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In this paper, we analyze anisotropic and homogeneous Bianchi type V spacetime in the presence of dark matter and holographic
dark energy model components in the framework of general relativity and Lyra’s geometry. The solutions of differential equation
fields have been obtained by considering two specific cases, namely, the expansion scalar ðθÞ in the model is proportional to the
shear scalar ðσÞ and the average scale factor taken as hybrid expansion form. The solutions for field equations are obtained in
general relativity and Lyra’s geometry. The energy density of dark matter in both natures was obtained and compared so that
the energy density of dark matter in general relativity is slightly different from the energy density of dark matter in Lyra’s
geometry. A similar behavior occurred in case of pressure and EoS parameter of holographic dark energy model in respective
frameworks. Also, it is concluded that the physical parameters such as the average Hubble parameter, spatial volume, anisotropy
parameter, expansion scalar, and shear scalar are the same in both frameworks. Moreover, it is observed that the gauge function
βðtÞ is a decreasing function of cosmic time in Lyra’s geometry, and for late times, the gauge function ðβðtÞÞ converges to zero
and Lyra’s geometry reduces to general relativity in all respects. Finally, we conclude that our models are a close resemblance to
the ΛCDM cosmological model in late times and consistent with the recent observations of cosmological data.

1. Introduction

The relatively recent discovery of the present acceleration of
our universe is strictly proved by the astronomical observa-
tion of type Ia supernova [1, 2], galaxy redshift survey [3],
and cosmic microwave background radiation (CMBR) data
[4, 5] which convincingly suggest that the rate of expansion
of our universe is positive, i.e., we live in an accelerating
expanding universe. This fact initiated a great number of the-
oretical hypothesis and inspired researchers to a diversity of
different explanations of such an unusual behavior of the uni-
verse. The most surprising and counterintuitive result coming
from these observations is the fact that only ≈4% of the total
energy density of the universe is in the form of baryonic mat-
ter, ≈24% is nonbaryonic matter, and almost ≈72% is of
completely unknown component with negative pressure. In
literature, the component with negative pressure is named as

dark energy (DE) that produces repulsive force which gives
rise to the current accelerating expansion of the universe.

The most fundamental principle of quantum gravity, the
holographic principle (HP), states that all of the information
contained in a volume of space can be represented as a holo-
gram, which corresponds to a theory locating on the bound-
ary of that space that may play an important role in solving
the DE problem. After applying the HP to the DE problem,
one of the present authors [6] proposed a new DE model,
called holographic dark energy (HDE) model. In this model,
the dark energy density ρΛ only relies on two physical quan-
tities on the boundary of the universe: one is the reduced
Planck massMp ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1/8πG

p
, where G is the gravitational con-

stant; another is the cosmological length scale L, which is
chosen as the future event horizon of the universe [6].

The HDE model is the first theoretical model of DE
inspired by the HP and is in good agreement with the current
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cosmological observations at the same time. This makes HDE
a very competitive candidate of DE. Granda and Oliveros [7]
proposed a holographic density of the form ρΛ ≈ αH2 + γ _H,
where H is the Hubble parameter and α, γ are constants
which must satisfy the restrictions imposed by the current
observational data. They showed that this new model of dark
energy represents the accelerated expansion of the universe
and is consistent with the current observational data. Granda
and Oliveros [8] have also studied the correspondence
between the quintessence, tachyon, k-essence, and dilation
dark energy models with this holographic dark energy model
in the flat FRW universe. Chattopadhyay and Debnath [9],
Farajollahi et al. [10], Debnath [11], Malekjani [12], and Sar-
kar [13, 14] are some of the researchers who have investi-
gated several aspects of holographic dark energy. Recently,
Kiran et al. [15, 16] have studied minimally interacting dark
energy models in some scalar-tensor theories. Rao et al. [17]
and Adhav et al. [18] have discussed interacting dark matter
and HDE in Bianchi type V universe. Rao et al. [19] have dis-
cussed the five-dimensional FRW holographic dark energy in
the Brans-Dicke theory.

