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Based on a recent proposal to build an electron-muon collider, we study two-to-two production processes e−μ+ ⟶ f �f , γγ that
originate from dimension 6 and 8 operators. We compare the sensitivity to those effective couplings obtained at the collider
with that of low energy measurements of μ⟶ eγ, μ⟶ e�ee, and μ⟶ e conversion that have recently been reported in the
literature. Whereas for the production of first family fermions, the sensitivity of the collider processes is much weaker; for the
second and third family fermions, it is similar or stronger than that of low-energy processes. In the case of e−μ+ ⟶ γγ, the
sensitivity to a dimension 8 contact operator turns out to be the strongest in comparison.

1. Introduction

With the main objective of measuring Higgs boson prop-
erties, there has been renewed interest in muon colliders
[1–3]. At the low energy level, there have been numerous
works concerning ðg − 2Þμ from the theoretical and exper-
imental point of view [4–8]. In addition, the recent confir-
mation of a significant deviation from the Standard Model
(SM) value of ðg − 2Þμ at Fermilab [9] has also encouraged
the proposal of new physics models [10–17] as well as the
calculation of higher order QED contributions to the eμ
⟶ eμ scattering process [18, 19]. The idea of electron-
muon collisions has been analyzed in past decades
[20–25], and recently, it has been brought up again in a
study of an extra Z ′ boson with generic couplings that
could be searched for through a Lepton Flavor Violating
(LFV) process like e−μ+ ⟶ e+μ− [26]. In a subsequent
article, the construction of a high energy e−μ+ collider
has been proposed [27]. Besides the clear capability of
probing muon LFV effects like the Heμ coupling, this
machine could even test the Higgs-bottom quark coupling
[27]. One important advantage of such a machine is the
very low level of SM background processes as they come
mostly from vector boson fusion. Other than the elastic
e−μ+ ⟶ e−μ+ there is no two-to-two process to contend

with, and this is what motivates our study. We are inter-
ested in fermion pair and two-photon production that
can come from contact terms e−μ+ f �f and e−μ+γγ.

LFV operators are already being strongly constrained
from low energy measurements like muon decays and μ − e
transitions [28–30]. We will show the comparison of the
potential limits estimated here with these precision measure-
ments. For e−μ+ ⟶ f �f , we consider the four-fermion
dimension-6 operators of the Standard Model Effective Field
Theory (SMEFT) as given by the well known Warsaw basis
[31]. We will also consider some dimension 8 operators that
have been constrained in [29]. Given the chiral structure of
the SMEFT, it is straightforward to obtain the corresponding
amplitudes in the helicity basis. For the two-photon produc-
tion e−μ+ ⟶ γγ, we address the contribution from the LFV
dipole operator, that is very strongly constrained by μ⟶ eγ,
and we consider as well a dimension 8 contact operator that is
bound more strictly by our results than by low-energy
measurements.

The paper is organized as follows. In Section 2, we ana-
lyze the two-body processes induced by four-fermion eμf f
operators. We explicity provide the corresponding helicity
amplitudes and cross sections. Then, we estimate limits on
the Wilson coefficients for 13 dimension 6 and 5 dimension
8 four-fermion operators. In Section 3, we consider γγ
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production originating from two different contributions: a
trivalent dimension 6 dipole and a dimension 8 contact
operator. We write down the sum of squared amplitudes
and the total cross sections. We estimate limits on the coef-
ficients in the same way we did in the previous section, but
then, we carry out a detailed Monte Carlo analysis of signal
and background processes. In this way, we show that our
simplified strategy to obtain limits is realistic. Finally, in Sec-
tion 4, we summarize our results.

2. Four Fermion Operators

Since we are dealing with massless chiral fermions, the
amplitudes are most conveniently written in the helicity
basis (see, for example, Ref. [32]). Assuming some degree
of polarization in the incoming beams, the general form of
the cross section can be divided in four terms:

σPe−Pμ+ =
1 +P e−

2
1+P μ+

2
σ++ +

1 −P e−

2
1−P μ+

2
σ−−

+
1 +P e−

2
1−P μ+

2
σ+− +

1 −P e−

2
1+P μ+

2
σ−+:

ð1Þ

In this section, we will address four fermion contact
operators, and we will obtain sensitivity limits with the fol-
lowing method: first, for each operator, we will assume a
total polarization in the cross section. For instance, in e−Rμ

+
R

⟶ uR�uR that comes from the right-chirality Qeu operator,
the Mð+− + − Þ amplitude gives rise to the σ+− cross section
term, and we assume P e− = +1, and P μ+ = −1. Second, we
neglect backgrounds and obtain sensitivities in optimal con-
ditions. Third, we will assume an integrated luminosity of
order 1ab−1 (as in Ref. [27]) and require a minimum cross
section of 0:04f b from the operator contribution. Such a
cross section yields a significant amount of 40 events. In this
way, since we are working with ideal conditions, we will
avoid being too optimistic. There are 13 dimension 6 four-
fermion operators and 9 of them only contribute to one of
the four polarized cross sections. In their case, if there is only
partial beam polarization the actual number of events could
be reduced by about half or even by one quarter in case of
unpolarized beams. On the other hand, we do not expect
the presence of background to reduce the sensitivity signifi-
cantly. In the next section, we will corroborate that this is
true for γγ production, where we perform a full signal vs.
background analysis.

