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In this paper we propose a generalised holographic framework to describe superconductors. We first unify the description of s-, p-,
and d-wave superconductors in a way that can be easily promoted to higher spin. Using a semianalytical procedure to compute the
superconductor properties, we are able to further generalise the geometric description of the hologram beyond the AdS-
Schwarzschild Black Hole paradigm and propose a set of higher-dimensional metrics which exhibit the same universal
behaviour. We then apply this generalised description to study the properties of the condensate and the scaling of the critical
temperature with the parameters of the higher-dimensional theory, which allows us to reproduce existing results in the
literature and extend them to include a possible description of the newly observed f-wave superconducting systems.

1. Introduction

In holographic approaches to superconductivity, the critical
behaviour is encapsulated by the dynamics of a dual theory,
where interacting fields propagate in the bulk of a fictitious
compactified extra dimension andwhose geometry features dic-
tate the evolution of the system with temperature and its reac-
tion to external electromagnetic fields. Different localisations
into the extra dimensions correspond then to snapshots of the
target theory at different energies. This picture is based on the
AdS/CFT correspondence [1–3], the idea that certain strongly
coupled theories can be described by an extra dimensional dual
theory which contains weak gravitational interactions.

Based on this framework, models for s-, p-, and d-wave
superconductivity have been built in the literature [4–10],
which provide a computational framework to describe
superconducting properties of certain materials.

Despite describing a universal phenomenon, criticality,
all these models are based on different setups and link to dif-
ferent target theories.

The aim of this article is to provide a systematic
approach to holographic superconductors, which would

reveal universal attributes, as well as to put to test some of
the features that are commonly introduced in the models.
Moreover, this approach could provide insights into models
for superconductivity that might be generalised by higher
spin configurations. We will indeed propose a formulation
of holographic superconductivity valid for f-wave, g-wave,
or higher state superconductor. We will further generalise
this framework to introduce extra dimensional duals which
go beyond the AdS-Schwarzschild Black Hole paradigm.
These generalisations will be possible in a semianalytical
framework based on matching asymptotic solutions of the
differential equations ruling the system.

For this matching approach to work, backreactions of
the matter fields on the metric are neglected. As it is dis-
cussed in Ref. [5], this limit does not qualitatively change
the behaviour of the condensate at Tc.

2. Building a Holographic Superconductor

2.1. The Generalised Action. Holographic superconductivity
can be realised in an extra dimensional setup by enforcing
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a field to condense about a Black Hole (BH) horizon in an
AdS background.

To emulate the electromagnetic properties of the mate-
rial, the matter field—in the following the rank ℓ tensor
Bν1,⋯νℓ

—is endowed with a charge q under some Uð1Þ gauge
symmetry associated with electromagnetism. Then, both
Bν1,⋯,νℓ and the Uð1Þ gauge boson Aμ are minimally coupled
to gravity; see Figure 1 for a schematic depiction. Further,
nonminimal couplings to the metric might as well be
included for the purpose of stabilising the theory, in a way
that will be shortly discussed.

Superconducting theories have been formulated in both
2 and 3 space dimensions; in the former case, the materials
are layered. The generalised action that is introduced in this
section allows to describe d-dimensional superconductors
for arbitrary d. However, when singling out particular ansatz
for the fields, the calculations are performed for layered 2-
dimensional superconductors for convenience, where d is
then d = 2 + 1 = 3.

On describing superconductors in d spacetime dimen-
sions, the d+1-dimensional dual gravitational theory will in
general look different depending on the particular realisa-
tion. But even so, there are a number of common features
in every model which this paper aims to point out. The cen-
tral claim of this work is that the essential dynamical aspects
giving rise to a critical behaviour in holographic supercon-
ductor theories are captured by a generic action of the form

S = 1
2κ2
ð
dd+1x

ffiffiffiffiffiffi
−g

p
R + 6

L2
+Lm +La

� �
, ð1Þ

where κ2 = 8πGd is the d + 1 gravitational strength, L is a
length scale that coincides with the AdS radius in a pure AdS
metric, and the metric signature is ð−, + , + , ⋯ Þ. The min-
imal contributions to the Lagrangian read

Lm = −
1
4 FμνF

μν + DμBν1,⋯,νℓ
�� ��2 +m2 Bj j2

� �
, ð2Þ

where μ = 0, 1, 2,⋯, d is a Lorentz index, Dμ = ∇μ − iqAμ,
Fμν = ∇μAν − ∇νAμ, and ∇μ is the covariant derivative in
the curved spacetime defined by the metric gμν. Meanwhile,
the extra piece La is introduced as containing all the extra
nonminimal coupling terms between the fields and gravity
that might be present in each particular realisation. As it
has been discussed [9, 10], though not at all essential for
the formation of the condensate, the presence of such terms
is in general important in safeguarding the stability of the
higher-dimensional theory after the introduction of cou-
plings between the matter field, gravity, and electromagne-
tism. More specifically, said stability would require the
insertion of an extra set of properly weighted d + 1 dimen-
sional terms, a subject set beyond the scope of this paper;
see Refs. [10, 11] for a deeper insight into the issue for the
case ℓ = 2.

A similar approach to Equation (2) has been pursued in
Ref. [12] to describe colour superconductivity, i.e., supercon-

ductors in the colour pairing of quarks in dense matter
QCD.

Upon singling out a specific model, the geometrical
properties of the superconductivity carriers in the dual
quantum field theory (QFT) are determined by the rank of
the tensor field Bν1,⋯,νℓ . In particular, this incorporates the
s-, p-, and d-wave models present in the literature.

Bν1,⋯,νℓ ≡

B ℓ = 0⟶ s − wave,
Bμ ℓ = 1⟶ p −wave,
Bμν ℓ = 2⟶ d −wave,

8>><
>>: ð3Þ

together with mixtures of these configurations. Meanwhile,
descriptions of higher geometrical complexities (e.g., f-
wave with ℓ = 3) are still lacking. However, also for higher
spins ℓ, the corresponding fields can be described by a
rank-ℓ tensor with appropriate constraints as we will discuss
in Section 4.

Though Equation (2) provides a convenient framework
for the study of holographic superconductors in all general-
ity, there are two unsettling aspects of such an action that
should be pointed out. Their discussion will be postponed
to subsequent sections, but a quick overview of these issues
should be of use at this stage already:

(1) The kinetic part of the minimal Lagrangian in Equa-
tion (2) contains not only the physical degrees of
freedom but additional unphysical ones that should
be removed from the theory for consistency. This is
to say, the Lagrangian does not describe by itself
the correct number of propagating degrees of
freedom

(2) In curved spacetimes, Equation (2) deviates for ℓ ≥ 1
from known actions for the regarding higher spin
fields because it does not account for curvature cor-
rections. This issue will be explained thoroughly in
Section 4, where corrected models are presented

As a result, the theory defined just by the Lagrangian in
Equation (2) ought to be distinguished from a full higher-
dimensional theory that does not suffer from the mentioned
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Figure 1: Schematic view of holographic duals to
superconductivity: a material represented by a field of spin ℓ
whose EM properties are probed by an external field living in a
higher-dimensional spacetime. The dynamics of these two fields is
captured by ψ and ϕ, respectively.
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problems, for which both Lm andLa terms in Equation (1)
are considered. The latter kind of theories will thus from
now on be referred to as the “physical” ones, whereas the
theory that is defined by Equation (2) and bears the men-
tioned inconsistencies will receive the label of “naïve.” Note,
though, that physicality here refers to the higher-
dimensional theory we build as a hologram of the real super-
conductor system, the target theory. The lack of some fea-
tures in this higher-dimensional space does not imply an
inherent flaw in the target theory, the actual system we want
to describe.

Nevertheless, two questions immediately arise from this
distinction:

(1) Of what use is the naïve theory, then, if it does not
comply with its consistency conditions?

(2) Is there a feasible way to restore physicality?

In Section 4, the equations of motion (EOMs) for ℓ = 0, 1
and 2 for the naïve theory will be given explicitly, and the
inconsistencies in the gravity theory are discussed. Then, it
will be shown that the EOMs for some known physical the-
ories eventually contain no additional qualitatively relevant
contributions when compared to those obtained by using
the naïve action.

Therefore, an answer can be advanced for the first of
these questions: it is expected that the naïve model be reli-
able at the phenomenological level even if there are inconsis-
tencies from the point of view of the gravity theory. Thus, a
study of the formation of the condensate by means of the
naïve EOMs is justified and will be carried out in Section 3.

The second question is of a rather more technical nature,
but as it will be explained in Section 4.2, the nonphysicalities
in Equation (2) can be erased as long as the EOMs that are
produced by said action are accompanied by appropriate
constraints over the fields. This is equivalent to saying that
a suitable expression of La is given. However, while these
constraints are easy to grasp in some limits—e.g., by anti-
symmetrising the kinetic term for ℓ = 1 and fixing Bμν to
be Lorentz-symmetric, transversal, and traceless for ℓ = 2 in
the free limit—the general case for higher spin and interact-
ing fields is more involved and not iteratively generalisable.
Already the formulation of the constraint equations for ℓ =
3 is well beyond the scope of this work. The correct formu-
lation of such constraints is in fact an open problem in the
field [11], for which solutions may only exist in a limited
number of background metrics. Nevertheless, the issue is
worthy of consideration and will be tackled to some extent
in Section 4.