In recent years, our knowledge of cosmology has
improved remarkably by various experimental and theoretical
results. Einstein [20] introduced his general theory of relativity
in which gravitation is described in terms of geometry of
spacetime. Motivated by it, Einstein geometrized other physi-
cal fields in general relativity. One of the first attempts in this
direction was made by Weyl [21] who proposed a more gen-
eral theory in which gravitation and electromagnetism are also
described geometrically. However, this theory was never con-
sidered seriously as it was based on the nonintegrability of
length transfer. Later, Lyra [22] suggested a modification of
Riemannian geometry by introducing a gauge function which
removes the nonintegrability condition of the length of a vec-
tor under parallel transport. This modified Riemannian geom-
etry is known as Lyra’s geometry. Subsequently, Sen [23]
proposed a new scalar tensor theory of gravitation. They con-
structed an analog of Einstein’s field equations based on Lyra’s
geometry which is in normal gauge. He found that the static
model with finite density in Lyra’s manifold is similar to the
static model in Einstein’s general relativity.

Halford [24] has shown that the constant displacement
vector field in Lyra’s geometry plays the role of cosmological
constant Λ in general relativity. He has also shown that the
scalar-tensor analysis based on Lyra’s geometry suggests the
same effects, within observational limits, as in Einstein’s the-
ory [20]. Katore et al. [25] studied the Einstein-Rosen bulk
viscous cosmological model and zero-mass scalar field in
Lyra’s geometry. Ghate and Sontakke [26], Asgar and Ansari
[27], and Das and Sharma [28] studied the Bianchi type V
cosmological models in Lyra’s geometry with dark energy,
in the presence of bulk viscous string; Sahu et al. [29] studied
the Bianchi type III cosmological model in Lyra’s geometry,
and Katore and Kapse [30] studied dynamics of Bianchi type
VI0 holographic dark energy models in general relativity and
Lyra’s geometry.

Motivated by the abovementioned investigations, we
have considered the homogeneous Bianchi type V holo-
graphic dark energy cosmological models in general relativity

and Lyra’s geometry. This paper is outlined as follows. In Sec-
tion 2, we discussed the metric and the field equations in gen-
eral relativity. In Section 3, we have obtained the solutions of
field equations. Some physical properties of the models have
been studied in Section 4. In Section 5, we have obtained the
field equations in Lyra’s geometry; its solutions and physical
properties are studied under Sections 5.1 and 5.2, respec-
tively. Finally, the conclusions are summarized in Section 6.

2. Metric and Field Equations

We consider the spatially homogeneous and anisotropic
Bianchi type V spacetime as

ds2 = dt2 − A2dx2 − B2e−2m1xdx2 − C2e−2m1xdx2, ð1Þ

where m1 is an arbitrary constant and A, B, C are func-
tions of cosmic time t only.

The Einstein field equations are given by

Rij −
1
2Rgij = −

8πG
c4

Tij, ð2Þ

where Rij, R, gij, G, and c are the Ricci tensor, Ricci scalar,
metric tensor, Newton’s gravitational constant, and speed
of light, respectively. Here, we consider 8πG = c = 1. Tij is
the energy momentum tensor which is expressed as the
sum of the energy momentum tensors of dark matter ð
TðmÞijÞ and the holographic dark energy ðTðΛÞijÞ.

The energy momentum tensor of holographic dark
energy ðTðΛÞijÞ of the source with anisotropic pressures along
different spatial directions has the form

T Λð Þij = diag ρΛ,−px,−py,−pz
h i

= diag 1,−ωx,−ωy,−ωz

� �
ρΛ,

ð3Þ

where ρΛ and piði = x, y, zÞ are the energy density of holo-
graphic dark energy (HDE) and pressures of the HDE in
the three different directions of the universe. A relation
between ρΛ and pi is given by equation of state (EoS) param-
eter as pi = ωiρΛ, and ωi are equation of state parameters
along directions of x, y, and z.

Here, we suppose that the universe is filled with dark
matter and dark energy whose energy momentum tensors
can be written as

T mð Þij = diag 1, 0, 0, 0½ �ρm, ð4Þ

T Λð Þij = diag 1,−ωΛ,− ωΛ + δy
� �

,− ωΛ + δzð Þ� �
ρΛ, ð5Þ

where ρm and ρΛ are the energy densities of dark matter and
holographic dark energy (HDE), respectively, and pΛ is the
pressure of the HDE. For the sake of simplicity, we choose
ωx = ωΛ, ωy = ωΛ + δy, ωz = ωΛ + δz and the skewness
parameters δy and δz are the deviations from the equation
of state parameter ωΛ on y and z directions, respectively.