2.1. Helicity Amplitudes. In this work, we are interested in
the process e−ðp1Þμ+ðp2Þ⟶ f ðp3Þ�f ðp4Þ that does not exist
in the SM at tree level, but that is generated by dimension
six four-fermion operators in the SMEFT. Hereafter, f �f will
stand for any of the three charged leptons e, μ, and τ or any
of the quarks except the top quark. The list of four fermion
effective operators in Ref. [31] includes arbitrary ðp, r, s, tÞ
flavor indices to take into account. However, this does not
mean that there are so many possible different helicity
amplitudes as there are also Fierz identities that relate them.
For instance, the operator Oll =�lpγνlr�lsγνlt gives rise to the

same amplitude e−μ+ ⟶ e−e+ for any combination 2111,
1211, 1121, and 1112. We choose to work with 2111 that
we denote as O2111

ll =�lμγνle�leγνle. For the processes e−μ+

⟶ μ−μ+ and e−μ+ ⟶ τ−τ+, the amplitudes between
O2122

ll and O2133
ll are clearly the same. In general, we shall take

the flavor indices as 2111 for all the operators. This specific
choice may exclude some other nonequivalent combinations
in some operators, but we have found that this assignment,
in the end, covers all the possible helicity amplitudes. The
purpose of this preliminary study, rather than being com-
prehensive, is to get a first glimpse of the potential sensitivity
of the e−μ+ collider in two-to-two processes generated by
contact operators and compare with the sensitivities of low
energy measurements.

The helicity amplitudes are shown in Table 1. We see

that ð�LLÞð�LLÞ operators Qll, Q
ð1Þ
lq , and Qð3Þ

lq generate exactly
the same helicity amplitudes as they all involve left-chiral
spinors. On the other hand, the ð�LLÞð�RRÞ operator Qll =�lμ
γμle�eeγ

μee gives rise to two possible combinations of final
state chiralities: e−Re

+
R and e−Re

+
L . They are not equivalent as

shown in Table 1. Notice that many helicity amplitudes are
actually equal up to a phase factor related to azimuthal
angles. The phase factor is important only in the case of
more than one diagram due to interference effects. We also
point out that as a preliminary analysis, we will be consider-
ing the contribution of each operator separately. Because of
the relations [32]:

ijh i = − jih i, ij½ � = − ji½ �, ijh i = ji½ �∗, ijh ij j2 = 2pi · pj, ð2Þ

there are really only three different amplitude structures
in this study: ½12�½34�, ½13�½24�, and ½14�½23�. Their squares
are proportional to the Mandelstam s2, t2, and u2, respec-
tively. So, they are actually not independent. In fact, there
is an identity that is easy to verify [32]: ½12�½34� = ½14�½32�
+ ½13�½24�.

Now let us turn our attention to dimension 8 operators.
There are multiple structures, but we will pay attention to
those specific operators that have been bounded from μ
⟶ e processes [28, 29]. Moreover, there are dimension 8
operators that coincide with some dimension 6 operator
except for an additional H†H term. Obviously, their ampli-
tudes would be equal except for some rescaling factor. The
amplitudes of the dimension 8 operators that give rise to chi-
ral structures that do not appear at dimension 6 are shown
in Table 2.

2.2. Cross Sections and Limits on Coefficients. As mentioned
above, there are only three different types of helicity ampli-
tudes squared. Each of them gives rise to one specific expres-
sion for the cross section. For j½12�½34�j2 = s2, after dividing
by the energy scale Λ4 and integrating over the phase space
we obtain: σ1234 = s/ð16πΛ4Þ . For the center-of-mass (CM)
collider energy

ffiffi
s

p
= 1:095TeV (Ee = 100, Eμ = 3000GeV),

we obtain σ1234ð
ffiffi
s

p
= 1:095 TeVÞ = 36:3 fb. We will show

the corresponding cross sections for each operator in terms
of this common σ1234. The other amplitudes yield σ1324 =
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σ1423 = σ1234/3. The amplitudes obtained here grow with the
collision energy, but our effective theory calculation is valid
for energies below the cut-off scale Λ = 4TeV.

Three benchmark collision energies are proposed in [27]:
(1) Ee = 20, Eμ = 200GeV; (2) Ee = 50, Eμ = 1000GeV; and

(3) Ee = 100, Eμ = 3000GeV that correspond to CM energies
of

ffiffi
s

p
= 2

ffiffiffiffiffiffiffiffiffiffi
EeEμ

p
= 0:126, 0:447, 1:095TeV, respectively.

Since all cross sections are proportional to sjCOj2 computing
the bound at an energy

ffiffiffiffi
s2

p
assuming we know the bound at

an energy
ffiffiffiffi
s1

p
is straigthforward: we just multiply by the

Table 1: Dimension 6 operators with common flavor indices (2111) and the helicity amplitudes generated. The CO/Λ2 factor to be included.
The R, L indices refer to chiralities. Final state e−e+ also stands for μ−μ+ and τ−τ+. Similarly, d�d also stands for s�s and b�b, and u�u also stands
for c�c. Top quarks excluded.

