gauge [20], it is natural to choose
αs ≃ αPTð0Þ corresponding to the pinch technique gluon
propagator, i.e., the background field propagator calculated
in the Feynman gauge. αPTð0Þ is correlated to the gluon mass
mg [65, 66]:

αPT 0ð Þ ~ 0:6 formg ~ 0:5GeV: ð3Þ

3.2. The Hybrid Bound State. We assume that the hybrid
meson is a bound state of quark-antiquark and a constituent
gluon which interact through a phenomenological potential,
precisely Coulomb plus linear potential supplemented by
spin-spin, spin-orbit, and tensor correction terms. The use
of relativistic kinetics is appropriate for the study of the light
flavor systems [24].

For the representation of the hybrid states, the following
notations are used:

(1) lg: the relative orbital momentum of the gluon in the
q�q center of mass

(2) lq�q: the relative orbital momentum between q and �q
(3) Sq�q: the total quarks spin
Considering the gluonmoving in the framework of the q�q

pair, the Parity of the hybrid will be:

P = −ð Þlq�q+1 · −1ð Þ · −ð Þlg = −ð Þlq�q+lg , ð4Þ

ð−1Þ being the intrinsic parity of the gluon.
The Charge Conjugation is given by:

C = −ð Þlq�q+Sq�q+1: ð5Þ

Sq�q can take the values 0 or 1; P and C impose parity
restrictions on lq�q and lg.

For lower values of the orbital excitations (lq�q and lg ⩽ 1)
and parity P = −1, the hybrid states can be built by two
modes: lq�q = 0 and lg = 1 which we shall refer as the gluon-
excited hybrid (GE hybrid), and lq�q = 1 and lg = 0 which we
shall refer as the quark-excited hybrid (QE hybrid) (see
Table 2 for the case JPC = 1−+).

In the potential model, the simplest approximation is to
factorise the q�q-wave function with the wave function of
the gluon respective to the q�q center of mass (the cluster
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approximation). We shall use the following lowest-lying state
q�q-cluster spin-space wave function:

ΨPC
JM ρ

!, λ
!� �

= eμg ⊗ ψ
mg

lg

� �
jgMg

⊗ ψ
mq�q

lq�q

� �
Lm

⊗ χ
Sq�q
μq�q

� �PC

JM

= 〠
L lg jglq�qSq�q ;PCð Þ

ΨJM;Llg jglq�qSq�q ρ
!, λ

!� �
,

ð6Þ

where eμg is the gluon polarisation, χ
Sq�q
μq�q is the diquark

spin representation, and the sum runs over the values of L,
lg, jg, lq�q and Sq�q excluding those not consistent with P and
C and:

ΨJM;Llg jglq�qSq�q ρ
!, λ

!� �
= 〠

mmgμgMgmq�qμq�qð Þ
lgmg1μg ∣ jgMg

D E

× lq�qmq�q jgMg ∣ Lm
D E

LmSq�qμq�q ∣ JM
D E

× ψ
mgmq�q

lglq�q
ρ
!, λ

!� �
eμgχ

Sq�q
μq�q ;

ð7Þ

here, the Jacobi coordinates are introduced:

ρ
! = r!�q − r!q,

λ
!
= r!g −

Mq r
!

q +M�q r
!
�q

Mq +M�q
:

ð8Þ

The Hamiltonian is constructed, containing a phenom-
enological potential which reproduces the QCD character-
istics; its expression has the mathematical “Coulomb +
Linear” form, we take into account also some relativistic
effects, i.e., spin-dependent interaction terms and relativis-
tic kinetics; a more detailed description can be found in
our previous work [24].

In order to make a comparison with the lattice results, we
note that our 1−+ wave function (Eq. (7)) is related to the
so-called TE, TM, and longitudinal gluon states as follows
(see Table 2):

Ψ−+
1M =Ψlong

jg=0 +ΨTE
jg=1

+ mix ΨTM
jg=2

,Ψlong
jg=2

� �
+mix ΨTM

jg=1
,Ψlong

jg=1

� �
,

ð9Þ

where mixðφ, ψÞ means a mixture of the states φ and ψ:
The “magnetic” TE, “electric” TM, and longitudinal gluons
correspond to the following hybrid states [20]:

ΨTE
jg

≡ΨTE
JM;Llg jglq�qSq�q

=ΨJM;Llg jglq�qSq�q lg=jg

��� ,

ΨTM
jg

≡ΨTM
JM;Llg jglq�qSq�q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jg + 1
2jg + 1

s
ΨJM;Llg jglq�qSq�q lg=jg−1

���
+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jg

2jg + 1

s
ΨJM;Llg jglq�qSq�q lg=jg+1

��� ,

Ψlong
jg

≡Ψlong
JM;Llg jglq�qSq�q

= −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jg

2jg + 1

s
ΨJM;Llg jglq�qSq�q lg=jg−1

���
+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jg + 1
2jg + 1

s
ΨJM;Llg jglq�qSq�q lg=jg+1

��� :

ð10Þ

We can rewrite Eq. (9) according to the GE and QE
hybrid modes as:

Ψ−+
1M = ψGE + ψQE, ð11Þ

where

ψGE =Ψlong
jg=0 +ΨTE

jg=1
+ mix ΨTM

jg=2
,Ψlong

jg=2

� �
, ð12Þ

ψQE = mix ΨTM
jg=1

,Ψlong
jg=1

� �
: ð13Þ

Since our gluon is assumed to be massive, the longitu-
dinal component must be present in Eq. (9), mixed with
the TM and TE gluon modes ðjg ≠ 0Þ. This is not true in
the lattice hybrid calculations where the low-laying 1−+

states are made with the particular j
PgCg
g = 1+− TE-gluon

mode. Indeed, although in principal lattice construction
of the hybrid 1−+ states involves the TM and the TE
modes, in the light sector, only the last mode results are
widely reported since it gives the best and the clearest

Table 2: The lowest JPC = 1−+ hybrid meson quantum numbers. Modes and the decay selection rules are shown.

lq�q Sq�q lg jg L Hybrid mode Gluon mode
Preferred decay

mode

0 1 1 0 0 GE Long. “L + S”

0 1 1 1 1 GE Long., TM, TE “L + S”

0 1 1 2 2 GE Long., TM, TE “L + S”

1 0 0 1 1 QE Long., TM “S + S”
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signal [2–5]. From Table 2, we notice that the TE gluon
appears only in the GE-hybrid and is totally absent in
the QE-hybrid 1−+ state. We will come back to this later.

3.3. The Hybrid Decay Model. To the lowest order, the decay
of a hybrid state A into two ordinary mesons B and C is
described by the matrix element of the Hamiltonian annihi-
lating a gluon and creating a quark pair (QPC model):

H = g
ð
dx! �ψ x!

� �
γμ

λa

2
ψ x!
� �

Aμ
a x!
� �

= g〠
ss′λ

ð
dp
!
d k
!
dp′
!

ffiffiffiffiffiffi
2ω

p
2πð Þ9

2πð Þ3δ 3ð Þ p
! − k

!
− p′
!� �

× �up
!
sγμ

λa

2
u
−p′
!
s
′ εμ

k
!
λ
φab

†
p
!
s
d†

−p′
!

s′
a
k
!
λ
,

ð14Þ

where a is the color index and s, s′, and λ are the spin indices.
In the nonrelativistic limit, we have:

�up
!
sγμ

λa

2
u
−p′
!
s
εμc ≃ χ†

s σ
!
�χs
′ ε!

k
!
λ
, ð15Þ

where χs
′ is the antiquark spinor in the complex conjugate

representation.
The standard meson (jBi or jCi) and the hybrid (jAi)

states are written in the nonrelativistic approximation:

q�q ; JMij = 〠
ss′a�amμ

ð dp!q d p
!
�q

2πð Þ6 2πð Þ3δ 3ð Þ

× p
! − p

!
q − p

!
�q

� �
lmSμ ∣ JMh i

×
1ffiffiffi
3

p χ
μ

ss′ψlm

m�q p
!

q −mq p
!
�q

m�q +mq

 !
b†
p
!
qsa
d†
p
!
�qs′�a

0ij

ð16Þ

with
Ð ðdp!/ð2πÞ3Þjψlmðp

!Þj2 = 1 ;

q�qg ; JMij = 〠
ss′a�a mμð Þ

ð dp!q d p
!
�q d k

!