The physical parameters are defined as follows.
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The mean Hubble parameter ðHÞ is given by

H = _a
a
= 1
3

_A
A

+
_B
B
+

_C
C

 !
, ð6Þ

where the overhead dot denotes differentiation with respect
to the cosmic time t.

The average scale factor ðaÞ and spatial volume ðVÞ of the
Bianchi V spacetime are defined by

V = a3 = ABC: ð7Þ

The scalar expansion ðθÞ, shear scalar ðσÞ, anisotropy
parameter ðAmÞ, and deceleration parameter ðqÞ are defined
as

θ = 3H =
_A
A

+
_B
B
+

_C
C
,

σ2 = 1
2 〠

3

i=1
H2

i − 3H2
 !

,

Am = 1
3〠

3

i=1

Hi −H
H

� �2
,

q = −1 + d
dt

1
H

� �
:

ð8Þ

As suggested by Granda and Oliveros [8], the energy den-
sity of HDE with IR cut-off is given by

ρΛ = 3 αH2 + γ _H
� �

, ð9Þ

with M−2
p = 8πG = 1, where Mp is the reduced Planck mass

and α and γ are the dimensionless parameters, which must
satisfy the restrictions imposed by the current observational
data. The energy conservation equation ðTðmÞij + TðΛÞijÞ;j =
0 yields

_ρm +
_A
A

+
_B
B
+

_C
C

 !
ρm + _ρΛ +

_A
A

+
_B
B
+

_C
C

 !
1 + ωΛð ÞρΛ

+ δy
_B
B
+ δz

_C
C

 !
ρΛ = 0:

ð10Þ

By adopting comoving coordinates, the field equation (2)
for the metric (1) using the energy-momentum tensors (5)
yields the following equations:

€B
B
+

€C
C

+
_B
B

_C
C

−
m2

1
A2 = −ωΛρΛ, ð11Þ

€A
A

+
€C
C

+
_A
A

_C
C

−
m2

1
A2 = − ωΛ + δy

� �
ρΛ, ð12Þ

€A
A

+
€B
B
+

_A
A

_B
B
−
m2

1
A2 = − ωΛ + δzð ÞρΛ, ð13Þ

_A _B
AB

+
_B _C
BC

+
_A _C
AC

−
3m2

1
A2 = ρΛ + ρmð Þ, ð14Þ

2 _A
A

−
_B
B
−

_C
C

= 0, ð15Þ

where the overhead dot denotes ordinary differentiation with
respect to cosmic time t.

Integrating equation (15) and absorbing the constant of
integration into B or C, we obtain

A2 = BC: ð16Þ

3. Solution of Field Equations

We can observe that the field equations (11)–(15) are a sys-
tem of five independent equations with the eight unknown
parameters A, B, C, ωΛ, ρm, ρΛ, δy, and δy. In order to solve
the system completely, we need more additional conditions
to obtain explicit solution of the system.

So first, we consider the hybrid expansion law in which
the average scale factor is an increasing function of cosmic
time t as follows:

a = tnet
� �1/k, ð17Þ

where k > 0 and n ≥ 0 are constants. This type of ansatz for
the scale factor has already been considered by Akarsu et al.
[31], Moraes et al. [32], Moraes and Sahoo [33], Ram and
Chandel [34], Pradhan and Amirhashchi [35], Pradhan
et al. [36], and Santhi et al. [37]. The relation (17) gives the
exponential law when n = 0. This is a combination of expo-
nential and power law, which is termed as hybrid expansion
law. Also, this relation yields a time-dependent deceleration
parameter which describes the transition of the universe
from the early decelerating phase to the current accelerating
phase. Thus, our choice of scale factor is physically
acceptable.