2.2. Ansatz for the Fields. Once the theory has been estab-
lished, particular ansatz must be implemented for the fields.
These ansatz are required to be in accordance with the con-
straints imposed over the fields that were just discussed in
the paragraph above. Typically, the gauge field only depends
on the holographic coordinate r and is parametrised as

Aμdx
μ = ϕ rð Þdt: ð4Þ

Regarding the matter field, the different tensor compo-
nents are fixed so that a single AdS-radial degree of freedom
ΨðrÞ remains, while the required geometrical properties are
reproduced. The particular ansatz adopted in this article are
shown in Table 1. Note that in the s-wave (ℓ = 0) case, spatial
isotropy is preserved in the QFT dual, while by picking the
Bx component in the p-wave (ℓ = 1) case generates a pre-
ferred direction. Finally, this particular ansatz for the d-
wave superconductor (ℓ = 2) [9] generates a condensate in
the x‐y plane with translation invariance that breaks the
rotational symmetry down to Z2, with the condensate flip-
ping its sign under π/2 rotations on that plane.

2.3. The Generalised Warped Metric. It has already been
stated that the superconductivity phase transition can be
triggered by an AdS BH background metric in the 4-
dimensional gravitational theory. Here, this statement will
be briefly clarified and, at last, generalisations to the AdS-
Schwarzschild metric will be introduced.

The background metric under consideration is time-
independent and fully symmetric in the QFT spatial dimen-
sions. Therefore, it only depends on the holographic coordi-
nate r and can be parametrised as

ds2 = −f rð Þdt2 + dr2

f rð Þ + r2 dx2 + dy2
� 	

: ð5Þ

In the following, the probe limit q⟶∞ is assumed,
meaning that the matter fields do not backreact on the met-
ric. In this case, the matching approach that relies on asymp-
totic expansions of the fields provides analytical solutions for
the condensates that will be computed further on.

Although the probe limit is known to be not numerically
accurate for T/TC ⟶ 0, the scaling of the condensate
approaching the critical temperature is not affected. This
was shown by comparing the probe limit to the numerically
obtained fully backreacting solutions, e.g., in [5] for s-wave
superconductors. The same applies to the condensate scaling
and the dependence of the critical temperature on the charge
density for p-wave geometries, as shown in [13–16].

Thus, the probe limit is expected to deliver a valid
description of the superconductor’s properties close to the
critical temperature. The main effects due to backreactions
are expected to change the value of the condensate at T/TC
⟶ 0, albeit with a lesser impact than the uncertainties aris-
ing from the matching point dependence of the semianalyti-
cal approach which is discussed in Appendix B.

In particular, this means that the metric components are
fixed and f ðrÞ asymptotically becomes the metric of anti-de
Sitter space, i.e., f ⟶ f AdS = r2 as r⟶∞.

The holographic correspondence identifies QFTs at
finite temperature as dual to an AdS space with an event
horizon with radius rH , whose introduction renders a phys-
ical cut-off in the AdS coordinate. Then, the associated Haw-
king temperature T = 3rH/4π of the horizon is interpreted as
the temperature of the dual QFT. Customarily, for an AdS-
Schwarzschild BH located at r = 0, the event horizon is set
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at r = rH , yielding the metric with

f BH rð Þ = r2

L2
1 − r3H

r3

� �
, ð6Þ

which constitutes an exact solution of the gravity EOM
inferred from Equation (1) when the presence of the remain-
ing matter fields is neglected.

The holographic coordinate is conventionally redefined
as z = rH/r which ranges in the interval z ∈ ð0, 1� to facilitate
the calculations. This means that one usually works with

f BH zð Þ = r2H
L2z2

1 − z3
� 	

: ð7Þ

Notice also that the AdS-asymptotic region is located
near z = 0, while the horizon lies at z = 1.

While the former is a well-motivated choice for the met-
ric, it is not the only one that could be made. For this reason,
in this paper, other possibilities will be explored with the
motivation of continuing the study of holographic supercon-
ductors in full generality. This generalisation will be imple-
mented via the ansatz

f h zð Þ = r2H
L2

h zð Þ 1 − zð Þ, ð8Þ

that retains explicitly the essential feature of the AdS-BH
metric f BH , i.e., the first-order zero at the horizon with

h zð ÞAdS =
1 + z + z2
� 	

z2
: ð9Þ

Notice that recovering flat AdS metric in the asymptotic
region constrains the function hðzÞ to fulfil hðzÞ⟶ 1/z2 as
z⟶ 0.

As it will be discussed in Appendix A, different choices
for the power of ð1 − zÞ have been studied, but all the cases
under consideration failed to reproduce the characteristic
temperature behaviour of the condensate.

Therefore, the compact form of the metric in Equation
(8) captures the essential features needed to produce a possi-
ble holographic model of critical phenomena at finite
temperature.

Besides the canonical example of the AdS-Schwarzschild
metric, there are various instances of extra dimensional the-
ories which would be good candidates for a holographic
superconductor while still neglecting backreaction. In partic-
ular, the correct pole structure in Equation (8) is found on
the Hirn-Sanz metrics [17, 18], which were employed to
develop duals for QCD and for new physics at the electro-
weak scale, the AdS-dilaton metric [19], a specific type of
metric designed to reproduce the Regge trajectories, and
the Sakai-Sugimoto metric [20, 21], inspired by Witten’s
string theory model of D8 branes [22]. Specific forms of
the function hðzÞ for these proposals are summarised below:

h zð Þ = p2 zð Þ
z2

AdS − Schwarzschild 3½ �ð Þ

= p2 zð Þ
z2

ecd z/rHð Þ2d Hirn − Sanz 17, 18½ �ð Þ

= p2 zð Þ
z2

e−z
2 AdS − dilaton 19½ �ð Þ

= p11 zð Þ
z6

Sakai − Sugimoto 21½ �ð Þ,

ð10Þ

where pnðzÞ =∑i=n
i=0z

i is a polynomial of z up to zn. Different
choices of hðzÞ would lead to the same universal behaviour
but slightly different details. This will be discussed further
in Section 3.5.

2.4. Hypothetical Higher-Order Superconductors. Apart from
its compact form that summarises models for s-, p-, and d-
wave superconductors, the naïve model presented in Equa-
tion (2) allows to speculate about higher-order superconduc-
tors, for instance about the f-wave superconductor with ℓ = 3
. Indeed, as it will be shown in Section 3, the condensates for
the naïve models share the temperature behaviour with the
physical models for ℓ = 0, 1, 2. Therefore, it is expected that
the naïve action can provide a valid approximation of the
condensates for higher spin superconductors.

To give one example, for possible f-wave (ℓ = 3) super-
conductors, the matter field is taken to be a rank-3 tensor
Bμνρ with the action

Lm = −
1
4 FμνF

μν + DσBμνρ

�� ��2 +m2 Bμνρ

�� ��2� �
: ð11Þ

The dynamical field Ψ is singled out by the ansatz Bxxx

= −Byyy =Ψ with all remaining components set to zero;
compare also Table 1.

Note that the mass term in Equation (11) in principle
would break gauge invariance. Nevertheless, note that this
naïve action should be regarded as an effective description
that considers only the relevant degrees of freedom. Some
ideas to render the theory consistent will be addressed in
Section 4.

2.5. The Critical Temperature and Formation of Scalar Hair.
After generalising both the field content and the geometry of
the hologram, we briefly discuss the process of formation of
a condensate.

Table 1: Convenient ansatz for the matter fields in the s- [4, 5], p-
(adapted from [6]), and d-wave [9, 10] and hypothetical f-wave
holographic superconductors (η being the multiplicity of Ψ in
each case). For each ansatz, every component that is not
mentioned vanishes.

Notation ℓ η Radial ansatz

Bμ1,⋯μℓ
≡

B 0 1 B =Ψ rð Þ
Bμ 1 1 Bx =Ψ rð Þ
Bμν 2 2 Bxx = −Byy =Ψ rð Þ
Bμνρ 3 2 Bxxx = −Byyy =Ψ rð Þ
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In the presence of the background metric and the just
introduced matter field Bμ1⋯μℓ

with physical components
ΨðrÞ, critical behaviour is triggered by the interplay between
electrostatic forces and gravity. The BH attractiveness can be
measured in terms of its surface temperature T which is
interpreted as the temperature of the dual field theory, too.

Once equipped with the notion of a finite temperature in
the QFT, a critical temperature Tc is determined by the
dynamics of the gravity theory such that for T < Tc electro-
static repulsion overcomes gravitational attraction and a
superconducting layer can condense over the horizon. For
it to actually occur, spacetime must be endowed with a neg-
ative curvature metric, as it happens in AdS geometry, while
in a flat geometry scenario, the superconducting layer would
be blown out to infinity.

Then, for T < Tc, the free energy is minimised by a non-
trivial configuration Ψ =Ψ0. This is to say, the Uð1Þ gauge
symmetry is spontaneously broken and ψ develops a non-
vanishing vacuum expectation value (VEV), leading to the
formation of a condensate of the operator in the dual QFT,
hOi ~Ψ0. This can be interpreted as the Black Hole develop-
ing scalar hair below Tc. Meanwhile, for T > Tc, the conden-
sate gets swallowed and the system is out of the
superconducting phase; the trivial solution Ψ = 0 is the only
viable choice.