2πð Þ3 2πð Þ3δ 3ð Þ p
! − p

!
q − p

!
�q − k

!� �

×
λ
cg
cqc�q

4
χ
μ

ss′ψ
mgmq�q

lglq�q

×
m�q p

!
q −mq p

!
�q

m�q +mq
,

m�q +mq

� 	
k
!
−mg p

!
q + p

!
�q

� �
m�q +mq +mg

0
B@

1
CA

× lgmg1μg ∣ jgMg

D E
lq�qmq�q jgMg ∣ Lm
D E

× LmSq�qμq�q ∣ JM
D E

b†
p
!
qsa
d†
p
!
�qs′�a

a†
k
!
λ
0ij ,

ð17Þ

where cq, c�q, and cg are the color charge of the quark, anti-
quark, and gluon with cq, c�q = 1, 2, 3 and cg = 1,⋯, 8: We

have also
Ð ðdp! d k

!
/ð2πÞ6Þjψmgmq�q

lglq�q
ðp!, kÞj2 = 1:

The matrix element between a hybrid state A and two
standard mesons B and C is given by:

BC ∣H ∣ Ah i = g f A, B, Cð Þ 2πð Þ3δ 3ð Þ p
!
A − p

!
B − p

!
C

� �
, ð18Þ

where f ðA, B, CÞ is the decay amplitude:

f A, B, Cð Þ = 〠
mð Þ, μð Þ

ΦΩX μq�q, μg ; μB, μc
� �

I mq�q,mg ;mB,mc,m
� 	

× lgmg1μg ∣ JgMg

D E
lq�qmq�q JgMg ∣ Lm′
D E

Lm′Sq�qμq�q ∣ JM
D E

× lBmBSBμB ∣ JBMBh i lCmCSCμC ∣ JCMCh i:
ð19Þ

The amplitude f involves the flavor ðΦÞ, the color ðΩÞ,
the nonrelativistic spin ðXÞ, and the spatial ðIÞ overlaps
defined as follows.

Φ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2IB + 1ð Þ 2IC + 1ð Þ1 2IA + 1ð Þ

p i1 i3 IB

i2 i4 IC

IA 0 IA

8>><
>>:

9>>=
>>;ηε,

ð20Þ

I’sði’sÞ label the hadron (quark) isospins, η = 1 if the gluon
goes into strange quarks and η =

ffiffiffi
2

p
if it goes into nonstrange

ones. ε2 is the number of diagrams contributing to the decay.
Indeed, one can check that two diagrams contribute with the
same sign and magnitude for C, P, and G-Parity allowed
decays while they cancel for forbidden ones. In the case of
two identical final particles ε =

ffiffiffi
2

p
. The term between

brackets in Eq. (20) is the 9j symbol.

Ω =
1
24

〠
a
Tr λað Þ2 = 2

3
:

X μq�q, μg ; μB, μc
� �

=〠
s

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SB + 1ð Þ 2SC + 1ð Þ3 2Sq�q + 1

� 	q

×

1
2

1
2

SB

1
2

1
2

SC

Sq�q 1 S

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

× SBμBSCμC ∣ S μB + μCð Þh i
× Sq�qμq�q1μg ∣ S μq�q + μg

� �D E
:

ð21Þ
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Finally, the spatial overlap is represented by the term:

I mq�q,mg ;mB,mc,m
� 	

=
ð
dp
!
dk
!

2πð Þ6 ψ
mgmq�q

lglq�q
p
!

B − p
!, k

!� �
ψ∗
lBmB

� m�qi
p
!

B

m�qi
+mq

− p
! −

1
2
k
!

 !

× ψ∗
lCmC

−
mqi

p
!

B

mqi
+mq

+ p
! −

1
2
k
!

 !

� dΩB Y
∗
lm ΩBð Þ,

ð22Þ

where l,m label the orbital momentum between the two
final mesons.

The partial width is given by:

ΓA→BC = 4αs f A, B, Cð Þj j2 PBEBEC

MA
, ð23Þ

where αs represents the infrared quark-gluon vertex cou-
pling. For more details on the decay model, see Refs.
[20, 24]; here, we focus on the main (nonrelativistic) results:

(1) The 1−+ QE-hybrid is allowed to decay into two
S-wave mesons only (the so-called “S + S” selection
rule)

(2) The 1−+ GE-hybrid is allowed to decay into a channel
with one S-wave meson and one P-wave meson only
(the so-called “L + S” selection rule)

The last selection rule is also reported in the gluonic exci-
tation models of hybrid where the decay to two S-wave
mesons is strongly suppressed (see [67] and references
therein).

In the decay model which we use, the ηð′Þπ decay
modes are suppressed by the nonrelativistic spin conser-
vation law although the spatial overlap is not vanishing
for the QE-hybrid mode, a full relativistic studies shall
give nonvanishing answer for both QE and GE modes
(this will be the subject of future work). In the other side, it
seems that the flux tube model [8] and the QCD sum rules
[15] predict a suppression of 1−+hybrid⟶ ηπ. This is con-
firmed using a quite independent model way without any

further hypothesis than the quenched approximation [68].
However, this approximate selection rule is related only to
the “magnetic” or TE-gluon mode.