Secondly, we assume that the expansion scalar ðθÞ in the
model is proportional to shear scalar ðσÞ as considered by
Thorne [38] and Collins et al. [39], which leads to

A = Bl, l > 0 l ≠ 1ð Þ, ð18Þ

where A and B are the metric potentials.
From equations (16), (17), and (18), we obtain

A = tnet
� �1/k, ð19Þ

B = tnet
� �1/kl , ð20Þ

C = tnet
� � 2l−1ð Þ/kl

: ð21Þ
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The metric (1) can now be written as

ds2 = dt2 − tnet
� �2/kdx2 − tnet

� �2/kle−2m1xdx2 − tnet
� � 2 2l−1ð Þð Þ/kle−2m1xdx2:

ð22Þ

4. Some Physical and Geometrical Features of
the Model

The physical parameters such as the Hubble parameter ðHÞ,
the anisotropic parameter ðAmÞ, the shear scalar ðσ2Þ, the
expansion scalar ðθÞ, and the spatial volume ðVÞ of model
(22), which are of cosmological importance, are, respectively,
given by

H = 1
k

n
t
+ 1

	 

, ð23Þ

Am = 2
3

1
l
− 1

� �2
, ð24Þ

σ2 = 1
k2

n
t
+ 1

	 
2 1
l
− 1

� �2
, ð25Þ

θ = 3
k

n
t
+ 1

	 

, ð26Þ

V = tnet
� �3/k

: ð27Þ

The directional Hubble parameters are as follows:

Hx =
_A
A

= 1
k

n
t
+ 1

	 

,

Hy =
_B
B
= 1
kl

n
t
+ 1

	 

,

Hz =
_C
C

= 2l − 1
kl

n
t
+ 1

	 

:

ð28Þ

From aðtÞ = 1/ðz + 1Þ, with z being the redshift and the
present scale factor a0 = 1. Using (17), we obtain the follow-
ing redshift

z = −1 + tnet
� �−1/k

: ð29Þ

It is evident from the above result in equation (27) that
the spatial volume is zero at t = 0. But we observe that as cos-
mic time t→∞, the spatial volume expands to infinite.
Therefore, the model starts evolving at t = 0 and expands
with cosmic time t. The mean anisotropy parameter is con-
stant and different from zero for l ≠ 1. From equation (24),
it is observed that the mean anisotropy parameter of the pres-
ent model becomes zero for l = 1 and the anisotropy of the
universe vanishes. But the universe is anisotropic throughout
the evolution except for l = 1. Other dynamical physical
parameters such as expansion scalar ðθÞ, shear scalar ðσ2Þ,
and Hubble parameter ðHÞ diverge as cosmic time t
approaches to zero. These dynamical physical parameters

are decreasing functions as cosmic time t increases. Hence,
the model (22) has a big bang type of initial singularity.

The deceleration parameter ðqÞ is obtained to be

q = −
a€a
a2

= −1 + nk

t2 n/tð Þ + 1ð Þ2 , ð30Þ

which is a constant value for late time throughout the
evolution of the universe that means q¬−1 as t→∞. From
equation (30), the universe will expand with decelerated rate
for q > 0, i.e., t <

ffiffiffiffiffi
nk

p
− n, accelerated rate for q < 0, i.e.,ffiffiffiffiffi

nk
p

− n < t, and marginal inflation for q = 0, i.e., t =
ffiffiffiffiffi
nk

p
−

n. One can explicitly observe the dependence of deceleration
parameter ðqÞ on the constant parameters n and k. Thus, we
can obtain a decelerated or accelerated expansion of the uni-
verse depending on the suitable choices of these parameters.
According to the recent observations of type Ia supernova
(SNe Ia) [2, 40, 41, 42], the present universe is accelerating
and the value of deceleration parameter is in the range −1
< q < 0. Thus, the deceleration parameter of our model (22)
is consistent with the recent astronomical observations.

Following Granda and Oliveros [8] and Sarkar [13] and
using equation (23) in equation (9), the energy density of
HDE with the IR cut-off is given by

ρΛ = 3 αH2 + γ _H
� �

= 3 α

k2
n
t
+ 1

	 
2
−

γn
kt2

� �
: ð31Þ

Using equation (31) in equation (14), the energy density
of matter is given by

ρm = 2l2 + 2l − 1
klð Þ2 −

3α
k2

 !
n
t
+ 1

	 
2
+ 3γn

kt2
−

3m2
1

tnetð Þ2/k
:

ð32Þ

From equation (11), the pressure of HDE with the IR cut-
off is given by

pΛ = −
1
klð Þ2

n
t
+ 1

	 
2
4l2 − 2l + 1
� �

+ 2n
kt2

+ m2
1

tnetð Þ2/k
" #

:

ð33Þ

Here, from (31), we observe that the holographic dark
energy density ðρΛÞ decreases as cosmic time t increases.
The energy density of dark matter is infinite at cosmic time
t = 0, and the pressure of holographic dark energy is a
decreasing function of cosmic time. From (33), we concluded
that the pressure of holographic dark energy has negative
value as cosmic time t→∞.