The existence of a critical temperature below which the
condensate emerges is the first hallmark of the second order
transition giving rise to superconductivity.

3. The Condensate

3.1. The Generalised EOMs. Eventually and under the ansatz
in Table 1 and Equation (4), the theory contains two dynam-
ical scalar fields, ΨðrÞ and ϕðrÞ, besides gravity. Under the
assumption of a fixed metric—i.e., neglecting backreactions
of these fields upon the metric itself—a set of two EOMs
can therefore be produced from the action.

For the class of models defined by Equation (2), the
ansatz in Table 1, and the metric given by Equation (5) with
f ðzÞ described by Equation (8), a closed expression for an
arbitrary tensor of rank ℓ can be written down for the “min-
imal” part of the action density, Sm = ffiffiffiffiffiffi−gp

Lm. It is the sim-
plest in terms of the AdS variable r and reads

Sm = 1
2 z

2ϕ′2 − η
f

r2ℓ−2
Ψ′2 − 2ℓf

r2ℓ−2
ΨΨ′ + ℓ ℓ + 1ð Þf

r2ℓ
+ m2

r2ℓ−2
−

q2

r2ℓ−2 f
ϕ2

� �
Ψ2

� �
,

ð12Þ

where the factor η denotes the multiplicity of the dynamical
field Ψ within the tensor field itself, cf. Table 1.

A convenient reparametrisation, inspired by Ref. [10],
consists in writing

Ψ zð Þ = ψ zð Þ
zℓ

: ð13Þ

This allows to write the EOMs in the compact form

below:

ϕ′′ zð Þ − rH
z


 �2−2ℓ 2ηq2ψ2 zð Þ
z2 f zð Þ ϕ zð Þ = 0, ð14Þ

ψ′′ zð Þ + f ′ zð Þ
f zð Þ ψ′ zð Þ +M2

ψ zð Þψ zð Þ = 0, ð15Þ

where a dynamical mass for the ψ field has been defined as

M2
ψ zð Þ = q2r2Hϕ

2 zð Þ
z4 f 2 zð Þ

−
r2Hm

2

z4 f zð Þ −
ℓ
z2
: ð16Þ

It must be highlighted that these equations are identical
to those in Refs. [5, 6, 9, 10], save for the explicitly ℓ
-dependent term M2

ψðzÞ. Thus, the difference between the
naïve models and those in the literature can be absorbed into
the dynamical mass for ψðzÞ.

Taking into account the rescaling of Ψ in Equation (13),
the EOMs for p-wave superconductors also agree with those
in [23].

At this point, the EOMs above are all that is needed to
unravel the dynamics of the presented generalised holo-
graphic superconductor. Though their exact analytical solu-
tion is not known, in the remainder of this section, it will be
shown that, by using the semianalytical matching procedure
presented in Ref. [24], one can capture the correct behaviour
of the condensate in every case. The reliability of this
method for the analysis of the equations under consider-
ations ascribes to the absence of important features between
z = 1 (horizon) and z = 0 (AdS-asymptotic region) and
involves the calculation of asymptotic solutions near both
regions that are then matched together at an intermediate
point.

3.2. Solutions near the Horizon. The construction of semia-
nalytical solutions requires the implementation of boundary
conditions near the horizon that enforce regularity of Equa-
tions (14) and (15). That being so, the former equation
imposes

ϕ 1ð Þ = 0 ð17Þ

on the gauge field ϕðzÞ, while cancelling all divergences in
the latter requires that

ψ′ 1ð Þ = −
~m2

h 1ð Þψ 1ð Þ: ð18Þ

For convenience, the mass is expressed in units of the
curvature from now on, with the dimensionless parameter
~m2 =m2L2.

Assuming that both ψ and ϕ are regular for z⟶ 1 and
keeping terms up to second order in ð1 − zÞ, one can expand
the fields around the horizon in the following manner:

κH = κ 1ð Þ − κ′ 1ð Þ 1 − zð Þ + 1
2 κ′′ 1ð Þ 1 − zð Þ2+⋯ ð19Þ

5Advances in High Energy Physics



for κ ∈ fϕ, ψg. The second derivatives at z = 1 are recov-
ered by plugging these expansions into the EOMs. Substitut-
ing the results back into the expansion yields the asymptotic
values of the fields in terms of the two still unset boundary
values ϕ′ð1Þ and ψð1Þ,

ϕH zð Þ = − 1 − z +A ℓ
ψ2 1ð Þ
r2ℓH

1 − zð Þ2
� �

ϕ′ 1ð Þ+⋯, ð20Þ

ψH zð Þ = 1 −Bℓ 1 − zð Þ + C ℓ,1 +C ℓ,2
ϕ′2 1ð Þ
r2H

 !
1 − zð Þ2

" #
ψ 1ð Þ+⋯,

ð21Þ
where the following set of coefficients has been conveniently
defined:

A ℓ =
q2η
h 1ð Þ , ð22Þ

Bℓ = −
~m2

h 1ð Þ , ð23Þ

C ℓ,1 =
1
4 −ℓ + 4 ~m2

h 1ð Þ + ~m4

h2 1ð Þ
+ 2h′ 1ð Þ ~m2

h2 1ð Þ

" #
, ð24Þ

C ℓ,2 = −
q2

4h2 1ð Þ
: ð25Þ

3.3. Solutions in the Asymptotic Region. At the AdS boundary
(z = 0), ψðzÞ must vanish and ϕðzÞ be finite to ensure nor-
malisability of the fields. Therefore, the equations for ψðzÞ
and ϕðzÞ asymptotically decouple and an independent
expansion for each field can be constructed. In the case of
the gauge field, one can easily infer that

ϕAdS zð Þ = μ − qρz, ð26Þ

where qρ = ρ/rH and μ and ρ are identified with the chemical
potential and the charge density at the horizon, respectively.
Meanwhile, since the metric becomes asymptotically AdS,
the matter field ψðzÞ behaves as

ψAdS zð Þ =Kℓz
Δℓ , ð27Þ

where Kℓ ∝ hOℓi defines the condensate of the dual opera-
tor corresponding to the matter field, denoted by Oℓ, and
Δℓ is the mass scaling dimension of said field.

The latter can be readily determined to be

Δℓ =
3
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4 + ℓ + ~m2

r
: ð28Þ

Note that the definition of Δℓ in this work might differ
from the convention in other articles. For convenience, the
matter field Ψ has been rescaled in Equation (13) to give eas-
ier matching expressions. But accordingly, the scaling of ψ
andΨ with z differs by a power of ℓ. Having this transforma-

tion in mind, Equation (28) also perfectly agrees with Equa-
tion (14) in [23] for d = 4.

3.4. The Matching Procedure. At last, the matching is realised
by imposing the Dirichlet and von Neumann boundary con-
ditions at some intermediate point 0 < zM < 1 over each pair
of asymptotic solutions. This gives rise to a set of four alge-
braic equations:

ϕH zMð Þ = ϕAdS zMð Þ,
ϕ′H zMð Þ = ϕ′AdS zMð Þ,

(
ð29Þ

ψH zMð Þ = ψAdS zMð Þ,
ψ′H zMð Þ = ψ′AdS zMð Þ,

(
ð30Þ

whereby the four remaining free parameters μ, Kℓ, ψð1Þ,
and ϕ′ð1Þ can be uniquely determined.

As demonstrated in Ref. [24], the solutions depend only
mildly on the precise choice of zM provided that it is far
from its two limiting values; see Appendix B for more
details. That being so, the convenient choice zM = 1/2 will
be adopted in the following.

Defining the critical temperature

Tc =
3 ffiffiffi

ρ
p
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 + Δℓð ÞC ℓ,2

2Bℓ Δℓ + 1ð Þ − 4Δℓ + 2 + Δℓð ÞC ℓ,1

4

s
ð31Þ

allows to write the solution forKℓ for the generalised model
under consideration as

Oh i = rΔℓ
H Kℓ =WℓTcT

ℓ+Δℓ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + T

Tc

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

Tc

s
, ð32Þ

where one can write

Wℓ =
2Δℓ−1ffiffiffiffiffiffi
A ℓ

p 4 −Bℓ

Δℓ + 2
4π
3

� �ℓ+Δℓ

: ð33Þ

3.5. Discussion. Equations (31), (32), and (33) are the main
results of this paper and can be used to describe phenome-
nological aspects of holographic superconductors, including
the parametric dependence of the condensate and critical
temperature.

To begin with, as the equations explicitly show, the scal-
ing of the condensate with temperature is of the form

Oh i ~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

Tc

s
ð34Þ

for T ⟶ Tc, exactly as it is expected from a supercon-
ducting system. This is a result which was obtained in Ref.
[24] for s-wave superconductors and in an AdS-BH metric,
but in this paper, it has been shown that such a dependence
emerges also for higher-order superconductors and for more
general metrics.