(�LL)(�LL) e− p1ð Þμ+ p2ð Þ⟶ f p3ð Þ�f p4ð Þ M

Oll
�lμγνle

�leγ
νle e−Lμ

+
L ⟶ e−Le

+
L 2 14½ � 32h i

O 1ð Þ
lq

�lμγνle�qγ
νq e−Lμ

+
L ⟶ uL�uL 2 14½ � 32h i

O 3ð Þ
lq

�lμγντ
I le�qγ

ντIq e−Lμ
+
L ⟶ uL�uL, dL�dL ∓2 14½ � 32h i

(�RR)(�RR) e− p1ð Þμ+ p2ð Þ⟶ f p3ð Þ�f p4ð Þ M

Oee �eμγvee�eeγ
vee e−Rμ

+
R ⟶ e−Re

+
R 2 14h i 32½ �

Oeu �eμγvee�uγ
vu e−Rμ

+
R ⟶ uR�uR 2 14h i 32½ �

Oed �eμγvee
�dγvd e−Rμ

+
R ⟶ dR�dR 2 14h i 32½ �

(�LL)(�RR) e− p1ð Þμ+ p2ð Þ⟶ f p3ð Þ�f p4ð Þ M

Ole
�lμγvle�eeγ

vee e−Lμ
+
L ⟶ e−Re

+
R 2 24h i 31½ �

Ole luγvle�eeγ
vee e−Rμ

+
L ⟶ e−Re

+
L 2 21h i 34½ �

Olu luγvle�uγ
vu e−Lμ

+
L ⟶ uR�uR 2 24h i 31½ �

Old luγvle
�dγvd e−Lμ

+
L ⟶ dR�dR 2 24h i 31½ �

Oqe �qγvq�euγ
vee e−Rμ

+
R ⟶ uL�uL, �dL�dL 2 24½ � 31h i

(�LR)(�RL) e− p1ð Þμ+ p2ð Þ⟶ f p3ð Þ�f p4ð Þ M

Oledq
�lμee�dq e−Rμ

+
L ⟶ dR�dL 12½ � 43½ �

(�LR)(�LR) e− p1ð Þμ+ p2ð Þ⟶ f p3ð Þ�f p4ð Þ M

O 1ð Þ
lq

�l
j
μeeεjk�q

ku e−Rμ
+
L ⟶ uR�uL 12h i 34½ �

O 3ð Þ
lequ

�l
j
μσμveeεjk�q

kσμvu e−Rμ
+
L ⟶ uR�uL 4 13½ � 24½ � + 14½ � 23½ �ð Þ

Table 2: Helicity amplitudes generated by dimension 8 operators with common flavor indices ð2111Þ associated to four-fermion contact
vertices that do not appear with dimension 6 operators. A ðv2/2ÞðCO/Λ4Þ factor is to be included. As in Table 1, final state e−e+ also
stands for μ−μ+ and τ−τ+, d�d also stands for s�s and b�b, and u�u also stands for c�c.

(�LR)(�LR) e− p1ð Þμ+ p2ð Þ⟶ f p3ð Þ�f p4ð Þ M

O 8ð Þ
le

�lμHee�leHee e−Rμ
+
L ⟶ e−Re

+
L 12h i 43½ �

O 8ð Þ
Tle

�lμHσμνee�leHσμνee e−Rμ
+
L ⟶ e−Re

+
L 4 31½ � 24½ � + 41½ � 23½ �ð Þ

O 8ð Þ
leqd1

�lμHee�qHd e−Rμ
+
L ⟶ dR�dL 12h i 43½ �

O 8ð Þ
leqd3

�lμHσμνee�qHσμνd e−Rμ
+
L ⟶ dR�dL 4 31½ � 24½ � + 41½ � 23½ �ð Þ

O 8ð Þ
le

�lμHee�leHee e−Rμ
+
L ⟶ e−Le

+
R 24h i 31½ �

O 8ð Þ
Tle

�lμHσμνee�leHσμνee e−Rμ
+
L ⟶ e−Le

+
R 4 21½ � 34½ � + 14½ � 23½ �ð Þ

(�LR)(�RL) e− p1ð Þμ+ p2ð Þ⟶ f p3ð Þ�f p4ð Þ M

O 8ð Þ
leuq

�lμHee�u~H
†
q e−Rμ

+
L ⟶ uR�uL 12h i 43h i
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ratio
ffiffiffiffi
s1

p / ffiffiffiffi
s2

p
. For instance, 0:447/1:095 = 0:4, and so we see

that the limits at benchmark (3) will be more than twice
stronger than benchmark (2). We shall focus on the Ee =
100, Eμ = 3000GeV benchmark in this study. However, in
Section 3, we will see that the cross sections for e−μ+ ⟶ γ
γ are not proportional to s, but one is constant in energy,
and the other is proportional to s2. We will provide limits
obtained with the benchmark (3) Ee = 100, Eμ = 3000GeV
and for greater energies.