Using equations (31) and (33), the EoS parameter of
HDE is obtained as

ωΛ =
− 1/ klð Þ2� �

n/tð Þ + 1ð Þ2 4l2 − 2l + 1
� �

+ 2n/kt2
� �

+ m2
1/ tnetð Þ2/k

	 
h i
3 α/k2
� �

n/tð Þ + 1ð Þ2 − γn/kt2ð Þ� � :

ð34Þ
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From equations (11), (12), and (13), the skewness param-
eter along y direction is

σy =
1/k2
� �

n/tð Þ + 1ð Þ2 1/lð Þ − 1ð Þ + n/ktð Þ 1 − 1/lð Þð Þ
3 α/k2
� �

n/tð Þ + 1ð Þ2 − γn/kt2ð Þ� � : ð35Þ

From equations (11), (12), and (13), the skewness param-
eter along z direction is

σz =
3/k2
� �

n/tð Þ + 1ð Þ2 1 − 1/lð Þð Þ + n/ktð Þ 1/lð Þ − 1ð Þ
3 α/k2
� �

n/tð Þ + 1ð Þ2 − γn/kt2ð Þ� � : ð36Þ

Thus, the metric (22) together with equations (31)–(36)
constitutes a Bianchi type V HDE cosmological model in
general relativity with hybrid expansion of the universe.
The behavior of the energy densities depends on the values
of constants α, γ, k, and n. Moreover, the energy density of
dark matter depends on constants m1 and l. From equations
(31) and (32), we observe that the energy densities of matter
and HDE are decreasing functions of time. Also, we have
seen that from equation (34) it is also observed that the pres-
sure of HDE is a decreasing function of cosmic time t. The
obtained EoS parameter of HDE is time varying and it is
evolving with negative sign for late times which may be
attributed to the current acceleration of the expansion the
universe [43]. The EoS parameter of the HDE also behaves
like quintessence or phantom region based on choices of
constants.

The coincidence parameter is

�r = ρΛ
ρm

= 3 α/k2
� �

n/tð Þ + 1ð Þ2 − γn/kt2
� �� �

2l2 + 2l − 1
� �

/ klð Þ2� �
− 3α/k2
� �� �

n/tð Þ + 1ð Þ2 + 3γn/kt2ð Þ − 3m2
1/ tnetð Þ2/k

	 
 :
ð37Þ

It is observed that coincidence parameter �r at very early
stage of evolution varies, but after some finite time, it con-
verges to a constant value and remains constant throughout
the evolution, thereby avoiding the coincidence problem
(unlike ΛCDM).

The energy densities of parameters of dark matter (Ωm)
and HDE ðΩΛÞ are as follows:

Ωm = 1
3

2l − 1
l2

+ 2 − 3αð Þ
� �

+ kγn
t2

−
k2m2

1
tnetð Þ2/k

 !
n
t
+ 1

	 
−2
,

ð38Þ

ΩΛ = α −
γnk
t2

n
t
+ 1

	 
−2
: ð39Þ

Using equations (38) and (39), we get the sum of overall
energy density parameter as

Ω =Ωm +ΩΛ = 1
3

2l − 1
l2

+ 2
� �

−
k2m2

1
tnetð Þ2/k

 !
n
t
+ 1

	 
−2
:

ð40Þ

From equation (40), one can observe that the overall sum
of the energy density parameter approaches ð1/3Þððð2l − 1Þ/
l2Þ + 2Þ as t→∞. Moreover, it can be concluded that for l
= 1, this model predicts that the sum of overall energy den-
sity parameter becomes 1. Figure 1 shows the nature of total
density parameter as cosmic time increases. As it was illus-
trated in Figure 1, total density parameter ðΩÞ tends to 1 as
cosmic time increases, which is physically acceptable based
on the recent cosmological data.