6 Advances in High Energy Physics



The analytical derivation of this scaling relation with the
temperature of the condensate, Equation (34), is worth
describing in more detail: this scaling behaviour has been
shown to be completely determined by the equations for ϕ,
Equation (29), and is independent of the equations for ψ,
Equation (30). This is to say, to this level, the square root
behaviour of the condensate appears solely because of the
dynamics of ϕ and is seen as a consequence of the equilib-
rium between gravity and the electromagnetic force (cf. Sec-
tion 2.5). Qualitatively, one can understand this behaviour
by the following distinction: the field ψ that carries the infor-
mation about the material determines the scale of critical
behaviour Tc and the external EM field ϕ carries the infor-
mation on the dependence of the condensate with this tem-
perature. Schematically,

ψ − dynamics⟶ determineTc

ϕ − dynamics⟶ Oh i∝ 1 − T/Tcð Þ1/2:
ð35Þ

Additionally, Equations (32) and (33) retain their
explicit dependence on the parameters of the gravity theory,
namely,

(i) the mass in units of the curvature radius L: ~m2

(ii) the free parameters of the generalised metric: hð1Þ
and h′ð1Þ

So, they provide detailed analytical information about
the formation of the condensate from the gravity side and
allow for a study of this parameter dependence. Notice in
fact that a well-defined condensate requires

Tc, Oh if g ∈ℝ+, ð36Þ

so any point in the parameter space f~m2, hð1Þ, h′ð1Þg that
does not produce this required outcome will not give rise
to a superconducting behaviour. In particular, notice that
rendering hOi and Tc real and positive requires the following
conditions to be fulfilled:

(i) A ℓ ≠ 0 and C ℓ,2 ≠ 0, which are automatically satisfied
for non-vanishing q2/hð1Þ; those conditions simply
encode the necessity of a coupling between ψ and
the gauge field ϕ that is not negligible with respect
to the gravitational pull of the event horizon

(ii) Bℓ < 4 which imposes a relation between ~m2 and h
ð1Þ:

~m2 > −4h 1ð Þ ð37Þ

Notice also that the positive definiteness of Equation
(28) prevents approaching the ill-defined limit Δℓ = −2
[25]. Moreover, also from the mentioned equation, one can
infer that the requirement Δℓ ∈ℝ implies a lower bound

for the mass:

~m2 > −
9
4 − ℓ, ð38Þ

which is not but the Breitenlohner-Freedman (BF) bound
[25] for this theory.

Figure 2 shows the dependence of the different conden-
sates with the temperature in units of Tc as described by
Equation (32) and puts them in comparison with the con-
densates obtained from some of the models in literature.

Choosing the masses for all models at their respective BF
bound, Equation (38), the anomalous dimension is Δℓ = 3/2
in all cases (cf. Equation (28)). Then, for T near Tc, the con-
densates in Equation (32) can be approximated by

Oh i ≈WℓT
ℓ+Δℓ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

Tc

s
: ð39Þ

After normalising by Tℓ+Δℓ
c , the condensates have the

same dimension for all values of ℓ and differ only by the
coefficient Wℓ.

The right panel focuses on the scaling of either curve
near the critical temperature in a double-logarithmic form.
From Equation (39), one reads of the slope in the double-
logarithmic form being 1/2 while the offset is shifted by ln
Wℓ.

For further comparison between the naïve and literature
models, see Section 4.3. Moreover, see Section 4 for an out-
line of the essential features of the latter models together
with some of their technical aspects.

It remains to look at some of the properties and param-
eter dependencies of the critical temperature as defined in
Equation (31). Figure 3 exhibits the scaling of Tc with ~m2

and hð1Þ for s-, p-, d-, and f-wave superconductors (from
left to right), under the assumption that as in the Schwarzs-
child BH case hð1Þ = −h′ð1Þ. This is a simplifying assump-
tion that is required in order to reduce the amount of
parameters, but the result should not differ much from the
general case.

For values of hð1Þ sufficiently far away from 0, Tc dem-
onstrates a simple scaling with ~m2 and is well defined by
its only pole at ~m2 = 0 all the way down to the BF bound.
However, for hð1Þ approaching zero, it displays a more
interesting behaviour. In this regime, the leading contribu-
tions to the critical temperature in Equation (31) are given
by the ∝1/hð1Þ2 terms within C ℓ,1 and C ℓ,2. Correspond-
ingly, it simplifies to

lim
h 1ð Þ⟶0

Tc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
~m2 ~m2 + 2h′ 1ð Þ

 �

vuut : ð40Þ

Therefore, the critical temperature visibly diverges both
when ~m2 ⟶ −2h′ð1Þ and ~m2 ⟶ 0. This behaviour can be
spotted in Figure 3, where the lighter lines corresponding
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to smaller values of hð1Þ diverge long before reaching the
BF-bound.

It is worth noticing the different parametric dependence
of hð1Þ and h′ð1Þ for the typical AdS-BH case and other pro-

posals in Equation (10); see Table 2. Note that h′ð1Þ is typ-
ically negative.

So far, all temperatures have been presented in units of
the charge density ρ. However, the distinctive quantity to
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Figure 2: Naïve models for s-, p-, d-, f-, and g-wave superconductors and comparison with the Abelian Higgs s-wave, SU(2) Yang-Mills p-
wave, and CKMWY as well as BHRY d-wave superconductor. All masses are chosen at the respective Breitenlohner-Freedman bound such
that the anomalous dimension Δℓ agrees in all cases.
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Figure 3: Critical temperature in units of the charge density ρ for s-, p-, d-, and f-wave superconductors as a function of ~m2 and hð1Þ under
the assumption that h′ð1Þ = −hð1Þ. Different curves denote different choices for hð1Þ, the prefactor of the metric at the horizon. Brighter
colours refer to small values of hð1Þ close to zero and darker colours to hð1Þ close to 3. The dashed blue vertical line symbolises the
Breitenlohner-Freedman bound, Equation (38), for each model.

8 Advances in High Energy Physics



relate the models to existing or hypothetical physical systems
is the critical temperature in Kelvin. Therefore, the charge
density ρ is fixed such that the critical temperature of the
s-wave superconductor gives 77K at the BF bound ~m2 = −
2:25 and for the parameter choices hð1Þ = 3 and h′ð1Þ = −3
as in the Schwarzschild BH case.

The critical temperature in Kelvin for some choices of ℓ
obtained from Equation (31) is shown in Figure 4 as a func-
tion of h′ð1Þ. Note that for s-, p-, and g-wave superconduc-
tors, a finite value of the critical temperature can be defined
in the Schwarzschild BH limit h′ð1Þ = −3, while it diverges
before reaching this limit for d- and f-wave superconductors.

The semianalytical matching approach pursued in this
article requires a mild dependence on the matching point
zM . As it will be discussed in Appendix B, this is the case
for ~m2 close to the BF bound. However, the curves in
Figure 4 imply that the AdS Schwarzschild BH background
metric does not provide a critical temperature at the BF
bound for d- and f-wave superconductors. Accordingly, this
fact suggests to take into account generalised background
metrics as it has been motivated in Section 2.3.

Apart from their condensate, holographic superconduc-
tors are typically characterised by the optical conductivity.
However, the analytical matching approach presented here
breaks down for the conductivity, see Appendix C for
details.

4. More on Higher Spin Fields

4.1. Naïve Versus Physical Models. The naïve model intro-
duced in Equations (1) and (2) and the thereupon derived
EOM for ψ, Equation (15), bear the two main shortcomings
that were already mentioned in Section 2.1. First and fore-
most, the kinetic part of Equation (2) is inconsistent with
the axioms of quantum field theory in curved spacetime as
it leads to unphysical particle states and it does not describe
the correct number of propagating degrees of freedom. Sec-
ondly, Equation (2) does not exactly reproduce the known
models for p- and d-wave superconductors and only the s-
wave case matches the models in the literature, despite pro-
ducing a similar superconducting phenomenology.

It is the latter problem that can be demonstrated the eas-
iest to tackle and will be the focus of attention in the follow-
ing section.

It should then be illustrative to enumerate the differences
between the generalised, naïve model defined by Equation

(2) in the noninteracting limit and the well-established
Lagrangians that describe free tensor fields of ranks ℓ = 1
and 2 for different spacetimes. By doing so, the aims of the
writers are two-fold: this discussion shall contribute to
explaining where the differences originate from and will
hopefully cast some light on some of the issues that could
arise for higher spin fields.

Rank-1 tensors are suitable to describe the matter part of
a p-wave holographic superconductor, and the right descrip-
tion of the dynamics of such fields in the free limit for Min-
kowski spacetimes is known to be given by the Proca
Lagrangian [26].

LProca = −
1
4 ∂μBν − ∂νBμ

�� ��2 − 1
2m

2 Bνj j2 ð41Þ

whose mass term would break gauge invariance. Note again
that this action should be regarded as an effective action,
containing only the relevant degrees of freedom to describe
superconductivity. However, for p-wave superconductors
in flat spacetime and with q2 = 0, the naïve model reduces
to the matter Lagrangian

Lm ⊃ −
1
2 ∂μBν

�� ��2 − 1
2m

2 Bνj j2 ð42Þ

that differs from Equation (41) by the lack of antisymmetri-
sation of the kinetic term and leads to the Klein-Gordon like
EOM

□−m2� 	
Bν = 0, ð43Þ

where □ is the 4-dimensional D’Alembertian operator.
The imprint that the mentioned difference between

Equation (41) and Equation (42) leaves on the dynamics of
the theory depends crucially on the considered background
spacetime. Note that in the so far considered Minkowski
spacetime, the Proca equation inferred from the Lagrangian
in Equation (41) reads

∂μ∂
μBν − ∂ν∂

μBμ −m2Bν = 0 ð44Þ

which simplifies in the Lorentz gauge ∂μBμ = 0 to the EOM
obtained from the naïve action, Equation (43). This is to
say, in Minkowski spacetime, the lack of antisymmetrisation
does not change the dynamics.