The dimension 6 operators of Table 1 yield the following
cross sections:

σ++
σ1234

= 4 Clej j2 +Nc Cledq

�� ��2 +Nc C
1ð Þ
lequ

��� ���2 + 16
3
Nc C

3ð Þ
lequ

��� ���2,
σ+−
σ1234

=
4
3
Ceej j2 + 4

3
Nc Ceuj j2 + 4

3
Nc Cedj j2 + 4

3
Nc Cqe

�� ��2,
σ−+
σ1234

=
4
3
Cllj j2 + 4

3
Clej j2 + 4

3
Nc C

1ð Þ
lq

��� ���2 + 4
3
Nc C

3ð Þ
lq

��� ���2

+
4
3
Nc Cluj j2 + 4

3
Nc Cldj j2,

ð3Þ

where the σ−− term does not appear for the flavor assign-
ment 2111, but the operators that generate σ++ would also
generate σ−− with the assignment 1211.

By requiring that the value of a CQ coefficient be enough
to yield the minimum 0:04 fb of production cross section, we
obtain the following lower limits for Ee = 100, Eμ = 3000
GeV:

Cll, Cee ≥ 2:88 × 10−2,

Cle, Clu, Cld , Cqe ≥ 1:66 × 10−2,

Ceu, Ced , C
1ð Þ
lq , C 3ð Þ

lq ≥ 1:66 × 10−2,

C 3ð Þ
lequ ≥ 0:83 × 10−2:

ð4Þ

We can compare with the limits from low energy pro-
cesses μ⟶ eγ, μ⟶ e�ee, and μ⟶ e conversion in nuclei
μA⟶ eA as recently reported in Tables 6 and 7 of Ref.
[28]. We would like to point out that in almost all cases
the most stringent bounds in those tables come from μA
⟶ eA conversion in nuclei [33]. The exceptions are first
family four-lepton coefficients Cll, Cle, Cee that are con-

strained by μ⟶ e�ee (Tables 6 [28]) and Cð3Þeμcc
lequ that is con-

strained by μ⟶ eγ (Table 7 [28]). Moreover, these
μA⟶ eA bounds are in fact around four orders of magni-
tude stronger than the ones from μ⟶ eγ and μ⟶ e�ee.
This brings up one important observation: that if we ignored
μA⟶ eA, the conclusion would be that the eμ collider
would yield much stronger constraints than any of the low
energy measurements. In Table 3, we show the limits to each

Table 3: Upper limits to the dimension 6 coefficients from the low energy experiments as reported in Tables 6 and 7 of [28]. They have been
multiplied by a factor ð4/0:174Þ2 to account for the normalization scale mt used by [28] instead of the Λ = 4TeV scale adopted in this study.
In addition, the ratio of limits Low/Collider is shown in parenthesis (Ee = 100, Eμ = 3000GeV).

CQ
CLow
Q (CLow/CColl)

e−e+
CLow
Q (CLow/CColl)

μ−μ+
CLow
Q (CLow/CColl)

τ−τ+

Cll 4:16 × 10–4 1:45 × 10–2
� �

0:98 × 10−2 (0:34) 1:97 × 10−2 (0:69)

Cee 4:16 × 10–4 1:45 × 10–2
� �

0:98 × 10−2 (0:34) 1:97 × 10−2 (0:69)

Cle 4:92 × 10–4 2:96 × 10−2
� �

1:99 × 10−2 (1:20) 1:98 × 10−2 (1:19)

d�d s�s b�b

C 1ð Þ
lq 1:51 × 10–5 0:91 × 10–3

� �
1:60 × 10−2 (0:96) 2:49 × 10−2 (1:50)

C 3ð Þ
lq 2:69 × 10–4 1:62 × 10–2

� �
6:08 × 10−3 (0:37) 2:49 × 10−2 (1:50)

Cld 2:80 × 10−5 1:69 × 10−3
� �

1:97 × 10−2 (1:19) 2:49 × 10−2 (1:50)

Ced 2:86 × 10−5 1:72 × 10−3
� �

1:97 × 10−2 (1:19) 2:49 × 10−2 (1:50)
Cqe 1:52 × 10−5 0:92 × 10−3

� �
1:58 × 10−2 (0:95) 2:50 × 10−2 (1:51)

Cledq 5:34 × 10−6 2:79 × 10−4
� �

1:11 × 10−4 (5:80 × 10−3) 3:66 × 10−3 (0:19)
u�u c�c  − −

Clu 3:30 × 10−5 1:99 × 10−3
� �

0:88 × 10−2 (0:53)

Ceu 3:19 × 10−5 1:92 × 10−3
� �

0:89 × 10−2 (0:54)

C 1ð Þ
lequ 5:45 × 10−6 2:84 × 10−4

� �
0:97 × 10−3 (5:1 × 10−2)

C 3ð Þ
lequ 5:10 × 10−5 6:1 × 10−3

� �
5:34 × 10−6 (6:4 × 10−4)