Figure 2 shows the accelerated phase of the universe ðq
≃−1Þ for some small values of redshift. This illustrates that
the findings are in accordance with the observational values
of the current cosmological data of accelerated universe.
Figure 3 indicates the energy density of dark matter versus
cosmic time t for constants l = 1:5, n = 2, α = 0:5, k = 0:5,
m1 = 0:5, and γ = 0:6. From Figure 3, it can be seen that at
early stage of the evolution, energy density dark matter dom-
inates and at late times it approaches zero. This supports the
recent observations of the cosmological data.

Figure 4 indicates the plot of pressure of holographic dark
energy versus cosmic time t for constants l = 1:5, n = 2, k =
0:5, and m1 = 0:5. As it is shown in Figure 4, the negative
pressure of holographic dark energy increases as cosmic time
t increases. The negative pressure indicates the accelerated
phase of the expansion of the universe. Figure 5 shows the
equation of state parameter of dark energy with respect to
cosmic time. As it was shown in Figure 5, the dark energy
of equation of state lies −1/3 <wde < −1 which implies the
region of quintessence. Figure 1 shows total density parame-
ter versus cosmic time. As it was shown in Figure 1, the total
density parameter ðΩÞ approaches to 1 at late time which
exactly matches with the ΛCDM model of recent cosmolog-
ical data.

In order to discriminate among the various DE models,
Sahni et al. [44] and Alam et al. [45] introduced a new geo-
metrical diagnostic pair for DE, which is known as statefinder
pair and denoted as ðr, sÞ. The statefinder pair probes the
dynamic expansion of the universe through higher deriva-
tives of the scale factor. Hence, it is a geometrical diagnosis
in the sense that it depends on the scale factor which
describes the spacetime.

The statefinder pair is defined as

r =     a
aH3 ,

s = r − 1
3 q − 1/2ð Þð Þ :

ð41Þ

Substituting the required values from equations (17),
(23), and (30) into (41), we get

r = 1 − 3nk
t2 n/tð Þ + 1ð Þ2 + 2nk2

t3 n/tð Þ + 1ð Þ3 ,
ð42Þ
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s = − 3nk/ t2 n/tð Þ + 1ð Þ2� �� �
+ 2nk2/ t3 n/tð Þ + 1ð Þ3� �� �

3 nk/ t2 n/tð Þ + 1ð Þ2� �� �
− 3/2ð Þ� � :

ð43Þ

From equations (42) and (43), it can be observed that the
statefinder parameters are constant whose values depend on
k and n in late times. Sahni et al. [44] and Alam et al. [45]
have observed that the Lambda cold dark matter ðΛCDMÞ
model and the standard cold dark matter (SCDM) model
have fixed point values of statefinder parameter ðr, sÞ = ð1, 0
Þ and ðr, sÞ = ð1, 1Þ, respectively. Figure 6 shows r − s statefin-
der parameters. As it was shown in Figure 6, our model
approaches to ðr, sÞ→ ð1, 0Þ as cosmic time t approaches to
infinity which would clearly show the ΛCDM model.

5. Lyra’s Geometry and Field Equations

Lyra [22] suggested a modification of Riemannian geometry
by introducing a gauge function which is a metrical concept
in Weyl [21] geometry in the geometrical structureless man-
ifold. It is a generalization of Weyl’s geometry which is
removing the defect of nonintegrability of length transfer
that has been discussed. The Einstein modified field equation
in normal gauge for Lyra’s manifold obtained by Sen [23] is
given by

Rij −
1
2Rgij +

3
2 ϕiϕj −

3
4gijϕkϕ

k = − T mð Þij + T Λð Þij
	 


, ð44Þ

where ϕi is the displacement vector defined as ϕi = ð0, 0, 0,
βðtÞÞ.

In a comoving coordinate system, the modified Einstein
field equation (44) for Bianchi type V spacetime with the help
of (5) is

€B
B
+

€C
C

+
_B
B

_C
C

−
m2

1
A2 + 3

4β
2 = −ωΛρΛ, ð45Þ
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Figure 1: The plot of total density parameter ðΩÞ versus cosmic
time t for constants l = 1:5, n = 2, k = 0:5, and m1 = 0:5.
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where the overhead dot denotes derivative with respect to
cosmic time t.