Next, one can see with little effort that turning on the
minimal Uð1Þ couplings and promoting the partial deriva-
tives to gauge-covariant ones, ∂μ ⟶Dμ = ∂μ − iqAμ, does
not introduce any difference either. This means, minimally
coupling the fields in Minkowski spacetime does not intro-
duce any deviation in the dynamics derived from the naïve
action with respect to the physical action.

In contrast, covariantising the partial derivatives ∂μ
⟶ ∇μ in curved spacetimes, the second term in Equation
(44) no longer vanishes in the Lorentz gauge and introduces
additional terms with respect to the naïve EOM. To see this
explicitly, one can write the Proca equation for Ψ in the

Table 2: Parametric dependence of hð1Þ and h′ð1Þ for the non-AdS
cases in Equation (10).

Model Refs. h 1ð Þ h′ 1ð Þ
AdS-Schwarzschild [3] 3 −3

Hirn-Sanz [17, 18] 3ecdr−2dH ecdr
−2d
H −1 + 2dcdr−2dH


 �
AdS-dilaton [19] 3/e −9/e
Sakai-Sugimoto [20] 12 −6
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presence of the generalised background metric and switch
on the minimal couplings to the Uð1Þ gauge field, obtaining

Ψ′′ + f ′
f

+ 2
z

 !
Ψ′ + q2ϕ2

z4 f 2
−

m2

z4 f

� �
Ψ = 0 ð45Þ

that coincides with the SU(2) Yang-Mills model for a p-
wave superconductor [6]. Meanwhile, the EOM obtained
from Equation (42) is (notice that trading Ψ for ψ via Equa-
tion (13), Equation (46) becomes Equation (15) for ℓ = 1)

Ψ″ + f ′
f

+ 2
z

 !
Ψ′ + q2ϕ2

z4 f 2
−

m2

z4 f
+ 1
z
f ′
f
−

1
z2

 !
Ψ = 0

ð46Þ

which contains two further contributions to the 0th order
term in Ψ that originate from derivatives of the metric com-
ponents and would not be present in flat space. However, it
is noteworthy that these two terms enter the equation at the
level of the mass term. Consequently, they only affect the
definition of the critical temperature but not the shape of
the condensate and do not crucially affect the dynamics of
the theory after their presence is accounted for; see Section
4.3 for a proof of this fact. As promised, they hence do not
alter the phenomenology of the model.

In d-wave holographic superconductors, the matter field
is described by a rank-2 tensor Bμν whose exact dynamics in
the free limit and for a Minkowski background are now

given by the Fierz-Pauli Lagrangian [27]

LF−P = ∂ρB∂
ρB − ∂ρBμν∂

ρBμν − 2∂ρBρμ∂
μB

+ 2∂ρBνμ∂
νBρμ −m2 BμνB

μν − B2� 	
,

ð47Þ

where the trace B = ημνBμν is defined using the Minkowski
metric ημν. The naïve model for vanishing Uð1Þ couplings
in Minkowski spacetime yields a rather more succinct
expression for ℓ = 2:

Lm = − ∂ρBμν

�� ��2 −m2 Bμν

�� ��2: ð48Þ

Now, this Lagrangian turns out to coincide exactly with
Equation (47) in the traceless and transversal gauge given by

Bμ
μ = 0,

∂μBμν = 0:
ð49Þ

Accordingly, the naïve EOM equals the Fierz-Pauli equa-
tion in this gauge, in which they read

□−m2� 	
Bμν = 0: ð50Þ

Thus, once more, both the physical and the naïve theo-
ries turn out to display the same dynamics.

Yet again, difficulties arise when considering curved
spacetimes that are even more problematic to address than
in the former case. Remarkably and as it is discussed in
Ref. [11], adding Uð1Þ gauge couplings can also introduce
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Figure 4: Dependence of the coefficient WℓðzMÞ of the condensate on the matching point zM for an s-wave superconductor (ℓ = 0). It is
remarkable that for larger ~m2 (thus increased Δℓ), the choice of the matching point becomes irrelevant, provided it is far enough from
the pole at z = 0. Note that the BF-bound for ℓ = 0 is situated at ~m2 = −2:25.
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instabilities in the ℓ = 2 theory. However, although this is
true on a technical level, it will be shown that the EOMs
obtained from the naïve action and the minimally coupled
extension of the Fierz-Pauli action still agree for the chosen
ansatz for Bμν.

In curved spacetimes, the case is indeed more difficult
than that of the p-wave superconductor. In particular, covar-
iantising the Fierz-Pauli equation and introducing Uð1Þ
minimal couplings does not suffice to produce the required
number of independent constraint equations [10]. Conse-
quently, spurious propagating degrees of freedom are left
in the theory that lead to, in principle, disastrous inconsis-
tencies such as the emergence of ghosts or the loss of
hyperbolicity.

Several approaches exist to cure this kind of difficulties,
one of which is built in the BHRY model presented by Ref.
[10]. As will be shown in Section 4.2, this model is con-
structed by including in the action all the possible terms of
scaling dimension d + 1 that are quadratic in the spin-2 field,
weighted by coefficients that are treated as Lagrange multi-
pliers. By fixing these coefficients, one ensures the existence
of a correct number of independent constraint equations
that retain the physical degrees of freedom only. This pro-
cess leads to the BHRY Lagrangian that contains a number
of nonminimal couplings between the spin-2 field, the gauge
field and gravity, and a more involved kinetic sector:

LBHRY = − DρBμν

�� ��2 + 2 DμB
μν

�� ��2 − DμB
∗μνDνB + h:c:

� 
+ DμB
�� ��2 −m2 Bμν

�� ��2 − Bj j2

 �

+ 2RμνρλB
∗μρBνλ

− RμνB
∗μλBν

λ −
1

d + 1R Bj j2 − iqFμνB
∗μλBν

λ:

ð51Þ

However, in spite of its rather involved form, this
Lagrangian simplifies in the traceless and transversal gauge
for Bμν, in which it reads

LTT
BHRY = − DρBμν

�� ��2 −m2 Bμν

�� ��2 + 2RμνρλB
μρBνλ, ð52Þ

i.e., it only differs from the naïve action by the curvature cor-
rection term involving the Riemann tensor Rμνρλ. The corre-
sponding EOM is

□−m2� 	
Bμν + 2RμρνλB

ρλ = 0: ð53Þ

It is more illustrative to compare the equations arising
from each model explicitly. Making use of the ansatz for
Bμν in Table 1, the naïve EOM translates into

Ψ″ + f ′
f
+ 4
z

 !
Ψ′ + q2ϕ2

z4 f 2
−

m2

z4 f
+ 2
z
f ′
f

 !
Ψ = 0, ð54Þ

which coincides with that of the CKMWY model in Ref. [9],
while the BHRY equation corrected by the curvature term
RμρνλB

ρλ = ð2f /r2Þψ delivers (the Riemann tensor for the

generalised metric has been calculated with the subpackage
xCoba of the Mathematica package xAct [28])

Ψ′′ + f ′
f
+ 4
z

 !
Ψ′ + q2ϕ2

z4 f 2
−

m2

z4 f
+ 2
z
f ′
f
+ 2
z2

 !
Ψ = 0:

ð55Þ

Hence once more, notwithstanding the formal issues of
the spin-2 case, the differences between the models reduce
to a series of curvature corrections that enter the EOMs at
the level of the dynamical mass. Then, and as it happened
in the p-wave case, the corrections only change the defini-
tion of the critical temperature and should not affect the
model phenomenologically.

Notice also that, in terms of ψ, the latter equation takes
the simpler form

ψ′′ + f ′
f
ψ′ + q2ϕ2

z4 f 2
−

m2

z4 f

� �
ψ = 0 ð56Þ

in which the curvature corrections have been absorbed by
the redefined field. One consequence is that after such a
redefinition of the field, the EOMs of the naïve ℓ = 2 model
are identical to those of the s-wave case; see for instance
Ref. [4, 5].

After describing the procedure for p- and d-wave super-
conductors, it is time to address the problem for a field of
rank ℓ > 2. Even though the correct theory describing the
dynamics of such higher spin fields in the general case is still
to be formulated, there are some cases that are well known in
the literature with which the model presented in this paper
can be compared. In fact, the simplest possible situation of
a massless higher spin field in Minkowski spacetime is
well-understood, the Fronsdal equation [29] providing the
right description of the propagating degrees of freedom in
that case. It reads

□Bμ1⋯μℓ
− ∂ μ1ð ∂σBμ2⋯μℓÞσ +

1
2 ∂ μ1ð ∂μ2Bμ3⋯μℓÞσ

σ = 0, ð57Þ

which reduces to □Bμ1⋯μℓ
= 0 in the traceless and transversal

gauge

Bσ
μ3⋯μℓσ

= 0 and ∂σBσμ3⋯μℓ
= 0: ð58Þ

Trivially, this coincides with the EOM arising from
Equation (2) in the massless limit m2 = 0.