4 Advances in High Energy Physics



operator coefficient (at the scale mW) and the ratio
CLow energy
Q /CCollider

Q for each possible final state. Not surpris-
ingly, we can observe that for the first family fermions the
limits are very stringent. However, for the second and third
family modes that get their low energy limits via loop contri-
butions, the bounds are weaker and about the same order of
magnitude as the potential limits from the e−μ+ ⟶ f �f pro-
duction. Strictly speaking, the collider sensitivity for each
coefficient is taken at a scale of order 1TeV, about ten times
higher than the electroweak scale. In a more precise analysis,
one should take into account the renormalization group
dependence on the scale. However, one should bear in mind
that such corrections are usually of order a few percent.
For instance, the coefficient CDL associated to the operator:
ðCDLmμ/m2

t Þ�eRσμνμLF
μν. An upper limit from its contribu-

tion to μ⟶ eγ decay is reported as ∣CDL ∣ <1:05 × 10−8 at
the muon mass scale [28]. The same limit becomes ∣CDL ∣ <
1:12 × 10−8 at the mW scale, which is only a 7% numerical
variation. For another example, let us consider the dimension
6 coefficient Cel above. In a series of articles [34–37], we can
find the renormalization group evolution of the dimension 6
SMEFT operators listed in the Warsaw basis. The running of
Cel in general depends on several other operators, but let us
take the term proportional to Cel itself. Then, we find that
Cleð1 TeVÞ ~ 0:96CleðmWÞ, that is only a 4% correction. As
we are only interested in a preliminary assessment of sensi-
tivities and comparisons with low energy experiment limits,
we shall not take corrections of scale dependence into

account. Recently, limits on the Cð1Þ
lq and Cð3Þ

lq coefficients
have been published based on the LHC pp⟶ eμ dilepton

production that are approximately Cð1,3Þ
lq < 0:3 for first family

quarks, Cð1,3Þ
lq < 2:0 for second family, and Cð1,3Þ

lq < 5:0 for b�b
[38]. They project that with a hundred times more luminos-
ity the HL-LHC could reduce these limits to one-third of the
current value. From what we have found here, the eμ collider
would have at least one order of magnitude greater sensitivity
than the HL-LHC for these operators.

The dimension 8 operators of Table 2 yield the following
cross sections:

σ++
σ1234

e−Re
+
Lð Þ = v4

4Λ4

�
C 8ð Þ
le

��� ���2 +Nc C
8ð Þ
leqd1

��� ���2 +Nc C
8ð Þ
leuq

��� ���2

+
16
3
Nc C

8ð Þ
leqd3

��� ���2 + 16
3

C 8ð Þ
Tle

��� ���2
�
,

σ++
σ1234

e−Le
+
Rð Þ = v4

4Λ4
1
3
C 8ð Þ
le

��� ���2 + 112
3

Nc C
8ð Þ
Tle

��� ���2
� �

:

ð5Þ

A comment on the tensor operators Qð3Þ
lequ, Qleqd3, and

QTle is in order here. Qð3Þ
lequ, Qleqd3, and the σ++ðe−Re+LÞ contri-

butions of QTle generate the same amplitude ½13�½24� + ½14�
½23�. Except for the v4/ð4Λ4Þ additional factor, the cross sec-
tions are equal. However, for the σ+−ðe−Le+RÞ helicity mode,

the QTle amplitude is ½21�½34� + ½14�½23�. In the CM frame,
the functional dependence on the p3 polar angle’s cos θ
is ½13�½24� + ½14�½23� ~ cos θ. If we compare with ½21�½34� +
½14�½23� ~ ð3 + cos θÞ/2, we can see that the latter yields a
much greater cross section.

As in Table 3 and in Table 4, we show the ratio CLow/
CColl for the dimension 8 operators. Comparing with the
dimension 6 coefficients, there is a suppresing v2/ð2Λ2Þ fac-
tor of order 2 × 10−3, and the CColl minimum values have to
be much bigger. In contrast, according to Table 5 of Ref.
[29], the limits from low energy experiments are still very
stringent for dimension 8 couplings.

What we have learned from Table 3 is that for first fam-
ily fermions f �f the sensitivity of the low energy measure-
ment of μA⟶ eA conversion in nuclei is two or more
orders of magnitude higher. Maybe all the operator coeffi-
cients are indeed very suppressed, regardless of potential
cancellations. However, for most of the second and third
family f �f states, the collider sensitivities are of the same
order of magnitude as the low energy limits. The electron-
muon collider should be able to provide additional and com-
petitive limits to constrain the set of dimension 6 four fer-
mion LFV operators. The same may not be true for
dimension 8 operators, at least for the ones that can be con-
strained by the low energy experiments.

3. The e−μ+ ⟶ γγ Process

The e−μ+ ⟶ γγ amplitude can be generated by the dimen-
sion 6 flavor-changing magnetic dipole operator

QeA =�lμσμνeeHFμν, ð6Þ

through t and u channel diagrams where one of the photons
is emitted by the effective coupling. Another possibility
comes from the dimension 8 operator

QeAA =�lμeeHFμνFμν: ð7Þ

We have two chiral versions: QeAL and QeAR (QeAAL,
QeAAR) referring to left-handed and right-handed electron,
respectively. In Figure 1, we show the Feynman diagrams
associated to each operator.