The conservation of the right-hand side of equation (44)
leads to
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Equation (50) is reduced to
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leading to

3
2β

_β + 3
2β

2 _A
A

+
_B
B
+

_C
C

 !
= 0: ð52Þ

Integrating equation (49), we obtain

A2 = BC, ð53Þ

where the constant of integration is absorbed in B or C.

5.1. Solutions of Field Equations. Using equations (6) and
(17) in (52) and integrating, we obtain the gauge function β

β tð Þ = c1
tnetð Þ3/k

, ð54Þ

where c1 is a constant of integration.
Using the same conditions above in (9) and (21), we have

solved the field equations (45)–(49). From equation (54), we
observe that at early time, the gauge function β tends to infin-
ity in this limit and also it tends to zero as cosmic time t→∞
. It is large in the beginning and decreases fast with the evo-
lution of the universe. Hence, βðtÞ is a decreasing function
of cosmic time t. Thus, the model has singularity at t = 0.

Figure 7 indicates the plot of β versus cosmic time t for
the constant values n = 1:5, 2, and 2.5 and k = 0:5. It clearly
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shows that the behavior of β is as decreasing function of cos-
mic time t. It can be concluded that as n values increase, the
values of βðtÞ decrease more with cosmic time increases. The
physical parameters such as Hubble parameter ðHÞ, aniso-
tropic parameter ðAmÞ, shear scalar ðσ2Þ, expansion scalar ð
θÞ, spatial volume ðVÞ, and deceleration parameter ðqÞ are
found to be the same as in the above case of general relativity.
Thus, we get the model (22).

5.2. Some Physical Properties of the Model. Using equations
(9) and (21), the solutions of the field equations (45)–(49)
are obtained. Therefore, the skewness parameters, energy
density of dark matter ðρmÞ, pressure of HDE ðpΛÞ, and
EoS parameter of HDE ðωΛÞ are given below as follows.

Here, from equations (45) and (46), we obtain
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Also, from equations (45) and (47), we get
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From equation (48), the energy density of dark matter is
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From equation (45), we can get the EoS parameter as

From equation (54), it is noted that the gauge function β
is a decreasing function of time which is corroborated with
Halford [46] as well as with the recent observations [2, 47,
48][1, 40] leading to the conclusion that Λ (cosmological

constant) is a decreasing function of cosmic time t. From
equation (57), it is observed that the energy density of dark
matter is a decreasing function of time. From equation (58),
it is also observed that the pressure of HDE is a decreasing
function of time. The energy density of holographic dark
energy in Lyra’s geometry is similar to the energy density of
HDE in general relativity. Similarly, the skewness parameters
along y and z directions in general relativity and Lyra’s geom-
etry will be the same. But the dark energy density of dark
matter, the pressure of holographic dark energy, and the

EoS parameter of holographic dark energy in general relativ-
ity are slightly different from those in Lyra’s geometry. It can
be seen that the behavior of EoS parameter strongly depends
on parameters of the model. However, by choosing appropri-

ate values for α,m1, n, k, and γ, we can obtain ωΛ in quintes-
sence or in phantom phase which is consistent with the
recent observations of cosmological data. The EoS parameter
of holographic dark energy is obtained as time varying, and it
is evolved with negative sign for late times and its range is in
good agreement with large-scale structure of the universe
data.

The coincidence parameter is

From equation (60), it is observed that coincidence
parameter �r at the very early stage of evolution varies, but
after some finite time, it converges to a constant value and

remains constant throughout the evolution, thereby avoiding
the coincidence problem (like ΛCDM).

ωΛ =
− 1/ klð Þ2� �

n/tð Þ + 1ð Þ2 4l2 − 2l + 1
� �

+ 2n/kt2
� �

+ m2
1/ tnetð Þ2/k

	 

− 3c21/4 tnetð Þ6/k
	 


3 α/k2
� �

n/tð Þ + 1ð Þ2 − γn/kt2ð Þ� � : ð59Þ

�r = ρΛ
ρm

= 3 α/k2
� �

n/tð Þ + 1ð Þ2 − γn/kt2
� �� �

2l2 + 2l − 1
� �

/ klð Þ2� �
− 3α/k2
� �� �

n/tð Þ + 1ð Þ2 + 3γn/kt2ð Þ − 3m2
1/ tnetð Þ2/k

	 