But again, considering curved spacetimes seemingly puts
one in dire straits. The main issue in this case is the noncom-
mutativity of the covariant derivatives, which prevents the
second term in Equation (57) from vanishing and introduces
curvature correction terms that correspond to the higher
spin generalised version of those that have explicitly been
found in the p- and d-wave cases.

A generalised procedure exists to construct the required
set of constraint equations to cure all instabilities in the
rank-ℓ case. This method will be outlined in Section 4.2,
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but it should not be regarded as an universal remedy, as for
larger ℓ, it becomes involved and there is no systematic gen-
eralisation of every of its steps.

Therefore, it would be useful to have an operative
method to calculate these curvature corrections without hav-
ing to explicitly consider constraint equations. In the AdS
background, several worthwhile attempts to describe the
dynamics of free higher spin fields have been made in the lit-
erature [9, 30–32]. One approach displayed in Ref. [33] is to
regard the curvature correction terms as belonging to a
dynamical mass M2

ℓ , yielding an equation of the form

□−
M2

ℓ

L2

� �
Bμ1⋯μℓ

= 0 ð59Þ

in the traceless and transversal gauge, where the mass takes
the form

M2
ℓ = ℓ2 + ℓ D − 6ð Þ − 2 D − 3ð Þ ð60Þ

in D = d + 1 spacetime dimensions.
For the presented superconducting theories, though, the

correct curvature corrections are hard to write down in a
general form for higher spins. The difficulty of this enter-
prise arises from two sources:

(1) The nonpurely AdS metric

(2) The couplings with the Uð1Þ electromagnetic field

So as to visualise the first issue, one can consider the
EOM for the matter fields in terms of the initial field Ψ,
i.e., before performing the redefinition of the matter field
defined by Equation (13). In those terms, the EOM for gen-
eral ℓ takes the form

Ψ′′ + f ′
f
+ 2ℓ

z

 !
Ψ′ +M2

Ψ′ z, ℓð ÞΨ = 0, ð61Þ

where the dynamical massM2
Ψ′ðzÞ is shifted by a pair of cur-

vature correction terms

M2
Ψ′ zð Þ = q2r2Hϕ

2

z4 f 2
−
m2r2H
z4 f

+ Eℓ f ′
zf

+ Fℓ

z2

 !
, ð62Þ

and the coefficients Eℓ and Fℓ weighting those terms are

Eℓ = ℓ,
Fℓ = ℓ ℓ − 2ð Þ:

ð63Þ

Now, in a pure AdS background where f ðzÞ = r2H/z2, the
m2, Eℓ, and Fℓ terms all scale with z−2 and can be collected
into a single dynamical mass term proportional to

m2
dyn = ~m2 + 2Eℓ − Fℓ: ð64Þ

Hence, the curvature corrections become only a shift to

an effective mass and are effectively erased from the EOMs.
But unfortunately, this does not hold for arbitrary f ðzÞ
where the derivative of the metric f ′ðzÞ is not proportional
to f ðzÞ, spoiling the convenient relation from AdS. Mean-
while, the coupling to the gauge field ϕ also complicates
the argumentation and sabotages some ideas. In fact, one
very promising path to present the EOMs in a neat form
leads down to exploiting the invariance of an action of the
form Equation (2) under gauge transformations δB for free
fields in AdS-like theories, as shown for instance in Ref.
[19]. In that paper, it is shown that by electing an appropri-
ate gauge, the fields can be rescaled in such a way that the
action only depends on partial derivatives of these fields
and the EOMs can directly be read off. But even though this
method could in general take care of general metrics by
adapting the field rescaling, it is easy to see that it eventually
breaks down when including gauge field interactions via
gauge-covariant derivatives.

4.2. Constructing Complete Models for Higher Spin Fields. To
date, no complete, pathology-free formulations of higher
spin theories have been found. However, several methods
exist in the literature which suggest that doing so is formally
possible, at least for a limited number of spacetime geome-
tries that include AdS. Therefore, after having pointed out
the differences between the naïve and physical models, it will
be interesting to provide more detail about how it can be
done in the general case by putting together a sufficient set
of constraint equations.

The procedure is explained in Ref. [11] and it is sum-
marised here for the sake of completeness. The main idea
was already anticipated in the examples in the first part of
this section. While transversality and tracelessness condi-
tions are enough to eliminate unphysical degrees of freedom
in free theories, further constraints are required when inter-
actions are switched on in a higher spin field theory. For
consistency, as a first requisite, one needs that the same
number of degrees of freedom as in the flat theory is con-
served when introducing interactions. Another crucial point
is the preservation of causality, i.e., the absence of superlum-
inal motion must also be enforced.

The general algorithm that allows to construct a theory
fulfilling those requirements goes at follows: let N be the
number of degrees of freedom contained in the naïve theory
that will be denoted as ϕa following Ref. [11]. By applying
the principle of least action, a set of N equations can be
obtained from the theory that are not all independent of
each other. In particular, the equations can be rewritten
and split in two different categories:

(i) A set of k ≤N equations which fix k of the second
derivatives €ϕ

a
of the degrees of freedom

(ii) The remaining N − k equations which do not con-
tain accelerations. These are called primary con-
straint equations

As a consequence, the system of equations that directly
arises from the action does not completely characterise the
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dynamics of the theory, and additional constraints must be
brought in from elsewhere. One can recur, at this point, to
conservation of the primary constraints. By doing so, a
new set of N − k secondary constraint equations is found,
containing second derivatives which may or not fix the still
undetermined degrees of freedom.

If they do not, one can then iteratively repeat this proce-
dure until all second derivatives are fixed by the equations.
Typically, for rank-ℓ tensor fields, a total of ℓ iterations are
necessary, which generically require to rewrite the equations
in an appropriate form. From this general insight, it becomes
clear that the actual calculation of the constraints will be
complicated for higher spin models and cannot be general-
ised automatically to arbitrary ℓ.

For an explicit example, the case of the ℓ = 2 d-wave
superconductor will be considered. The problem was in fact
solved for this case in Ref. [10] to set up the BHRY super-
conductor. The model aims to describe a massive spin-2 field
in d + 1 spacetime dimensions with a total of ðd + 2Þðd − 1Þ
/2 physical degrees of freedom. However, in the field being
represented by a symmetric tensor Bμν with ðd + 1Þðd + 2Þ/
2 free elements, the theory contains d + 2 degrees of freedom
that are spurious. Accordingly, 2ðd + 2Þ extra constraint
equations are required, so as to fix both the values of those
fields and their momenta.

The most general action containing only terms of scaling
d + 1 that are quadratic in the rank-2 tensor field Bμν can be
written as

L = − DρBμν

�� ��2 + 2 DμB
μν

�� ��2 − DμB
∗μνDνB + h:c:

� 
+ DμB
�� ��2 −m2 Bμν

�� ��2 − Bj j2

 �

+ c1RμνρλB
∗μρBνλ

+ c2RμνB
∗μλBν

λ + c3 eiθRμνB
∗μνB + h:c:

h i
+ c4R Bμν

�� ��2 + c5R Bj j2 + ic6qFμνB
∗μλBν

λ,

ð65Þ

where the coefficients ci, i = 1,⋯, 6 are the Lagrange multi-
pliers that were referred to in Section 4 when commenting
on the BHRY model.

Let Eμν = 0 denote the EOM for the tensor component
Bμν. Then, it is possible to divide the equations in the two
categories defined before. As it is shown in Ref. [10], using
the usual convention for Greek and Latin Lorentz indices:

(i) Eij = 0 are dynamical equations which determine the

second derivative €Bij

(ii) Eμt = 0 do not contain accelerations. Therefore, they
are a set of d + 1 primary constraints

In order to fix all the degrees of freedom, one applies the
conservation of the dynamical equations. This amounts to
write DμEμν = 0. Combined with the trace equation Eμ

μ = 0
, it can be shown that doing so provides an extra set of d
+ 1 secondary constraints. That way, only 2 of the required
2ðd + 2Þ constraints are missing that can be obtained by iter-
ation. In particular, the penultimate constraint originates

from the second divergence DμDνEμν = 0, combined with
the trace equation again. Finally, the last constraint is com-
puted from the time derivative of the first divergence, Dt

DμE
μ
j = 0.

Following these steps, the coefficients c1 to c6 in the most
general Lagrangian Equation (65) can be fixed to give Equa-
tion (51). This Lagrangian defines a theory for the d-wave
holographic superconductor that contains the right number
of degrees of freedom. However, as it is discussed once again
in Ref. [10], the theory obtained by this method has several
limitations. For instance, the constraint equations only hold
if the background is fixed, and so it cannot account for back-
reactions on the metric.

4.3. Comparison of the Condensates between the Naïve and
Physical Models. Now that the Abelian-Higgs s-wave,
SU(2) Yang-Mills p-wave, and CKMWY and BHRY d-
wave model have been introduced, everything is set up to
resume the comparison between the naïve and physical
models which was started in Section 3.5 including Figure 2.

Before comparing the condensates for the naïve and the
mentioned physical models, it is useful to return for a
moment to the case of general ℓ seeing as it provides some
tools to relate the individual models. As it has been moti-
vated in Section 2.2 and shown explicitly for ℓ ≤ 2, a spin-ℓ
field can be represented by a tensor of rank ℓ accompanied
by appropriate constraints. The general EOM for Ψ with
coefficients Eℓ and Fℓ that incorporate the curvature correc-
tions implemented in the physical models has already been
given in Equations (61) and (62) in Section 4.1 in terms of
Ψ.