4. Results and Discussion

4.1. The Mass Results. Our results related to the 1−+ hybrid
masses and decay widths for mg = 0:4 − 0:6GeV are sum-
marised in Tables 3 and 4, we add Table 5 for comparison
purposes.

It is difficult to get a hybrid masse lower than 1:5GeV
(≤1:52GeV for mg ≥ 0:).

We observe a large mixing between the two QE and
GE-hybrid modes where all the TE, TM, and longitudinal
gluon modes are included in the hybrid wave function
(Eq. (9)); for a pure GE-mode (with excited glue lg = 1
and an S-wave q�q), we have MGE

1−+ ≃ 1:76 ± 0:05GeV for
mg = 0:5 ± 0:1GeV.

Our calculated mass is:

M1−+ ≃ 1:65+0:05−0:04 GeV, ð24Þ

which is very close to the latest PDG average [29]:

1:660+0:015−0:011 GeV, ð25Þ

and quite far from ~ 2: GeV emerged from the lattice QCD
[6] and the flux tube [9] studies that systematically discard
the QE-mode where the gluon is not excited, i.e., ignore states
electric TM (jg = 1) and longitudinal (Eq. (13)). In addition,
there is some difficulties that taint the lattice masse
calculations:

(i) How to identify interpolation fields used as a hybrid
and distinguish them from ordinary mesons? From
the criteria for hybrids proposed in [5] (and
adopted implicitly by earlier lattice works [2–4])
the hybrid-like character is directly related to the
overlap with the appropriate JPC interpolating
fields. This is not always true, we cannot under-
stand the nature of a state by the appearance of
its interpolation field. This is sufficiently illustrated
by the strong projection on η and η′ produced with
the glue interpolation field Gμν

~Gμν, it does not
mean that they are glueballs [69]

(ii) In the light sector, lattice authors report only results

related to the j
PgCg
g = 1+− TE-gluon since it has the

best signal with the smallest statistical errors while

the explicit masses of the j
PgCg
g = 1−− TM-gluon are

not yet published

(iii) The lattice calculation sill uses an unrealistic mass of
the π meson ( ~ 396MeV) which is much greater
than the observed one ( ~ 139MeV).

Table 3: The 1−+ hybrid masses and the decay widths (in GeV) from
the QMGC model.

Constituent glue model (this work)
mg 0.4 0.5 0.6

M1−+ 1.61 1.65 1.70

Γ 1−+ ⟶ ρπð Þ 0.19 0.28 0.42

Γ 1−+ ⟶ b1πð Þ 0.19 0.29 0.46

Γ 1−+ ⟶ f1 1235ð Þπð Þ 0.06 0.10 0.17
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4.2. The Decay Results. As shown in Eq. (23), the decay
width is proportional to the parameter αs which is in turn
correlated to the mass of the gluon mg, as mentioned
above. In Table 3, we represent the results for mg = 0:5 ±
0:1GeV and the final theoretical uncertainty is taken as
the deviation from the nominal value and the upper and
lower tolerance.

Despite the imperfections of the model, our predictions
are mostly in reasonable accord with the observed 1−+ reso-
nance π1ð1600Þ seen by several collaborations as shown in
Table 5. This is especially true for the controversial ρπ
channel which is forbidden by the gluonic excitation models
(the }L + S} selection rule [10]).

In the constituent glue model, the nonvanishing width
comes from the QE-hybrid mode (lg = 0 whith P-wave q�q,
Eq. (13)) decaying preferably into two S-wave mesons, i.e.,

Γ1−+→ρπ ≃ 0:28−0:14−0:09 GeV: ð26Þ

5. Conclusion

To conclude, we note that despite the imperfections of
the model, the results obtained are encouraging and
describe quite well the observed properties of the reso-
nance π1ð1600Þ, supporting the fact that this resonance
is a hybrid meson with the internal structure suggested
by the generalized Quark Model with Constituent Gluon,
i.e., a pair of quark-antiquark with a massive constituent
gluon:mg ≃ 0:5 ± 0:1GeV. However, this approximate model
needs to be improved by considering more relativistic effects
especially for the decay model. On the other hand, it would

be advisable to seriously review the hypothesis that hybrids
are exclusively build by excited gluonic fields.
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