Table 4: The ratio of potential limits from low energy processes
and minimum observable values at the collider for the dimension
8 coefficients (Table 5 of [29]; Ee = 100, Eμ = 3000GeV).

CQ CLow/CColl

C 8ð Þ
le 5 × 10−3/14:0

C 8ð Þ
Tle 2 × 10−3/1:3

C 8ð Þ
leqd1 3 × 10−5/8:1

C 8ð Þ
leqd3 7 × 10−4/3:5

C 8ð Þ
leuq 3 × 10−5/8:1
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Both operators give rise to amplitudes that do not
depend on angles:

〠 Mj j2 = CeALj j2 + CeARj j2� �
e2

v2

Λ4 48s

+ CeAALj j2 + CeAARj j2� � v2
Λ8 4s

3:

ð8Þ

They yield the total cross sections:

σ−−+σ++ = CeALj j2 + CeARj j2� � 3e2v2
2πΛ4

= CeALj j2 + CeARj j2� �
4:32 fb,

ð9Þ

σ−−+σ++ = CeAALj j2 + CeAARj j2� � v2

8πΛ8 s
2

= CeAALj j2 + CeAARj j2� �
0:0206 fb,

ð10Þ

where the numerical value on the first line is independent of
the collision energy, but the numerical value on the second
line is taken at

ffiffi
s

p
= 1:095TeV.

We see, then, that coefficients CeALðRÞ and CeAALðRÞ of

order 0:1 and
ffiffiffi
2

p
, respectively, would give us a σ = 0:04 fb

value that is our minimum acceptable cross section. Let us
notice that the current limit from μ⟶ eγ is of order 5 × 1
0−6 for the dipole coefficient CeALðRÞ, well below the potential
collider sensitivity. On the other hand, for the dimension 8
operator coefficient CeAALðRÞ, the potential sensitivity from
μA⟶ eA transitions is six orders of magnitude less strin-
gent: CeAALðRÞ ≤ 3:2 [29]. We point out that, in this study,
this last coefficient is the one with the highest sensitivity by
the eμ collider as compared to the low energy measurements.

Seeing the relatively high sensitivity to the electromag-
netic QeAA operator, one may wonder what about the effec-
tive vertex eμGG? We can use the QeAA calculation with
the analogous gluon operator

QeGG =
CeGG

Λ4
�lμeeHGaμνGa

μν: ð11Þ

The e−μ+ ⟶ gg production cross section is now Nc = 8
times greater than e−μ+ ⟶ γγ, and a coefficient of order 0:5
would yield the minimum observable production. However,
according to [29], the low energy μA⟶ eA limit is three

orders of magnitude more stringent in this case: CeGG ≤ 1:6
× 10−3.

As mentioned above, the amplitudes squared for e−μ+

⟶ γγ do not depend on the polar angle. That means that
in terms of rapidity, for instance, y = y∗3 in the CM frame:

dσ
dy

= dσ
dcθ

dcθ
dy

= a0
4 exp 2yð Þ

1 + exp 2yð Þð Þ2 , ð12Þ

where a0 is a constant. The shape of the rapidity distribution
in the CM frame is then centered around zero with a width
of approximately 2 units. In the lab frame, the center is
shifted towards −1:70 (see next subsection).

3.1. Monte Carlo Analysis of γγ Production and Its SM
Background. In the SM, γγ production is given by the two-
to-four process e−μ+ ⟶ γγνe�νμ, involving 13 Feynman dia-
grams in unitary gauge. There is also e−e+ production e−μ+

⟶ νe�νμe
−e+, involving 24 Feynman diagrams. In

Figure 2, we show two representative diagrams for the γγ
and resonant e−e+ production in the SM. Signal and back-
ground have very different kinematics, and this makes the
separation straightforward. Our goal is to show how a basic
set of cuts can reduce the potential background dramatically.
We point out here that in the lab frame the rapidities y are
shifted with respect to those y∗ in the CM frame:

y = y∗ − y0, with y0 =
1
2
ln

Eμ

Ee

� �
= 1:70, ð13Þ

where y0 = 1:7 is the shift value for Eμ/Ee = 30. The muon

beam goes in the direction of −k̂, and so the event products
usually appear on the backward hemisphere.

Thus, to study γγ production in e−μ+ collisions, we con-
sider the three processes,

e−μ+ ⟶ γγ, ð14Þ

e−μ+ ⟶ γγ�νμνe, ð15Þ
e−μ+ ⟶ e−e+�νμνe, ð16Þ

where the first one is our signal process as depicted in
Figure 1 and (15) and (16) the SM backgrounds shown in
Figure 2. We implemented the effective interactions (6)
and (7) in our Monte Carlo simulations by means of

e− (p1)

𝜇− (p2)

𝜇

𝛶 (p3)

𝛶 (p4) 𝜇+ (p2)

e− (p1)

e

𝛶 (p3)

𝛶 (p4)

(a)

𝜇+ (p2)

e− (p1) 𝛶 (p3)

𝛶 (p4)

(b)