However, in order to compare with the calculation in
Section 3, it is convenient to work in terms of ψ =Ψzℓ, cf.
Equation (13). Then, the equation reads

ψ″ + f ′
f
ψ′ + q2r2Hϕ

2

z4 f 2
−
m2r2H
z4 f

+
~Eℓ f ′
zf

+
~Fℓ

z2

 !
ψ = 0: ð66Þ

When working in terms of the arbitrary curvature-
correction coefficients ~Eℓ and ~Fℓ, one finds that, by following
the same steps as in Sections 3.2 and 3.3, the only differences
appear in the coefficients of the expansion near the horizon,
which now read

~A ℓ =
η

h 1ð Þ , ð67Þ

~Bℓ = −
~m2

h 1ð Þ + ~Eℓ

� �
, ð68Þ

~C ℓ,1 =
1
4

~Fℓ + ~Eℓ 1 + ~Eℓ

� 	
+ 4 + 2~Eℓ

� 	 ~m2

h 1ð Þ + ~m4

h2 1ð Þ + 2h′ 1ð Þ ~m2

h2 1ð Þ

" #
,

ð69Þ

~C ℓ,2 = −
1

4h2 1ð Þ
, ð70Þ
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~Δℓ =
3
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

� �2
+ ~m2 + 2~Eℓ − ~Fℓ

s
: ð71Þ

For the naïve model, the coefficients are simply given by
~Eℓ = 0 and ~Fℓ = −ℓ. Plugging those values in allows to
recover the expressions found in Section 3.2. It is crucial
how these coefficients enter into Equations (31)–(33): the
critical temperature and the prefactor of the condensate are
modified, but the scaling with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T/Tc

p
for T ⟶ Tc that

is distinctive of a superconducting condensate remains
unaffected.

As it has been discussed in Section 4.1, the action and the
EOMs differ between the naïve and physical models for p-
and d-wave superconductors. Meanwhile, the s-wave models
are in agreement with each other. Now, the expressions
above allow to compare these differences both at the level
of the EOMs and to eventually quantify them. Starting from
Equation (32) and using the updated parameters, Equations
(67)–(71), the modifications for the physical models can be
regarded as ~Eℓ and ~Fℓ terms (cf. Equation (66)). Those terms
enter Δℓ at the same level as the mass parameter ~m2. Accord-
ingly, and as it is apparent from the discussion in previous
sections, near the AdS-asymptotic boundary, they can be
absorbed into a dynamical mass:

m2
dyn = ~m2 + 2~Eℓ − ~Fℓ: ð72Þ

Then, the anomalous dimension reads

Δℓ =
3
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4 +m2

dyn

r
: ð73Þ

Equation (72) implies that, after an appropriate case-
wise choice of the value of ~m2, the values of m2

dyn and thus
Δℓ for the naïve and physical models can easily be matched.
So, in order to better compare the different models, the
asymptotic dynamical mass Equation (72) can be chosen at
the BF bound, m2

dyn = −9/4, resulting in Δℓ = 3/2. The corre-
sponding values of ~m2 together with the parameters ~Eℓ and
~Fℓ for each model are presented in Table 3.

Then, looking back at Figure 2, which shows the conden-
sates as a function of the temperature for these values of ~m2,
the common features as well as the differences are clearly
visible. Notice that since the anomalous operator dimension
Δℓ agrees for all models, using the normalisation in the fig-
ure, all curves exhibit the same scaling with the temperature.
The only differences originate from the coefficient Wℓ of the
condensate defined by Equation (33) that results in an over-
all multiplicative factor for the curves.

Naturally, due to the scalar nature of the matter field and
the simplicity of its description, the naïve s-wave model
agrees with the Abelian-Higgs s-wave model and so do the
respective condensates. Meanwhile, the two curves for naïve
and SU(2) Yang-Mills p-wave superconductors coincide
because, by chance, the coefficient Wℓ is the same for both

models and the changes in Bℓ due to the different choice
of ~m2 are cancelled equally by ~Eℓ in Equation (68).

This is no longer the case for the d-wave superconduc-
tor, since Bℓ and thus Wℓ agree between the naïve and the
CKMWY models (which coincide at the level of the action),
but they both differ from the BHRY model. Even so, as it has
already been stated, the differences appear only in the overall
factor of the condensate. By taking the ratio of the coeffi-
cients Wℓ for the naïve and BHRY p-wave model,

WBHRY
p

Wnaîve
p

≈ 1:258, ð74Þ

one finds that, from a phenomenological point of view,
the models differ by the order of a 25% in their prediction
of the magnitude of the superconducting condensate.

5. Conclusions

In this paper, we presented a generalisation of the holo-
graphic approach towards superconductors.

First, a naïve model that describes the action of a matter
field with spin of arbitrary value ℓ, coupled to an electromag-
netic field, has been introduced in the bulk. Afterwards, the
widely used AdS Schwarzschild Black Hole metric has been
generalised to sets of metrics with a first-order zero at the
horizon.

Eventually, equations of motion for the relevant degrees
of freedom of the theory have been solved by means of the
semianalytical matching approach presented in Ref. [24].

One great virtue of the naïve model consists in the fact
that it can reproduce the expected scaling of the condensate
with the temperature, O ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T/Tc

p
, independently of ℓ.

Notice that this was not at all straightforward, as the naïve
model is not a self-consistent field theory in d + 1-dimen-
sional curved spacetime for any value of ℓ: although the
model agrees with the Fronsdal equations in Minkowski
spacetime, it does neither account for correction terms in
curved spacetime nor describe the correct amount of physi-
cal degrees of freedom. It hence needs to be endowed with
suitable constraint equations, in order to be promoted to a
consistent physical field theory.

Table 3: Parameter choices for ~m2 at the BF bound.

Model ~Eℓ
~Fℓ ~m2

Naïve s-wave 0 0 −9/4
Naïve p-wave 0 -1 −13/4
Naïve d-wave 0 -2 −17/4
Naïve f-wave 0 -3 −21/4
Naïve g-wave 0 -4 −25/4
Abelian Higgs s-wave 0 0 −9/4
SU(2) YM p-wave -1 0 −1/4
CKMWY d-wave model 0 -1 −17/4
BHRY d-wave 0 0 −13/4
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In spite of this, the results for the condensate and the
critical temperature retain the correct dependence on the
free parameters of the theory and allow for an analytical
study for any value of ℓ considered in the literature so far.

In particular, the mentioned model reproduces the
Abelian-Higgs model for s-wave superconductors and the
CKMWY model for d-wave superconductors studied in
Ref. [5] and Ref. [9], respectively. On the other hand, the
equations of motion derived in the naïve model differ
slightly from the SU(2) Yang-Mills model for p-wave super-
conductors of Ref. [6] and the BHRY model for d-wave
superconductors of Ref. [10]. The differences can be
regarded as a change in the dynamical mass and only affect
the critical temperature’s dependence on the extra dimen-
sional parameters, whereas the scaling with the charge den-
sity ρ is universal and leads to the same superconductor
phenomenology. Moreover, a direct comparison of the
numerical results shows that the coefficient of the conden-
sate computed with the naïve d-wave model differs by
approximately 25% from the physical BHRY d-wave model.

In order to address the important point of the difference
in the equations of motion for the relevant degrees of free-
dom that arises when comparing the naïve model and the
consistent field theory for a given spin ℓ, a technique to com-
pute the constraint equations has been summarised. For the
d-wave superconductors, the constraint equations were cal-
culated explicitly to shed some light on how to obtain the
physical equations of motions from the action in Equation
(2). We found that in all cases studied in the literature, the
equations of motion derived using the naïve model single
out the essential features a holographic model for supercon-
ductivity must encapsulate.

Our results for s-, p-, and d-wave holographic supercon-
ductors encourage us to speculate about the behaviour of
possible higher spin superconductors. In recent works [34],
the existence of f-wave superconductivity was conjectured
on systems like Sr2RuO4. More recently [35], f-wave super-
conductivity was observed in AV3Sb5, where A = K , Rb, or
Cs. Using our general description in the naïve model for
any ℓ, we have been able to describe new types of possible
superconductivity behaviour, including the f-wave case,
which could help describing these new systems.

Appendix

A. Higher-Order Singularities at the Horizon

In Section 2.3, the background metric has been generalised
to the form introduced by Equation (8) in an effort to fully
generalise the description of holographic superconductors.
However, the function f ðzÞ∝ ð1 − zÞ in Equation (8) defines
the singularity at the horizon z = 1 to be of first order. One
might then ask whether functions of the more general form

f zð Þ = r2H
L2

h zð Þ 1 − zð Þ1+α ðA:1Þ

could also give rise to the desired superconducting behav-
iour. In this appendix, it will be briefly argued that the case

α = 0 provides in fact the simplest scenario for the phenom-
enological description of superconductors.

To look at this issue, one may reproduce the steps in Sec-
tion 3 that lead to the analytical calculation of the supercon-
ducting condensate. When examining the regularity
conditions near the horizon, Equation (18) is modified into

ψ′ 1ð Þ ≡ lim
z⟶1

ψ′ zð Þ = lim
z⟶1

−
~m2 1 − zð Þ−α
pz4h zð Þ ψ zð Þ, ðA:2Þ

where ψ is given by Equation (13) and hðzÞ is regular at z = 1
.