− 3c21/4 tnetð Þ6/k
	 
 : ð60Þ
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The energy density parameter of dark matter in Lyra’s
geometry is given by

Ωm = ρm
3H2 = 1

3
2l − 1
l2

+ 2 − 3αð Þ
� �

+ kγn
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−
k2m2

1
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 !

n
t
+ 1
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Using (39) and (61), the overall sum of density parameter
ðΩÞ is obtained as

Ω = 1
3

2l − 1
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+ 2
� �

−
k2m2

1
tnetð Þ2/k

+ k2c21
4 tnetð Þ6/k

 !
n
t
+ 1

	 
−2
:

ð62Þ

The overall sum of the energy density parameter
approaches ð1/3Þððð2l − 1Þ/l2Þ + 2Þ as cosmic time t→∞. It
converges to 1 as t→∞ for the constant l = 1, and it holds
for l > 1 which is physically acceptable. Hence, it indicates
that the universe is very close to critical density or Ω = 1.
Thus, the gauge function βðtÞ is large in the start of the model
but decays continuously during its evolution. The energy
density and the pressure tend to small positive and negative
constants, respectively, for the large values of cosmic time t.
The negative pressure corresponds to the accelerated phase
of the universe. The gauge function βðtÞ becomes zero for
large time t. In this case, the solutions reduce to general rela-
tivistic one.

6. Conclusions

In this paper, we have studied anisotropic and homogeneous
Bianchi type V universe filled with dark matter and holo-
graphic dark energy in the framework of general relativity
and Lyra’s geometry. The solutions for field equations of cos-
mological models are obtained in general relativity and Lyra’s
geometry by using two specific cases: firstly by taking the
expansion scalar ðθÞ in the model is proportional to the shear
scalar ðσÞ as considered by Thorne [38] and Collins et al. [39]
and secondly by using the average scale factor as hybrid
expansion form (combination of the power law and expo-
nential form). We have investigated the nature of decelera-
tion parameter versus redshift as shown in Figure 2 which
reveals that the accelerated nature of the universe maintained
for small values of redshift. Figure 3 indicates that the energy
density of dark matter versus cosmic time t is a decreasing
function. It is constructed based on arbitrary constants con-
structed domain. Here, it can be concluded that at early stage
of the evolution, energy density of dark matter dominates
and at late times it approaches zero. This supports the recent
observations of cosmological data of the universe. Figure 4
shows the pressure of HDE versus cosmic time t. It shows
that the pressure of HDE negatively increases with time.
The overall density parameter has been matched with Λ
CDM as shown in Figure 1 which indicates that Ω ≃ 1. The
energy density of dark matter, the pressure of HDE, the
EoS parameter of HDE, the coincidence parameter, and over-
all density parameter in Lyra’s geometry slightly differ by the

term β from general relativity framework. We have observed
that the gauge function βðtÞ is a decreasing function of cos-
mic time t in Lyra’s geometry. The gauge function βðtÞ is
large in the beginning and reduces fast with the evolution
of the universe. It is found that for late cosmic times the
gauge function β→ 0 and Lyra’s geometry tends to general
relativity in all respects. The present model of the gauge func-
tion βðtÞ is infinite at the initial singularity. From Figure 7,
we see that β tends to zero as t→∞. Therefore, the concept
of the Lyra manifold is meaningful for finite time, but does
not remain for very large time. But we have observed that
the dynamical parameters: the average Hubble parameter,
spatial volume, anisotropy parameter, expansion scalar and
shear scalar, are the same in both frameworks. In each case,
the cosmological models approach to anisotropic parameter
for large value of cosmic time t. For l = 1, anisotropic model
vanishes. These models represent a shearing, nonrotating,
and expanding universe, which approaches anisotropy for
large value of time t. The EoS parameter of the HDE also
behaves like quintessence region based on the selected choice
of the constants and parameters which is shown in Figure 5.
From geometrical diagnostic pair for DE, it can be seen that
ðr, sÞ→ ð1, 0Þ as cosmic time t approaches to infinity and it
is clearly illustrated in Figure 6 which is consistent with the
ΛCDM model. The present model is consistent with the
recent observations of the present day of accelerating
universe.
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