Figure 1: The anomalous two-to-two process e−μ+ ⟶ γγ. Process (a) (t-channel) as given by the trivalent vertex dipole operator QeA.
Process (b) as given by the contact term, dimension 8 operator QeAA.
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Figure 3: Normalized differential cross sections for final-state photons for processes (14) and (15) and e± for process (16), with respect to
center-of-mass energy (a), transverse momentum (b), and center-of-mass rapidity (c). The beam energies are ðEe, EμÞ = (100GeV, 3 TeV)
(upper row), (150GeV, 4.5 TeV) (middle row), and (200GeV, 6 TeV) (lower row). Blue lines: signal process (14); black line: analytical
expression (12); orange lines: background process (15); green lines: background process (16). All differential cross section correspond to
detector-level events with cuts (18).
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e− (p1)
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Z
νe (p5)
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W+

W+
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e+ (p4)

W−
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Z

ν̄μ (p6)

νe (p5)

𝜇+ (p2)
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Figure 2: Representative unitary-gauge Feynman diagrams for the SM processes (a) e−μ+ ⟶ γγνe�νμ and (b) e−μ+ ⟶ e−e+νe�νμ.

7Advances in High Energy Physics



feynrules 2.0 [39]. We simulated the signal and background
processes with madgraph 2.6 [40], with beam energies ðEe,
EμÞ = (100, 3000), (150, 4500), and (200, 6000) GeV. We
then have

ffiffi
s

p
= 1:095, 1.643, and 2.191TeV, respectively.

In the two-body signal process (14), the CM energies of
the final photons are fixed at E∗

3 = E∗
4 =

ffiffi
s

p
/2. This is unlike

what happens with the backgrounds (15) and (16), where
there is a continuous spectrum for E∗

3 and E∗
4 . Similarly,

for the signal process jp!3T + p
!

4T j = 0, but for the back-

grounds jp!3T + p
!

4T j = ET which has a continuous range of
values. Furthermore, we observe the final-state photons in
the signal process to be very central in the CM frame, with
jy∗3,4j = jy3,4 + y0j ≲ 2:5 for the vast majority of events, as
expected in view of the analytical distribution (12) and as
shown in Figure 3. For the process (15), without restrictions
on E∗

3,4, the photon rapidity distribution in the lab frame is
symmetric about −y0 = −1:70, but very broad. If we require
E∗
3,4 in (15) to be large, however, the final-state photons must

be very forward or backward. For example, if E∗
3,4 ≃ 250GeV,

the rapidities will have maxima at −y0 ± Δy with Δy ≃ 2 as
shown in Figure 3, and Δy gets larger for greater values of
E∗
3,4. For the process (16), the electron rapidity distribution

presents essentially the same features but is less forward-
backward symmetric, as seen in the figure.

We are, thus, led to consider the following set of phase-
space cuts,

C0 : p3T , p4T > 1:0GeV, 
C1 : E

∗
3 , E

∗
4 > 500:0GeV,

C2 : p
tot
T = p

!
3T + p

!
4T

��� ��� < 20:0GeV, 

C3 : y3 + y0j j, y4 + y0j j < 1:75:

ð17Þ

The cut C0 is necessary to control infrared divergences in
(15) and (16). As discussed above, the cuts C1,2,3 in (17) have
only small effects on the signal cross section, but they do
substantially decrease the cross section for the backgrounds.
The effect of the cuts (17) on the cross sections for the pro-
cesses (14), (15), and (16) is illustrated at ðEe, EμÞ = (100,

3000) GeV in Table 5. The cross section σð3Þγγ refers to the
anomalous process (14) with only the trivalent eμγ vertex

and the Wilson coefficients CeAL = CeAR = 1. Similarly, σð4Þ
γγ

refers to (14) through the eμγγ vertex and the coefficients
CeAAL = CeAAR = 1. The numerical results agree with (9).

We expect the results for cross sections with cuts in
Table 5 to be quite realistic, although detector efficiencies
and acceptances have not been allowed for in those results.
However, we expect the rapidity acceptance effects to be
taken into account by the cut C3 in (17), and we also expect
the efficiency for photon identification to be no less than
90%, so that detector effects should be modest. The impor-
tant exception to this, however, is the background process

(16), which in Table 5 seems to represent one-third of σð4Þγγ ,
but which must actually be adjusted for the electron-
photon misidentification probability. In order to settle this

issue, we carried out a detector simulation using Delphes
3.4 [41].

An e−μ+ collider is highly asymmetric, so we assume its
detector to have a correspondingly asymmetric design. We
obtain a simple but effective asymmetric detector simulation
in the lab frame by assuming that in the CM frame, in which
the e−μ+ collisions are forward-backward symmetric on
average, the detector possesses the same capabilities as the
symmetric Muon Collider detector implemented in Delphes
3.4 (which corresponds to the configuration file cards/
delphes_card_MuonColliderDet.tcl in the Delphes distribu-
tion). We simulate the collisions with madgraph 5 with a
loosened version of the cuts (17) in order to adequately pop-
ulate the phase space,

C′0 = C0, C′1 : E∗
3 , E

∗
4 > 250:0GeV,

C′2 : ptotT = p
!