Starting with −1 < α < 0, this implies that there are two
cases:

(i) ψ′ð1Þ = 0: then, in order to satisfy the EOM for ψ at
the horizon that is analogous to Equation (15) in the
case α = 0, ψð1Þ = 0 must be satisfied. As a conse-
quence, one also finds ψ′′ð1Þ = 0 using the Taylor
expansion near the horizon. This means that the
matter field ψ disappears up to second order at the
horizon and the condensate vanishes

(ii) ψð1Þ⟶∞: let ψ be given by a power-law solution
of the form ψðzÞ ~ ð1 − zÞ−β near the horizon; then,

it is ψ′ðzÞ ~ ð1 − zÞ−ðβ+1Þ. Therefore, ψ′ðzÞ scales
with a larger power of ð1 − zÞ, contradicting Eq.
(A.2).

In both cases, ψ does not contain a quadratic term
ð1 − zÞ2 which, as can be inferred from the results in Section
3, is one crucial ingredients for the emergence of a conden-
sate. Consequently, there is no condensate in this case.

For α > 0, there are similarly two options:

(i) ψð1Þ = 0: if that is the case, the EOM for ψ similar to
Equation (15) enforces ψ′ð1Þ = 0 and, after the Tay-
lor expansion Equation (21), also ψ′′ð1Þ = 0. Again,
ψ vanishes again up to second order at the horizon

(ii) ψ′ð1Þ⟶∞: if ψ had a power-law form ψðzÞ =
ð1 − zÞβ, then ψ′ðzÞ∝ ð1 − zÞβ−1. This implies α = 1
by Equation (A.2). That is, for p = 2, solutions could
exist, but no analytical solution could be found in
this case

Therefore, no condensate emerges when α > 0, either, for
the family of solutions under consideration. To summarise
then, the condensate vanishes for α ≠ 0, at least when consid-
ering the family of solutions obtained from power series by
enforcing regularity conditions on the fields.

B. Dependence of the Analytical Results on the
Matching Point

In Section 3, an analytical method was presented that allows
to disentangle the dynamics of holographic superconduc-
tors. Said method consists in the construction of asymptotic

15Advances in High Energy Physics



solutions of the EOMs of a theory both near the event hori-
zon and the AdS-asymptotic region, which are then glued
together at an intermediate point. In this appendix, a techni-
cal aspect of this calculation is briefly clarified: the impor-
tance of the choice of the matching point z = zM to the
coefficient of the condensate.

Keeping an explicit dependence on zM , the condensate
reads

Oh i =Wℓ zMð ÞTcT
l+Δ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + T

Tc

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

Tc

s
, ðB:1Þ

where the zM dependent coefficient is given by

Wℓ zMð Þ = 4π
3

� �ℓ+Δℓ
ffiffiffi
2

p
z1−Δℓ
M 2 +Bℓ zM − 1ð Þ½ �ffiffiffiffiffiffi
A ℓ

p
Δℓ − zM Δℓ − 2ð Þ½ �

ðB:2Þ

and A ℓ and Bℓ are the coefficients defined by Equations
(22) and (23), respectively. This expression coincides with
Equation (33) when zM = 1/2.

The only problematic point within the range of defini-
tion of zM (recall that z ∈ ð0, 1�) is the pole which arises at
zM = 0 whenever Δℓ > 0. Notably, as Equation (B.2) shows,

the pole scales as z1−Δℓ
M . Therefore, the smaller the scaling

dimension of the condensate Δℓ is, the steeper and narrower
is the growth of WℓðzMÞ towards the pole at zM = 0, making

the overall dependence with zM milder. This behaviour,
which can be spotted in Figure 5, justifies the choice of the
value of ~m2 that saturates the BF-bound for an optimal per-
formance of the semianalytical calculation method that has
been used in this paper.

C. The Electric Conductivity

Two different quantities typically characterise holographic
superconductors. One is the condensate, whose emergence
has been readily checked in this paper using the analytical
matching method presented in Section 3. Additionally, the
optical conductivity is worth being considered, since it
generically exhibit a recognisable gap at some frequency ωp

in superconducting systems. With this as its outstanding fea-
ture, the conductivity can be used to classify systems as
superconductors.

However, little attention has been brought to the con-
ductivity throughout this paper. The reason for the lack of
focus on that quantity is that, as it will be shown in this last
appendix, the calculation method that has been made use in
this paper breaks down when an analytical computation of
the conductivity is attempted.

Nevertheless, we find it illustrative to take a look at the
conductivity to show that the presented matching approach
could provide a suitable starting point to derive semianalyti-
cal calculation methods for the conductivity. The
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Figure 5: Comparison of the real and imaginary part of the conductivity for the analytical and numerical approach. Note that the real part
of the conductivity is plotted logarithmically, while the plot of the imaginary part employs a linear scale. Notice also how in the low
frequency region, the analytical σ reproduces the features of the numerical one to some extent. However, its behaviour is completely
faulty for ω > ωg.
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modification of the analytical method to account for the
conductivity is left for a future work.

In order to understand why this breaking happens, the
results emerging from the analytical method will be put in
comparison with the numerical outcome for the simple case
of the s-wave superconductor, ℓ = 0.

So as to obtain the conductivity, one starts by consider-
ing the fluctuations of the EM gauge field in a direction
transversal to the AdS-radial dimension r. Since the s-wave
superconductor is rotationally invariant in its spatial dimen-
sions, it is sufficient to consider fluctuations in the x-
direction only:

δA = Ax rð Þe−iωtdx: ðC:1Þ

Then, the EOM for this fluctuation in a generic BH back-
ground reads

Ax″ +
f ′
f
Ax′ +

ω2

f 2
−
2Ψ2

f

� �
Ax = 0: ðC:2Þ

As described in Refs. [4, 5], numerical solutions to this
equation can be straightforwardly obtained once the EOMs
for ψ and ϕ have been solved. The resulting numerical con-
ductivity σ then displays the expected behaviour, as it can be
observed in Figure 6, where its real and imaginary parts are
represented in red. In particular, its real part is negligible for
smaller frequencies ω < ωp and becomes asymptotically
unity as the frequency surpasses ωp, shaping the aforemen-
tioned gap around that frequency.

Then, motivated by its successful description of the con-
densates (c.f. Section 3), one may attempt to apply the same
analytical method to the calculation of the conductivity. For
that purpose, the gauge field fluctuations near the horizon

can be approximated by

AH
x 3rH 1 − zð Þ½ �−iω/3rh × 1 + Aa

x 1 − zð Þ + Ab
x 1 − z2
� 	

+ Ac
x 1 − zð Þ3

h i
,

ðC:3Þ

since near the horizon, Ax ~ f α with α = ±iω/3, while the
metric asymptotically becomes f BH ⟶ 3rHð1 − zÞ.

Afterwards, the coefficients Aa
x , A

b
x, and Ac

x are fixed by
expanding and solving the EOM Equation (C.2) up to O

ð1 − zÞ2.
On the other hand, in the asymptotic region, the fluctu-

ations can be written as

AAdS
x = A0

x +
A1
x

r
+⋯: ðC:4Þ

As done in the case of the condensate, the expansion
near the horizon, Equation (C.3), is matched to the asymp-
totic expansion near the AdS boundary, Equation (C.4), by
imposing the Dirichlet and von Neumann boundary condi-
tion at the matching point zM , i.e.,

AH
x zMð Þ = AAdS

x zMð Þ,
A′Hx zMð Þ = A′AdSx zMð Þ:

ðC:5Þ

These two equations determine the coefficients A0
x and

A1
x. According to, e.g., Ref. [5], the conductivity can be

defined in terms of those coefficients as

σ = 1
iω

A1
x

A0
x

: ðC:6Þ

However, when the analytical coefficients are plugged in
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Figure 6: Critical temperature in Kelvin for s-, p-, d-, f-, and g-wave superconductors as a function of h′ð1Þ for hð1Þ = 3 and all masses
chosen at the respective BF bound, Equation (38). The energy density of the gauge field ϕ near the horizon has been set to ρ= 7:5 · 10−3
eV2 so as to relate the prediction of the model with physical systems. The dashed blue vertical line emphasises the AdS Schwarzschild
BH case h′ð1Þ = −3.
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this definition, the outcome is very far from resembling the
reliable numerical solution described before. This is also to
be seen in Figure 6, where the real and imaginary part of
the analytically calculated conductivity are put in compari-
son with the numerical outcome. In fact, one can see that
while some gap-like structure develops for ω < ωp, the ana-
lytical conductivity does not retain its proper normalisation
and grows indefinitely as ω⟶∞. This is a nonphysical
behaviour in what respects the description of superconduc-
tors that indicates the breaking of this method of calculation.

To understand the reason for this failure, one may look
at the expansion in Equation (C.3), whose prefactor forecasts
an oscillating behaviour of the solution near the horizon.
This oscillating solution is then matched to an a priori non-
oscillating expansion near the asymptotic boundary, Equa-
tion (C.4). Therefore, a high dependence on the matching
point zM is expected that spoils any hope of finding a proper
expression for the conductivity using this method. Neverthe-
less, more refined matching procedures, beyond the one
employed in this paper, may lead to a successful analytical
treatment of the conductivity properties of SCs. We leave
this study for a future work.
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