3T + p
!
4T

��� ��� < 40:0GeV, C′3 =∅:
ð18Þ

We run Pythia 6 [42] on these events for QED shower-
ing, followed by Delphes 3.4 with Muon Collider configura-
tion. In Figure 3, we display normalized differential cross
sections with respect to the CM rapidity y∗, the transverse
momentum pT , and the CM energy E∗ for the final-state
photons in processes (14) and (15), and the final-state e±

for (16), at three different collision energies. Those differen-
tial cross sections correspond to detector-level events gener-
ated with the cuts (18) at the parton level. We notice here
that the differential cross sections shown in the figure for
the signal process (14) correspond to the contact interaction

(7) represented by the symbol σð4Þγγ in Tables 5 and 6. For the
kinematic variables considered in Figure 3, however, identi-
cal results would have been obtained with the interaction
(6). We also point out here the good agreement of the ana-
lytical rapidity distribution (12) with the Monte Carlo data
in Figure 3(c).

We then apply a preselection cut

Nγ ≥ 2, Ne± = 0, ð19Þ

to the Delphes events. Notice that (19) implicitly includes a
cut in absolute rapidity ∣y∗ ∣ <2:5, corresponding to the
detector rapidity acceptance range. Finally, we apply the cuts

Table 5: Cumulative effects of the cuts (17) on the cross sections
for (14), (15), and (16) at Ee = 100GeV, Eμ = 3TeV.

P μ P e Cuts σ
3ð Þ
γγ (fb) σ

4ð Þ
γγ (fb) σννγγ (fb) σννee (fb)

0.0 0.0 C0 2.16 0.0103 770.2 426.6

0.0 0.0 C0,1 2.16 0.0103 0.0049 0.073

0.0 0.0 C0,1,2 2.16 0.0103 0.0015 0.0081

0.0 0.0 C0–3 2.04 0.0097 3:23 × 10−5 0.00108

+0.4 +0.8 C0,1 2.86 0.0136 0.0014 0.081

+0.4 +0.8 C0,1,2 2.69 0.0128 0.00043 0.0082

+0.4 +0.8 C0–3 2.69 0.0128 9:85 × 10−6 0.0038
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C0−3 from (17) to the preselected events. The cross sections
obtained for the detector-level events are summarized in
Table 6. We notice here that the cross section for the process
(14) induced by the dim 6 operator (6), as displayed by the
diagrams in Figure 1(a), has an energy-independent cross
section at the parton level but shows a slight decrease with
increasing

ffiffi
s

p
in Table 6. This is due to the fact that the

upper limit on ptotT we are using in (17) is fixed. This effect,
however, is more than compensated for by the increase in
the partonic cross section in the case of the signal process
induced by the dim 8 operator (7), as displayed in
Figure 1(b), leading to a increasing cross section also at the
detector level. The cross section for the process (15) shows
a very modest growth with

ffiffi
s

p
in Table 6, and process (16)

actually decreases at the highest energy.
Furthermore, comparing the results in Table 6 at ðEe,

EμÞ = ð100, 3000ÞGeV with those in Table 5, we see that
detector effects result in an effective efficiency of 84% for

the γγ production processes given in the tables by σð3Þγγ and

σð4Þγγ . We see also that detector efficiencies reduce the cross
section for the e−e+ background process (16) to the same O
ð10−5Þfb level as the γγ background (15). Completely analo-
gous results are obtained at the two higher energies consid-
ered in Table 6.

4. Conclusions

We have obtained individual limits on LFV four fermion
operators by looking at the two-to-two production processes
they induce at the e−μ+ collider. For operators eμf �f where f
is a second or third family fermion, the sensitivity of the col-
lider is of the same order of magnitude as, and for some
operators even somewhat stronger than, that of the μA
⟶ eA conversion in nuclei. On the other hand, the eμ col-
lider would have higher sensitivity than the other low energy

measurements μ⟶ e�ee and μ⟶ eγ even for first family
fermions. In the particular case of the Wilson coefficients

Cð1,3Þ
lq , for example, the expected sensitivity at an eμ collider

would be at least as strong as that of all low-energy measure-
ments, and an order of magnitude larger than that projected
for Drell-Yan processes at the HL-LHC. This leads us to
expect that, given the large number of independent effective
four-fermion operators, the additional information obtained
from the collider will certainly be invaluable. In the case of
eμ⟶ γγ production, the limits from the collider are signif-
icantly more stringent than those from the low energy pro-
cesses for the case of the dimension 8 eμγγ contact
operator (7).

In the SM, the f �f and γγ production involves an addi-
tional pair of neutrinos, and this makes the separation of sig-
nal and background straightforward. We have made a
detailed analysis of background and signal for the case of γ
γ production, including detector simulation. We observe
that with appropiate cuts on the photon energies, the photon
pair transverse momentum and the photon rapidities we can
dramatically lower the SM background with very little
reduction of the signal.

We point out, finally, that our conclusions are based
on the assumptions of an integrated luminosity of 1 ab −1

and beam energies ðEe, EμÞ =(100GeV, 3TeV), (150GeV,
4.5 TeV), (200GeV, 6TeV), respectively. Clearly, higher
luminosities and/or beam energies would lead to stronger
sensitivities to the contact-interaction effective couplings
considered here.
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